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Abstract

We study the existence of traveling waves in a one-dimensional network of integrate-
and-fire neurons with finite support coupling. We show that when the reset after
spiking is sufficiently low, the interspike intervals (ISIs) for a traveling wave with
an explicit first wave front can be computed. Further, we analytically derive a
self-consistency equation that generates an explicit dispersion relation between the
velocity of periodic traveling waves and their corresponding ISIs. Finally, we prove
that the ISIs of non-periodic traveling waves converge to the ISI of the periodic
waves with the same speed.
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1 Introduction

The neurons in the synaptically-coupled integrate-and-fire network that we
consider, on a one-dimensional domain D, obey the equation

τ1
∂V (x, t)

∂t
= −V (x, t) + gsyn

∫

D

J(|y − x|) ∑

k

α(t− tk(y)) dy. (1)

In equation (1), the integral term represents synaptic coupling, with the sum-
mation taken over all input spikes from the cell(s) at position y to the cell(s)
at position x, which occur at times {tk(y)}. We denote this term by Isyn(x, t).
The function J(x) encodes the spatial dependence of this coupling, while α(t)
encodes the time course of the synaptic current due to each spike. Each time

1 Corresponding author. E-mail address: bard@math.pitt.edu (Bard Ermentrout)

Preprint submitted to Elsevier Preprint 23 October 2002



that a cell’s voltage reaches VT , it is reset to VR; that is, if V (x, τ−) = VT , then
we set V (x, τ+) = VR. Traveling wave solutions to various forms of equation
(1) have been studied by a variety of authors (1; 2; 3; 4; 5; 6).

The standard choice of α function is

α(t) = e
− t

τ2 H(t) =





0, t < 0

e
− t

τ2 , t ≥ 0
(2)

where H(t) is the Heaviside step function. The definition of the normalized
coupling function for the finite support case is

J(x) =





0, |x| > σ

1
2σ

, |x| ≤ σ
(3)

We conducted numerical simulations to explore the initiation of multi-spike
traveling waves and to study how well such solutions approximate periodic
waves. In these simulations, an initial region is ’shocked’, or brought to firing
by an application of current, generating a traveling wave of spiking activity.
Due to the synaptic current received from all the neurons that fire, the neurons
in the shocked region spike again, generating a second wave. The wave gener-
ation occurs faster and faster (as the accumulated synaptic current becomes
greater and greater), but if VR is sufficiently far from VT , then the interspike
intervals (ISIs) for each cell eventually converge toward a fixed value as il-
lustrated in Figure 1. The intuition behind this convergence is that synaptic
current accumulates as firing rates increase, but the reset procedure provides
an effective time delay that prevents firing rates from going to infinity.

2 Wave solutions with a distinct first wave front

Here we analytically investigate the case in which after firing the cells reset at
low voltages VR < 0, far below threshold. Numerical simulations reveal that
in this particular case the distance between the fronts of the traveling waves
is always larger than σ (Figure 1). In other words, the propagation of a wave
front through cells at position x is influenced only by the waves that have
already passed through x and by the wave that is currently approaching, but
not by other waves that will reach x at some time in the future.

It follows that the dynamics of the first wave front is essentially the same as
the dynamics of the single-spike solution. Furthermore, the dynamics of the
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Fig. 1. Multi-spike traveling waves from simulation of equation (1). Space is rep-
resented on the horizontal axis and firing times on the vertical axis. The region
near the spatial coordinate 125 (center of the shocked region) was given a transient
excitatory input at time 0. All subsequent waves were generated by the dynamics
of equation (1). The times between successive spikes at each spatial point decrease,
approaching a limiting value away from the shocked region. The parameters used
here are: gsyn = 10, τ1 = 1, τ2 = 2, σ = 1, VT = 1, VR = −25 and L0 = 3 (the
length of the shocked region).

second wave front are due only to synaptic contribution from the first and
second waves.

For the kth wave front, the firing time of cells at position x is given by tk(x) =
x/c + Tk. Let us assume that the cell to fire first at t = 0 is located at x = 0;
that is, T0 = 0 and t0(x) = x/c. Consequently we have

Isyn(0, t) =





0, t < −t0

g0(1− e
− t+t0

τ2 ), −t0 < t < 0

(4)

and

V (0, t) =





0, t < −t0

g0

(
1− e

− t+t0
τ1 − δ(e

− t+t0
τ2 − e

− t+t0
τ1 )

)
, −t0 < t < 0

(5)

where we used the notation g0 = gsyncτ2/(2σ), δ = (1− τ1/τ2)
−1 and t0 = σ/c.

