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a b s t r a c t

Inflammation is a normal, robust physiological process. It can also be viewed as a complex system that
senses and attempts to resolve homeostatic perturbations initiated from within the body (for example,
in autoimmune disease) or from the outside (for example, in infections). Virtually all acute and chronic
diseases are either driven or modulated by inflammation. The complex interplay between beneficial and
harmful arms of the inflammatory response may underlie the lack of fully effective therapies for many
diseases. Mathematical modeling is emerging as a frontline tool for understanding the complexity of
the inflammatory response. A series of articles in this issue highlights various modeling approaches to
inflammation in the larger context of health and disease, from intracellular signaling to whole-animal
physiology. Here we discuss the state of this emerging field. We note several common features of inflam-
mation models, as well as challenges and prospects for future studies.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Inflammation is the body’s response to injury and danger. It is
the central communication network and regulatory process that
senses and controls threat, damage, containment, and healing,
which are all critical aspects in the maintenance of an organism’s
integrity. There is a growing recognition that the role of inflamma-
tion in homeostasis is an integral component of many processes
previously thought to be ‘inevitable’ during the course of life, such
as aging [1–3], obesity [4,5], diabetes [6], and atherosclerosis [7].
Inflammation is constitutive and ubiquitous, and its role in a wide

spectrum of diseases and responses to diseases is increasingly rec-
ognized [8].

Components of the inflammatory process are constantly in-
volved in cycles of repair and remodeling after normal and patho-
logic challenges, and the high fidelity and robustness of these
processes are clear characteristics of highly evolved complex bio-
logical systems. In addition to the complex course and regulation
of normal inflammation, components of the inflammatory system
also interact with non-inflammatory physiologic systems, making
it difficult to reverse-engineer the architecture and control ele-
ments of the system. Though considerable progress has been made
in elucidating many of the components of inflammation and their
regulation, the inability to develop a coherent model of the dynam-
ics of the entire complex system leaves physicians with inadequate
treatment options for diseases in which inflammation is out of con-
trol, including cancer, AIDS, autoimmunity, sepsis, transplant
rejection, obesity, diabetes, atherosclerosis, Alzheimer’s disease
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and even aging. Progress in treating these processes requires a
greater understanding of inflammation in its homeostatic context,
and it is to be expected that a systems-level view will lead to im-
proved predictability of the potential unintended consequences of
therapeutic interventions.

It is becoming increasingly clear that achieving greater control
over inflammation requires the application of formal analytical
and synthetic methods drawn from other domains dealing with
complex systems, and especially the adaptation of mathematical
tools [9–11]. Mathematical and computational methods offer sev-
eral significant benefits for the effective characterization of a com-
plex system such as inflammation, for the following reasons:

(1) Mathematics allows a reduced but precise formal represen-
tation of hypotheses. Biological experimentation alone has not
yielded such a formal representation, because of the difficulty of
controlling all variables at multiple levels of resolution in experi-
mentation. Specifically, biologists are limited to subsets of the lar-
ger problems because of constraints dictated by experimental
work. Medicine is even more constrained, often relying on careful
observation (retrospective and prospective) rather than experi-
mentation, for practical, ethical, and medico-legal reasons. Despite
a move toward evidence-based medicine, the nature of observation
and decision-making in the clinical setting implies some degree of
subjectivity. Using mathematical and computational tools, obser-
vations, hypotheses, and conceptual models are framed in a formal
syntax, which can rigorously identify the role of assumptions and
the implications of a hypothesis, and allow comparisons across
experimental models, using a common language.

(2) Mathematical analysis can lead to a deeper understanding of
the system. If a system can be adequately characterized mathemat-
ically, and equations describing the system can be reduced in
dimension to a sufficient level, then formal mathematical analysis
can be applied, leading to the development of ‘axioms’ concerning
the dynamics of the biological system being studied. If the dynamics
of biological systems such as inflammation is too complex to permit
purely analytical solutions, mathematics can still come to the rescue
by guiding the construction and analysis of approximate models
that are evaluated numerically with computational methods.

