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Abstract. This work considers a system of two spike-response cells, mutually connected
by excitatory synapses that modify according to a multiplicative form of spike timing-
dependent plasticity (STDP). The units are driven by independent external inputs and
one common input, representing a global cortical thythm. Our simulations show that
the synaptic weights converge to attractors that encode input and plasticity parameters,
independent of initial conditions. In certain parameter regimes, the temporal correlation
induced by coupling and the shared cortical signal lead to redistribution of spikes to favor
doublets. When this occurs, the weight changes associated with these doublets dominate
convergence of weights to their attractors. Thus, spike timing-dependent plasticity can

allow subsets of spikes to play a predominant role in the evolution of synaptic weights.
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1 Introduction and Model

Spike timing-dependent plasticity (STDP) is characterized by synaptic weight changes
that depend on the precise timing of spikes fired by pre- and post-synaptic cells. Past
computational studies have tallied changes in synaptic weights due to STDP by treating
all timing differences within the timing window as relevant. Recently, the suggestion has
been made that data on STDP may be better represented by a rule in which only certain
pre- and post-synaptic spike pairs are counted [8, 2].

We simulate two neurons, a and b, mutually connected by positive weights W,, and
Wha (the first subscript denotes the presynaptic cell). Each neuron is governed by the
spike response model [3], which is an instance of a “threshold-fire model.” A spike train is
characterized by the set of firing times Z, = {t.,...,t"}, with ¢! < ¢ for i < j, where ¢! is
the ¢th firing time of neuron z. A neuron generates a spike when its membrane potential
crosses a threshold #. Here, membrane potential refers to the internal state u;(¢) of a

neuron ¢ at time ¢, defined by
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for t > max{max(Z;), max(Z;)}. In equation (1), a presynaptic spike at time ¢? contributes
an amount Wym;;(t — %) to the state u; at time t. The weight Wj; is the strength of
the corresponding connection, dynamically derived from a multiplicative spike timing-
dependent learning process described below. The positively-valued kernel 7;; describes
the time course of an excitatory postsynaptic potential. The negatively-valued kernel 7,
in (1) describes the neuron’s response to its own firing (reset of the membrane potential
after each spike, together with neuronal refractoriness); see [3] for details. The term
hi(t) represents a Poisson input signal, with fixed weight w;; we will use f; to denote
the frequency of this signal. Finally, h.(t) is a periodic context signal, with weight w,
applied to both cells in the network. This shared context signal represents a global cortical
rhythm; such rhythms are associated with cognitive tasks (13 Hz sensory-motor rhythm:
see [7, 4]; 40 Hz gamma rhythm: reviewed in [1]).
Let 7 denote the time at which a presynaptic spike occurs minus the time of a postsy-
naptic spike. To represent the temporally-dependent potentiation (LTP) and depression
(LTD) kernels for STDP, we define K,(7) = S,|7|e %!"l where s = P for 7 < 0, s = D for



7 > 0, and where ap,ap,Bp > 0 and Bp < 0. In our simulations, the transition between
maximal potentiation and depression is 10 msec. The kernel parameters are ap = 0.5,
ap = 0125, ﬁp = Qp and ﬁD = —O.lSCkD.

We implement a multiplicative spike timing-dependent learning rule (mSTDP) which
implicitly constrains weights between bounds 0 < Q. < Qe When the most recent
presynaptic spike ¢ occurs before the most recent postsynaptic spike ¢;", the weight from
cell j to cell 4 is potentiated according to

n
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where A\ denotes a learning rate. When the most recent postsynaptic spike ¢ fires before

the most recent presynaptic spike ¢, the weight from j to ¢ is depressed according to

m
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If t7* = t} computationally, then both equations (2) and (3) are implemented, with

m—l

max{{;

,t?_l} used as the argument of Wj; on the right hand side of both. In our

simulations, we take A = 0.1, Q02 = 2, Qnin = 0, unless otherwise noted.

2 Results

2.1 Existence and properties of attractors

For fixed parameter values, the weights W,,, W;, of the excitatory synapses between the
neurons converge under mSTDP to a fixed attractor in the (W,,, Wp,) plane, irrespective
of the initial weight values used. An example appears in Figure 1, which shows trajectories
of weights, both in the (W, Wy,) plane and as functions of time.

The weight values in the attractor do depend on the intrinsic parameters and driving
signals in the network. In particular, the input and context frequencies, the input and
context weights, and the relative areas of the LTP and LTD kernels are encoded by the
attractor mean, while the specific spike times in a particular spike train influence the
details of the convergence to the attractor. These results hold with or without a context
signal. An example illustrating the role of driving frequencies is shown in the upper left

of Figure 2. Additional examples appear in [6, 5].



2.2 Redistribution of spikes

The properties of the weight attractors, as well as the mechanisms underlying these results,
will be further detailed elsewhere [6, 5]. For our purposes here, it is important to note that
the temporal correlation mechanisms of coupling and a shared context signal lead to redis-
tribution of spikes, relative to baseline firing of uncoupled cells due to their independent
Poisson inputs. The degree of redistribution depends on the parameter regime simulated.
For example, when w., is weak, we find little redistribution. When the context signal
frequency is 13 Hz and w,, is large, the nature of the spike redistribution depends on the
frequencies of the independent driving signals h,(t), hy(t). The interspike interval (ISI)
plots on the bottom row of Figure 2 show that high input frequencies f,, f, to both cells
cause a shift of ISI’s toward lower values, corresponding to a tendency for both cells in the
network to fire spike doublets; this is not observed with low frequency drives to the cells
or with context frequency of 40 Hz. When w,,, is large, cells are entrained to fire together
in response to most context signals, and the relatively low context frequency in the 13 Hz
case allows them to recover sufficiently between signals to fire independent spikes, which
may become doublets when context signals follow soon afterward. Further, the coupling
between cells leads to a high probability that a doublet of one cell will elicit a doublet
from the other, as illustrated in the spike trains in the upper right of Figure 2.