The speed of the single-spike solution can be computed from equation (5),
obtaining V (0, 0) = VT . For the numerical parameters listed in Figure 1 we
obtain two solutions, a fast wave (numerically stable) with c ≈ 1.944 and a
slow wave (numerically unstable) with c ≈ 0.102.

We can now compute the ISI for a two-spike solution. Let us assume that
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the neuron at position x = 0 fires its second spike at time T1. The synaptic
contributions are due to the 1st and 2nd wave only (Figure 2).
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Fig. 2. Plot of the 1st, 2nd and 3rd traveling waves.

The impact of the second wave is felt at x = 0 only after the second wave
reaches within a distance of σ from x = 0, at time T1 − t0. Thus, the synap-

tic current received at x = 0, defined as Isyn(0, t) = gsyn

∫ ct
−σ dy 1

2σ
e
− t−y/c

τ2 ,
evaluates to

Isyn(0, t) =





g0(1− e
− t+t0

τ2 ), 0 < t < t0

g0(1− e
− 2σ

cτ2 )e
− t

τ2 , t0 < t < T1 − t0

g0

{
(1− e

− 2σ
cτ2 )e

− t
τ2 + (1− e

− t+t0−T1
τ2 )

}
, T1 − t0 < t < T1

(6)

Integrating the currents yields

V (0, t) =





VRe
− t

τ1 + g0

(
(1− e

− t
τ1 )− δ e

− t0
τ2 (e

− t
τ2 − e

− t
τ1 )

)
, 0 < t < t0

VRe
− t

τ1 + g0 e
− t−t0

τ1

(
(1− e

− σ
cτ1 )− δ e

− σ
cτ2 (e

− σ
cτ2 − e

− σ
cτ1 )

)
+

g0 δ(1− e
− 2σ

cτ2 )(e
− t−σ

c
τ2 − e

− t−σ
c

τ1 ), t0 < t < T1 − t0

VRe
− t

τ1 + g0 e
− t−t0

τ1

(
(1− e

− σ
cτ1 )− δ e

− σ
cτ2 (e

− σ
cτ2 − e

− σ
cτ1 )

)
+

g0

(
1− e

− t−T1+t0
τ2 − δ(e

− t−T1+t0
τ2 − e

− t−T1+t0
τ1 )

)
+

g0 δ(1− e
− 2σ

cτ2 )(e
− t−σ

c
τ2 − e

− t−σ
c

τ1 ), T1 − t0 < t < T1

(7)

The condition V (0, T1) = VT allows us to compute the first ISI, T1 ≈ 1.6828,
for fast wave speed obtained for the parameters in Figure 1.
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For computation of subsequent ISIs, let us define I0(t, n− 1, n) =





g0(1− e
− t−Tn−1+t0

τ2 ), Tn−1 < t < Tn−1 + t0

g0(1− e
− 2σ

cτ2 )e
− t−Tn−1

τ2 , Tn−1 + t0 < t < Tn − t0

g0

(
(1− e

− 2σ
cτ2 )e

− t−Tn−1
τ2 + (1− e

− t+t0−Tn
τ2 )

)
, Tn − t0 < t < Tn

and V0(t, n− 1, n) =





g0

(
1− e

− t−Tn−1
τ1 − δ e

− t0
τ2 (e

− t−Tn−1
τ2 − e

− t−Tn−1
τ1 )

)
, Tn−1 < t < Tn−1 + t0

g0 e
− t−Tn−1−t0

τ1

(
1− e

− σ
cτ1 − δ e

− σ
cτ2 (e

− σ
cτ2 − e

− σ
cτ1 )

)
+

g0 δ(1− e
− 2σ

cτ2 )(e
− t−Tn−1−σ

c
τ2 − e

− t−Tn−1−σ
c

τ1 ), Tn−1 + t0 < t < Tn − t0

g0 e
− t−Tn−1−t0

τ1

(
(1− e

− σ
cτ1 )− e

− σ
cτ2 δ(e

− σ
cτ2 − e

− σ
cτ1 )

)
+

g0

(
1− e

− t−Tn+t0
τ2 − δ(e

− t−Tn+t0
τ2 − e

− t−Tn+t0
τ1 )

)
+

g0 δ(1− e
− 2σ

cτ2 )(e
− t−Tn−1−σ

c
τ2 − e

− t−Tn−1−σ
c

τ1 ), Tn − t0 < t < Tn

(8)