(3) Mathematics allows hypotheses to be expressed in a form
that can be analyzed with rigorous algebraic methods or simulated
per computer. The mathematical formulation is a virtual analogue
of the biological system offering the advantage that it can be que-
ried and tested in uncounted variations to mimic real or hypothe-
sized situations, even if this system is large and complex.
Dimensionally-reduced models of whole-organism inflammation
have yielded very useful insights into inflammatory diseases [12–
15], but there is clearly an enormous number of components and
their interactions involved in inflammation that are not captured
by such models. Thus, the use of computational solutions and sim-
ulations has become the tool of choice for the study of inflamma-
tion [10,11,16,17]. With the desire to model inflammation in ever
greater detail, the need for increased computational power in
inflammation models is growing, and the modeling efforts have
been benefiting from state-of-the-art simulation methods such as
ensemble modeling [18,19], agent-based modeling [20–24] and
different stochastic approaches (see below and [25]).

2. Modeling inflammation: diverse perspectives and current
accomplishments

2.1. Current approaches to simulating inflammation

Properly built mathematical models can provide insights into
observed behaviors in the system of inflammation that cannot be
gathered from study of its component parts in the lab. Because of
the complexity of inflammation, these models are predominantly

assessed computationally, through dynamic simulations [26] or
‘executable biology’ [27]. Consequently, the models and methods
described below should be seen as means of generating dynamic
simulations of inflammation that are subsequently compared to
experimental reference systems for calibration and validation.
For the most part, simulations are intended to provide a more
fine-grained dynamic map of the hypothesized mechanisms of
inflammation than would otherwise be available using traditional
wet lab experimental measurements.

The first and most traditional method used to characterize a
dynamical system are equation-based models (EBM). This ap-
proach begins with assigning variables to various quantities that
evolve over time (such as populations of cells or levels of measured
mediators) and writing functions or differential equations that de-
scribe how those variables change over time. In the prominent case
of ordinary differential equations (ODEs), the equations are linked
to capture the dynamics of the system. ODEs use time as the sole
independent variable (assuming that spatial effects can be ig-
nored), while partial differential equations (PDEs) incorporate spa-
tial dependence of the variables as well. Thus far, the primary
EBMs used in the inflammation-modeling community are ODE
based [13–15,18,26,28–30]. More complicated than the definition
of variables are the choice of functional forms within the equations
and the proper assignment of parameter values, which are often
the most difficult parts of model design and are addressed in more
detail in a later section.

ODE models have proven extremely successful in a variety of
fields, but they also have their shortcomings. First, they are com-
pletely deterministic with respect to their behavior, given a certain
set of initial conditions. Increasing evidence of stochastic behavior
in critical biological processes, such as gene regulation and cellular
behavior, points to the possible need to account for stochasticity in
mathematical models [31,32]. Second, ODEs require the assump-
tion that spatial aspects can validly be ignored, which allows for
mean field approximations and mass-action kinetics, rather than
partial differential equations. There is growing concern that the
crowded environment and spatial architecture within cells, and,
at a higher level in tissues and organs, might violate these assump-
tions to a point where ODEs are no longer valid [33].

The limitation of ODEs of not being able to account for stochas-
ticity has been addressed by a series of methods developed by
Gillespie [25]. Targeting reaction kinetics in systems with rela-
tively few molecules, the Gillespie algorithms use probabilities to
model discrete reaction events that form stochastic trajectories
that propagate through a biochemical pathway. Simulations using
the Gillespie algorithm rely heavily on the specification of all reac-
tions in a system and their associated propensities. Reactions in-
volved in inflammation are not always kinetic but also include
interactions among evolving quantities, such as levels of activated
macrophages and endotoxin in the system, which are difficult to
quantify experimentally. Based on the collection of all rates in a
system, each simulation step proceeds by first determining the
time when the next reaction will occur. Next, the simulation deter-
mines which reaction will take place at this identified time. Levels
of all evolving quantities are held fixed until the reaction occurs, at
which time the levels of the quantities involved in the reaction are
updated. This reaction-event based approach achieves major gains
in computational speed relative to the more naïve approach of tak-
ing regular time steps and checking whether or not each reaction
occurs systematically on each step. However, as it has been applied
to increasingly complex biochemical pathways, the requirement to
specify all reactions in a system has led to fast increases in the
computational and data resources needed. These increases have
placed constraints on the application of the traditional Gillespie
method to systems such as inflammation. As a result, other means
of signal network characterization have been proposed that focus
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on the rules underlying molecular interactions [34]. These rule-
based approaches render it possible to reduce the computational
overhead required from explicitly representing every possible
compound to representing only those generated through the spec-
ified molecular interactions. Furthermore, there has been consider-
able interest in developing hybrid approaches combining
deterministic and stochastic methods [35–37].