2.3 Computations with a spike subset

To explore the role of doublets in the simulated recurrent network, we computed weight
changes using a computational rule that only includes doublets. To do this, we examined
the spike train of cell a, computed the ISI's between each pair of consecutive spikes, and
kept only the spike pairs from the bottom 25% of the cell’s ISI distribution. For each

1t2

such pair, call them ¢,,1Z,

we formed a subset of postsynaptic spikes consisting of the
last postsynaptic spike before t., the first postsynaptic spike after t2, and all postsynaptic
spikes between these. We then computed the changes in W, prescribed by our learning
kernel for the interactions of each of ., with each spike in the postsynaptic subset; see
Figure 3. This gave an evolution of W,;, based on fewer than 25% of the spikes fired by
the network. A symmetric procedure was used to compute the evolution of Wh,.

To evaluate how well the doublet procedure reproduces the weight changes seen with the

full spike set, we also performed a control experiment. In the control, the same number of



presynaptic spikes was used as in the doublet procedure, but these were selected randomly.
The postsynaptic subset for a presynaptic spike consisted of the two postsynaptic spikes
closest in time to the presynaptic one. The relative error between the original weights W;
and the weights I/Vi’;- generated by procedure p was computed for both the doublet and the
control procedures as Ef; = L 37| |W;;(z) — WF(2)|/Wij(z) for z ranging over all spike
times (of both cells) in the full spike set.

We found that the doublet procedure always led to convergence of weights to the
original attractor region (Figure 4). Further, a key point, also illustrated in Figure 4, is that
the weight values in the doublet procedure tracked the original weight values much better
than expected by chance: the relative errors in both weights with the doublet procedure
were approximately 2%, and these errors were found to be significantly smaller than those
for the control procedure over 20 simulations with fixed parameters, as measured by a
one-tailed t-test (p < 0.0005). The reliable reconstruction of original weight values by the
doublet procedure implies that for learning events which occur over a short time period,

when weights may be far from attractor values, evolution of weights is still dominated by

effects of spike doublets.

3 Conclusions

The existence of weight attractors provides a synaptic encoding of incoming stimuli that
combines rate information, encoded in attractor values, with temporal information, en-
coded in particular spike times. Our principal finding is that, in parameter regimes in
which spikes are redistributed, by coupling and common context signals, to favor spike
doublets, the dynamics of the weights as they converge to these attractors is dominated
by the effects of these doublets. This arises simply from applying the learning rule (2),
(3). Thus, in addition to driving downstream units, bursts may induce longer-term effects
on network behaviors.

Recent results indicate that the combined effect of multiple spikes is more complex
than had previously been assumed [8, 2|, and experimental data may be better modeled
by computational versions of STDP that do not count all spikes than by applications of
STDP rules to complete spike sets [8]. Clearly, the explanation of this finding must involve
the fact that different spiking patterns induce different responses in cellular machinery

(calcium channels, NMDA receptors, and so on). Nonetheless, our results show that even



a fixed STDP rule, which does not take into account the involvement of such factors, can
allow a certain subset of spikes to play a predominant role in driving weight dynamics

when sufficient spike redistribution occurs.
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Figure 1: Attractors for weights are independent of initial conditions. Left: Fvolution
of both weights from three different initial conditions, with input frequencies f, = 11 Hz,

fo =37 Hz and 13 Hz context frequency. Right: Time evolution of Wy, for different initial
values.
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Figure 2: Spike redistribution with 13 Hz context signal and strong Wey (Werw = 15).
Top left: Mean attractor values. Different points correspond to different drive frequencies
(fa> f»)- Top right: Segments from spike trains (vertical lines denote spikes) of both cells in
the large f., fy» regime, which favors doublets, often at similar times in both cells. Bottom
row: Distributions of interspike intervals for neuron a (ISI,) and neuron b (ISL,). Left
plots show a redistribution toward small ISI’s for large f,, fo. Right plots show that this
redistribution does not occur for small f,, f.
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Figure 3: Schematic representation of the selection of a subset of spikes. A subset of spikes
from cell a are selected, corresponding to small ISI’s, and then weight changes are computed
from their interactions only with the spikes of cell b that are closest in time (between the

arrows for each pair).
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Figure 4: Tracking of weight changes from a full simulation (Original - dotted curve) by
the doublet procedure (Dp - solid curve) and the control procedure (Control - dashed curve).
The input frequencies were 160Hz to neuron a and 200Hz to neuron b, with learning rate
A =0.02. Top: The control procedure converges to region “a” rather than to the attractor
region below it. Top and bottom: The doublet procedure tracks the weight changes from the
full simulation better than the control procedure does; corresponding errors (Econtrot; Edp)
are displayed in the upper left of each plot.
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