The current and voltage for the neuron at x = 0 now take the form

Isyn(0, t) = I0(t, n− 1, n) + g0(1− e
− 2σ

cτ2 )e
− t−Tn−2+t0

τ2

n−2∑

k=0

e
−Tn−1−Tk

τ2

V (0, t) = VR e
− t−Tn−1

τ1 + V0(t, n− 1, n)+

g0 δ(e
σ

cτ2 − e
− σ

cτ2 )(e
− t−Tn−1

τ2 − e
− t−Tn−1

τ1 )
n−2∑
k=0

e
−Tn−1−Tk

τ2

(9)

where k = 0 denotes the first traveling wave. It is easy to see how the ISIs can
be computed using equation V (0, Tn) = VT recursively.

3 Periodic traveling waves and convergence of ISIs

Let us assume a periodic traveling wave with period T exists and the condition
T > t0 holds. Then a generalization of equation (9) can be used to compute
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the period. We index the waves with an index k such that larger k waves
passed by a longer time ago. This yields V (0, T ) = VT , where

V (0, T ) = VR e
− T

τ1 + g0{δ(1− e
− σ

cτ2 )(e
− T

τ2 − e
− T

τ1 )
∞∑

k=1
e
− kT

τ2 + e
−T−σ

c
τ1 ·

[
1− e

− σ
cτ1 − δe

− σ
cτ2 (e

− σ
cτ2 − e

− σ
cτ1 )

]
+ 1− e

− σ
cτ2 − δ(e

− σ
cτ2 − e

− σ
cτ1 ) + VT}

(10)

Solving this equation for c ≈ 1.944, corresponding to the fast wave speed for
the single-spike wave for the parameter values in Figure 1, we obtain Td ≈
0.553. The sequence Tn, obtained from the recurrence formula V (0, Tn) = VT

with V (0, Tn) given by equation (9) for all n, converges nicely to this value. A
graph of the sequence appears in Figure 3.
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Fig. 3. ISIs converge to Td. The first four ISIs are 1.682, 1.306, 1.126 and 1.015.

Under the assumption that T > t0, the convergence of ISIs to the correspond-
ing period T can be rigorously established. We sketch the proof here. The
first ISI, T1, solves V (0, T1) = VT , where V (0, T1) comes from equation (7).
But equation (7) evaluated at t = T1 is identical to equation (10) evaluated
at T = T1, taken without the infinite sum term. Denote the quantity from
(10) without the infinite sum by V0(0, T ), such that V0(0, T1) = VT . Since

VR + g0 e
σ

cτ1 ·
[
1− e

− σ
cτ1 − δe

− σ
cτ2 (e

− σ
cτ2 − e

− σ
cτ1 )

]
< 0, the quantity V0(0, T ) is

monotone increasing in T , yielding T1 > T . Now, the second ISI, T2, solves
V (0, T2) = VT , with V (0, T2) given by V0(0, T2) plus the k = 1 term from the
infinite sum in equation (10), with T = T2. Adding this positive term to V0

decreases the solution, such that T2 < T1. Similarly, each subsequent ISI is
smaller than the preceding one, but all are greater than T , since T solves the
equation V (0, T ) = VT with the full infinite sum from equation (10) included in
V (0, T ). The monotone decreasing, bounded sequence {Tn} of ISIs converges,
say to T ′ ≥ T . Since the terms in the sum in equation (10) decrease expo-
nentially, one can show that V (0, Tn) converges to VT . By continuity, V (0, Tn)
converges to V (0, T ′), so T ′ itself satisfies equation (10) (which has unique
solution), and thus T ′ = T .
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On the other hand, numerical simulations suggest that when the reset is not
low enough, T < t0; thus, the system loses stability and the firing rates diverge
to infinity. Using equation (10) we obtain the critical value of the reset poten-
tial Vc ≈ −24.25 for our usual parameter values. An example of this regime is
illustrated in Figure 4.
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Fig. 4. Numerical simulation for VR = −10 indicate that the inverse of the interspike
intervals, the frequency, increases linearly with the spike number, towards infinity.

4 Conclusions

The special dynamics of the integrate-and-fire neural networks with finite sup-
port allow us to compute the ISIs for successive traveling waves and compare
them with results from numerical simulations. We prove that the ISIs converge
to a fixed value, such that in the long long term there is an equal separation
between each consecutive pair of wave fronts. It is much more difficult to prove
these analytical results for more complex connectivity functions, such as gaus-
sian and exponential (although see (6) for computation of ISIs and existence
of finite spiking solutions).
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