The limitation of ODEs of neglecting spatial structure can be ad-
dressed in three possible ways. The first is the use of PDEs, a meth-
od that allows quantities to vary over both space and time. These
models have been suggested as a means to characterize molecular
signaling events [38,39], but have not been widely used in charac-
terizing inflammation.

A second alternative is the subdivision of the spatial domain
into compartments. In this approach, each compartment is as-
sumed to be well-mixed, and the quantities of elements present
in each compartment are tracked using ODEs. The ODEs incorpo-
rate coupling between compartments representing, for example,
the movement of substances between compartments. This formu-
lation retains the analytical tractability and relative ease of simula-
tion of ODEs at the level of individual compartments; however, the
need for a system of ODEs for each compartment leads to a prolif-
eration of equations and variables that can slow down simulations
and render analysis difficult.

A third option for incorporating spatial structure is agent-based
modeling (ABM). As opposed to differential equation methods,
ABM is more grounded as a computational simulation technique
that was proposed by the computer science community and can
be traced back to von Neumann’s pioneering work on cellular auto-
mata [40,41]. Agent-based modeling is an object-oriented, dis-
crete-event, rule-based, stochastic modeling method. The ABM
framework consists of viewing a system as an aggregation of com-
ponents (agents), which can be classified into populations or agent
classes based on similar intrinsic rules of behavior (agent-rules).
While each particular population of agents is assigned the same
rules for behavior, the behavior of the individual agents is hetero-
geneous since all agents implement their rules based on local con-
ditions that may differ considerably. The behavior of the entire
system results from the aggregate interactions within and among
its populations [21,40,42]. The advantages of AB models are sev-
eral. They map well onto biological phenomena (such as cells inter-
acting within tissues and organs) and are therefore fairly intuitive.
Furthermore, agent-rule systems are typically expressed as
conditional statements (‘if-then’), thereby greatly facilitating the
translation from the results of basic science experiments into
agent-rules. Additionally, ABM intrinsically accounts for spatial
components, because it permits rules governing local interactions
and environmental heterogeneity. The main limitation of AB
models is that they are computationally intensive. Moreover, due
to the fact that relationships between the agent-rules and the
system behavior are not always easy to infer, AB models can be
difficult to calibrate in a quantitative way [26]. Nonetheless,
several inflammation modeling studies have successfully made
use of ABM [20–24].

2.2. Models of preconditioning in inflammation

An example of the application of mathematics to understand an
important feature of the inflammatory process, namely behavior
after preconditioning, highlights the usefulness of this kind of
modeling. The concept of preconditioning, or the effect of past his-
tory on a system’s behavior, is a critical factor in understanding
and characterizing the inflammatory response as a dynamical sys-
tem. Inflammatory preconditioning highlights the non-linear nat-
ure of the inflammatory response: stimulation with two or more
pro-inflammatory stimuli in succession can lead to responses that

are equal to, greater than, or lesser than each stimulus in isolation.
Preconditioning is also critical in practical terms: if timed correctly,
a therapeutic preconditioning stimulus might be used to augment
natural inflammatory protective responses to a subsequent severe
insult, or to blunt an overly exuberant (and hence detrimental)
inflammatory response. To analyze inflammatory preconditioning
mathematically, ODEs are particularly useful, since it is not possi-
ble to obtain explicit formulations for the time evolution of all vari-
ables associated with the entire inflammatory response. ODE
models of the inflammatory response often permit several relevant
asymptotically stable (AS) steady states, such as health, sustained
inflammation with ongoing presence of an inflammatory instigator
(e.g., a pathogen), and sustained inflammation without a sustained
trigger. An important mathematical consequence of these multiple
AS equilibrium points is that they can only coexist if the system
also contains unstable states. The most fundamental configuration
is the coexistence of two AS equilibria, which in the case of inflam-
mation can be equated with ‘health’ and ‘death’, and an unstable
intermediate state in the form of a saddle point. Such a saddle
point is associated with a set of initial conditions, forming a separ-
atrix, such that solutions that start within this set will approach
the saddle. This separatrix is infinitesimally small, just as a two-
dimensional sheet has no volume in three-dimensional space.
Yet, the separatrix is essential, because it separates all other initial
conditions into two sets, such that solutions starting in each set all
approach the same AS equilibrium point.

To illustrate the concept of inflammatory preconditioning, one
might consider the canonical response to pathogen-derived immu-
nostimulants. Gram-negative bacterial lipopolysaccharide (LPS) is
a central and canonical acute inflammatory stimulus in sepsis
and related diseases [43], and LPS is used experimentally to mimic
septic inflammatory responses in cellular and animal experiments.
Inflammatory cells exposed to LPS generate both pro- and anti-
inflammatory cytokines (protein hormones that are the principal
mediators of inflammation) [8]. Repeated treatment with LPS can
lead to desensitization or enhancement of subsequent pro-inflam-
matory cytokine responses (i.e., preconditioning) [44,45]. Since
administered LPS decays relatively fast in a biological host, all
equilibrium points in a model relevant to preconditioning should
feature zero endotoxin levels. Thus, the relevant separatrix struc-
ture in the model is anchored in the absence of endotoxin. The side
of this separatrix on which a solution curve is located determines
the outcome of a preconditioning experiment. The position of a
solution curve relative to the separatrix after LPS has decayed is
like a memory of the LPS doses given, in that the side on which
the separatrix is attained represents the outcome of the inflamma-
tory response evoked by these doses. Interestingly, the separatrix
has its own shape with respect to all system variables, just as a
two-dimensional sheet hanging from a laundry line can take on
different shapes under various conditions, despite being pinned
in place at one end. Thus, the outcome of a preconditioning exper-
iment cannot be determined by examining only one component of
the response it evokes, such as the level of a particular pro-inflam-
matory cytokine, but requires knowing the full vector of system
variable values. There are advantages of thinking in terms of dy-
namic structures, such as separatrices, compared to direct simula-
tions. The main advantage is that knowledge about dynamic
structures theoretically allows the outcome of a preconditioning
experiment to be predicted by measuring the immediate response
to an LPS challenge. This can be done without tracking the subse-
quent evolution quantitatively, although there are some technical
details to address (see [15]). Importantly, we see that the relative
timing of preconditioning and challenge doses is crucial to out-
come, as the distance of a solution from the separatrix, measured
in the direction of whatever system variables are directly changed
by LPS administration, will vary over time [15].
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Since the structure of the solution space that determines the
outcome of preconditioning experiments is so general, it makes
sense to assume that preconditioning phenomena should be ubiq-
uitous in biological systems. The mathematical tools for predicting
with certainty whether tolerance (the system responds to the in-
sult in a benign way because of the preconditioning history) or
potentiation (inflammatory over-reaction) will occur in a given
setting, directly from dosing information without subsequent sim-
ulation, are still somewhat limited. Beyond the idea of a separatrix
discussed above, additional techniques using isoclines, or collec-
tions of variable values along with the rate of change of a particular
variable is constant, have recently been introduced (J. Day, J. Rubin,
C.C. Chow, unpublished). One basic observation is that a key fea-
ture for allowing tolerance is the presence of an inhibitory interac-
tion in a system, such that an increased level of one variable can
suppress the growth of another system element, just as anti-
inflammatory agents suppress pro-inflammation processes.

The importance of preconditioning as a central phenomenon in
inflammatory dynamics is evident in a series of papers presented
in this issue of Mathematical Bioscience. These articles describe
computational simulations of inflammation using ODE, ABM, and
rule-based modeling, and include, as one feature or even as the
main focus, the concept of preconditioning in response to LPS.
The central signaling receptor for LPS is Toll-like receptor 4
(TLR4) [46,47], and all five articles in this issue address this signal-
ing pathway in some form.

The first modeling approach to preconditioning was carried out
by Rivière et al. [48]. The authors created a four-variable ODE mod-
el to address the role of TLR4 in both normal and desensitized re-
sponses to LPS. They found that various, often subtle features of
LPS-driven preconditioning could occur at the cellular level, with-
out invoking the specific actions of endogenous anti-inflammatory
cytokines [15]. Importantly, this study was calibrated using recent
data regarding LPS/TLR4 binding in vitro [49], with other parameter
values obtained in relation to the binding studies. Thus, many fea-
tures of this model, including the preconditioning behavior, de-
pend on the choice of parameter values (as explored explicitly in
below). With appropriate parameter choices, this model shows
that preconditioning effects of LPS depend on the amount used in
preconditioning and on the time interval between the successive
LPS injections. The way it is structured, this model suggests that
preconditioning is controlled by the degeneration rate of TLR4,
the time interval between repeated LPS stimuli, and the magnitude
of each LPS stimulus.

Foteinou et al. [50] propose a larger, eight-variable ODE model
of LPS-induced human inflammation subsequent to bacterial infec-
tion, that integrates transcriptional profiling and indirect re-
sponses. This study is a significant milestone in the attempt to
integrate ‘omics’ datasets and computational modeling, carried
out initially by Lagoa et al. in the setting of trauma/hemorrhage-in-
duced inflammation [30]. Foteinou et al. sought to couple extracel-
lular signals to essential transcriptional responses, and found that
their model was capable of simulating a healthy (resolving) re-
sponse to infection, a persistent infectious response, and persistent
aseptic inflammation. As such, this model is similar conceptually to
that of Kumar et al. [13], An [22], and Clermont et al. [51], though it
incorporates aspects of transcriptional responses not presented in
those earlier inflammation modeling studies. The model intro-
duced by Foteinou et al. reproduces both priming and desensitiza-
tion, similar to that of Day et al. [15] and the article by Rivière et al.
[48]. Like Rivière et al., the model of Foteinou et al. demonstrates
preconditioning in large part through the values of parameters rep-
resenting ligand-receptor binding, internalization, and signaling.

An [52] has taken a different approach toward a simplified rep-
resentation of the intracellular modulation of TLR4 signaling. He
developed a computational agent-based model that combines a

highly abstracted ‘particle-event’ view of molecular interactions,
with a model morphology that reproduces spatial and structural
relationships between the steps in the TLR4 signaling cascade. This
method is termed Spatially Configured Stochastic Reaction Cham-
bers (SCSRC). It is able to simulate the essential behavioral charac-
teristics of TLR4 signal transduction, including stochasticity,
negative feedback, dose-dependent responses, and precondition-
ing/tolerance to repeat doses of LPS. In this article, preconditioning
also arises as a function of parameter values, though the stochas-
ticity of the ABM framework results in a range of effective param-
eter values.

An and Faeder [53] introduce the concept of detailed, yet qual-
itative modeling utilizing a graphically based modeling toolkit,
BioNetGen [34,54] to produce a model of TLR4 signaling. This ap-
proach attacks the issue of biocomplexity of inflammation from a
very different perspective. As opposed to striving for quantitative
parameter estimation, the structural complexity of the signaling
cascade, in terms of its components, is modeled with a relatively
high degree of detail. The model includes 31 molecule types and
41 reaction rules, which generates a network of 76 possible molec-
ular species and 202 reactions. A total of 97 parameters are used
for the initial concentrations of species and the reaction rate con-
stants. Given the challenge of high-dimensional parameter estima-
tion (see below), it is easy to see why a qualitative scaling of
parameters would be desirable in a model of this complexity. For-
tuitously, there is a strong suggestion that this type of qualitative
approximation is useful in capturing the essential dynamics of sig-
nal transduction cascades [55–57]. The utility of expressing this
degree of mechanistic detail is immediately evident when the ‘in-
ner’ dynamics of the signaling cascade is examined. The gross out-
put of the model, represented in terms of pro-inflammatory
cytokine production both to initial LPS stimulus and reproducing
preconditioning behavior, matches the behaviors of the models
noted above. However, the detail of the model allows finer grained
examination of the mechanisms of signal attenuation and toler-
ance behavior, and suggests the necessity for multiple nested feed-
back loops both in terms of explaining the overall dynamics, and to
account for the degree of control and modulation seen in real bio-
logical systems. In practical terms, if the long-term goal is the de-
sign of molecular-level interventions on inflammation, then
representation and identification of the mechanisms to be targeted
is essential. The study shows that this type of detailed yet qualita-
tive model can serve as a useful means of dynamic knowledge rep-
resentation [58,59] to facilitate the discovery, design, and
translation of molecular-level interventions.

Finally, Voit [60] proposes a conceptual framework that re-
places the notion of health and disease states with health and dis-
ease simplexes, which are manifestations of physiological
constraints that determine well-being. This formulation directly
accounts for interpersonal variability and suggests that individuals
migrate throughout their lives along their personal health and dis-
ease trajectories, traversing different parts of the health simplex,
and temporarily or permanently crossing a boundary of disease.
This disease model lends itself to rigorous mathematical imple-
mentation and demonstrates how it is possible that two individu-
als may show the same symptoms or drivers of inflammation but
nevertheless have different risk profiles and health outcomes, be-
cause of their personal predisposition and features of their past tra-
jectories, which among many other influences are affected by
differences in preconditioning.

These five manuscripts conceptualize the acute inflammatory
response in highly diverse ways. Regardless of the scale used, cen-
tral features of inflammation display a preconditioning behavior.
As a group, these studies suggest experiments that should be car-
ried out in order to validate specific biologic predictions emerging
from the mathematical representations. On a translational level,
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the identified parameters may some day be utilized for the design
of anti-inflammatory therapeutic strategies. On a foundational le-
vel, discussed below, these computational simulations suggest that
certain mathematical structures, applicable to complex biological
systems, display intrinsic preconditioning behavior. These mathe-
matical structures may then be the core for the application of more
rigorous mathematical methods of analysis, with potentially real
applications in the clinical arena. One such process, that of param-
eter estimation and fine-tuning, is discussed in a later section.

2.3. Acute inflammation: the body’s response to danger and damage as
a unifying principle

Preconditioning can occur not only in response to microbial
products such as LPS, but also in response to endogenous ‘danger
signals’ released during states of cellular stress or tissue trauma
[61] (Fig. 1). As mentioned above, the original impetus to develop
translational computational modeling of inflammation was driven
by the clinical challenge of sepsis and critical illness. However, one
hypothesis that stemmed from the initial models was that the
underlying acute inflammatory processes involved in the patho-
genesis of sepsis were ubiquitous, and represented a basic, highly
evolutionarily conserved homeostatic control mechanism. Evi-
dence for this hypothesis arose from the fact that during the pro-
cess of translating basic mechanistic knowledge into
computational models, certain stimuli and pathways were recur-
rently invoked, and the dynamic characteristics of the initial
inflammatory response seemed to require an autocatalytic, feed-
forward process in order to generate the appropriate dynamics.
Furthermore, the heterogeneous nature of ‘entry points’ into the
acute inflammatory response suggested the need for the
integration of an intrinsic ‘damage’ feedback component, and this
feed-forward control logic was present at the earliest stages of
development of the systemic inflammation models [13,20,21]
(Fig. 1). It should be noted that at the time of the development of
these models, there was no explicitly defined mechanism or
mediator for this self-propagating dynamic; rather, the proposed
interactions ‘emerged’ from an interpretation of disparate
mechanistic information viewed from a modeling standpoint.

Concurrent developments in the traditional research commu-
nity provided clues as to the nature of the molecular actor(s) in-
ferred by the models. The re-discovery of High Mobility Group
Box 1 (HMGB1) as a late pro-inflammatory mediator of sepsis re-
lated to cellular stress and/or death provided an example of a
nearly ubiquitous biomolecule that, in situations of cellular and
nuclear disruption, stimulates pro-inflammatory pathways
[62,63]. The recognition that common signaling pathways via
Toll-like receptors were induced not only by bacterial products

but also were modulated by endogenous compounds (such as
HMGB1) further linked the ‘protective’ inflammatory pathways
identified for fighting infection to ‘survey and maintenance’ mech-
anisms [64–67]. These ideas coalesced into the concept of ‘danger
signals’ and a new recognition of the role of acute inflammation in
a whole host of disease processes [68]. Importantly, it is now
appreciated that prior exposure to HMGB1 can lead to
preconditioning [66], as would be predicted from the computa-
tional simulations that invoke the positive feedback loop of
inflammation ? damage ? inflammation [13,20,21].

Fortuitously, similar recognition from a computational model-
ing perspective allowed for these concepts to be integrated into
the design of the inflammation models, highlighting the evolvabil-
ity of the models and ability to incorporate new knowledge not
captured in the original concepts of acute inflammation. For exam-
ple, one prediction of the schema presented in Fig. 1 (and borne out
experimentally) is that alarm/danger signals should play a rela-
tively late role in sepsis-induced inflammation [62] but an earlier
role in trauma, hemorrhage, and ischemic injury [64,69]. The link-
age between inflammation and healing described above represents
one area where this linkage has already occurred, and other areas
of potential application include atherosclerosis, Alzheimer’s dis-
ease, cancer biology, fibrotic diseases, chronic transplant rejection,
asthma, obesity, and aging.

In this regard, data collected from these clinical scenarios that
play out over long time horizons could also inform the sepsis mod-
el. Sepsis is an acute disease and leads to a characteristic hemody-
namic picture of low peripheral resistance, with a compensatory
hyperdynamic cardiac profile. Patients with acute liver failure de-
velop a remarkably similar picture, and patients with end-stage li-
ver disease develop the same hemodynamic picture albeit over a
longer time, and many of the mediators of the septic hemodynamic
state are likely causes of the hemodynamic state characteristic of
liver disease. Thus, insights obtained from modeling the interre-
lated actions of inflammation and cell/tissue/organ damage in sep-
sis and trauma may lead to novel insights into other pathological
states such as end-stage liver disease.

2.4. Parameter variation in mathematical models of inflammation: the
road to personalized medicine?

Independent of the modeling framework chosen for assessing
inflammation with mathematical means, the analytical and simu-
lation results obtained a given model are highly dependent on its
parameter values. Unfortunately, there are no generally efficacious
and easy methods for the difficult task for the estimation of these
parameter values. We contrast in this section two complementary
approaches and indicate how the fine-tuned specification of

Fig. 1. The role of alarm/danger signals in inflammation, distilled for mathematical modeling purposes. Solid arrow: induction; dashed line: suppression. An initiating
stimulus (e.g., pathogen (A) or trauma (B)) stimulates both pro- and anti-inflammatory pathways. In the setting of infection, pro-inflammatory agents (e.g., TNF) cause tissue
damage/dysfunction, which in turn stimulates further inflammation (e.g., through the release of ‘danger signals’). In the case of trauma, tissue damage occurs immediately
and further simulates inflammation. Anti-inflammatory agents (e.g., TGF-b1) both suppress inflammation and stimulate healing.
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parameter values can become a key ingredient in the personaliza-
tion of biomedical models.

Regardless of the specific application area, the variables in the
system interact with each other, and these interactions are numer-
ically governed in AB or ODE models by functions containing
parameters. Generically, such a function vij = vij(Xi,Xj, . . .,pij) relates
two or more variables Xi and Xj and involves some or many of the
components within and outside the system. The parameter vector
pij contains elements that are to be estimated from biomedical
information about the involved processes. Once all vij are mathe-
matically defined, they are merged into an AB model or into an
ODE systems model of the general form

_Xi ¼
X

k

ckivki �
X

j

v ij; ð1Þ

where cki are stoichiometric coefficients that allow for the fact that
the loss of one unit of a given source variable is needed to generate
a certain number of units of a product variable.

Methods of parameter estimation depend on the types of avail-
able data, which fall into two distinct categories: ‘Local’ data,
which are the basis for bottom-up model construction; and ‘global’
data, suggesting top-down modeling. In the former case, all pro-
cesses in the system are modeled individually and subsequently
merged into a comprehensive system model. The latter case relies
on the availability of time series measurements that characterize
the drivers of the system, and the task consists of the inference
of parameter values from these data.

A typical example for bottom-up estimation is the construction
of a traditional metabolic pathway model that contains of a num-
ber of biochemically related metabolites and is driven by the action
of enzymes. If the pathway is involved in a chronic disease or asso-
ciated with an acute imbalance like inflammation, the ultimate
modeling goal could be a deeper understanding of the system or
the development of counteracting measures. In order to represent
the pathway dynamics mathematically, one consults with expert
experimentalists and clinicians, and also queries the literature for
the properties of all involved enzymes. The goal is to quantify
properties of the enzyme and to obtain numerical values for their
characteristics, such as kinetic constants, measures of affinity or
the turn-over capacity with respect to specific substrates. The
numerical characteristics, together with the listing of necessary
cofactors and conditions required for enzyme activity, are then
used to parameterize the mathematical representation of the func-
tioning of each enzyme. Typical results of this procedure are
Michaelis–Menten rate functions, more complex saturable func-
tions accounting for activators and inhibitors [70], or power-law
functions that derive generically from strategies established in
the modeling framework of Biochemical Systems Theory [71–74].

In the case of global, top-down modeling, the equations may
ultimately be exactly the same, but the parameter values in the
vectors pij are estimated in a distinctly different fashion. Specifi-
cally, the data available for estimation consist of time series mea-
surements Mi(tn) of the variables at N time points t1, . . ., tN, which in
the case of metabolites or proteins may for instance be obtained
with methods of in vivo nuclear magnetic resonance or mass spec-
trometry. Instead of working from the bottom up, as before, the
parameters are estimated with a non-linear regression method, a
genetic algorithm, or some other computational technique that
simultaneously attempts to determine all parameter values such
that the solution of the system of differential equations in Eq.
(1), which consists of all Xi(t) over a desired time interval, matches
the observed time series measurements Mi(tn) as closely as
possible at all studied time points. In the ideal case, the resulting
parameter values in pij should be the same as those found in the
bottom-up strategy, but this does not always happen in reality,
because of noise in the data, faulty assumptions and simplifica-

tions, and weaknesses in the estimation methods. Of course, if both
types of information (local properties of processes and global time
series data) are available, the two approaches can be employed
concurrently.

When the numbers of equations and parameters are small
(<10), it is often possible to estimate parameters from data as indi-
cated above or by the use of Bayesian methods. The reliability of
these estimations is subject to the relative magnitude of noise with
respect to the signal. If the ratio is low, estimation can be quite
good. Even in such favorable circumstances of successful parame-
ter estimation, the subsequent prediction may not be satisfactory.
Many causes are possible, but it is likely that failure is due to struc-
tural or regulatory flaws in the model equations (omission of cer-
tain key interactions, for instance) or to invalid assumptions and
simplifications in the conceptualization of the system.

Issues of parameter estimation become tremendously more dif-
ficult for large systems with hundreds of interdependent parame-
ters subject to estimation. As mentioned in Constantine et al.
[75], current techniques are likely to fail and new methodologies
of optimally surveying a high dimensional parameter space must
be developed. However, before any such high-dimensional attack
is undertaken, it helps to reduce the number of parameters at
the modeling level. In addition to certain known rescaling methods
and keeping parsimony in mind at all times, one may rewrite the
non-linear model in piecewise linear form, which tends to reduce
the dimension of the ensuing parameter space and permits meth-
ods of linear regression. If at all possible it also helps if issues of
insufficient data and large noise-to-signal ratios can be overcome.
Even if all is done to simplify the problem, parameter estimation
remains to be very difficult for large systems, since experimental
animals are limited as sources of biological data, especially if these
data can only be acquired after death of the animal. The best that
one can do with available data in such circumstances is to examine
how the error in the data is related to the parameter sensitivity in
the proposed model. Parameter sensitivity can be examined with
analytical means or through extensive computer simulation, by
mapping out basins of attraction for various parameter sets. Given
the data, one may produce confidence regions around the observed
data by using a data-based estimate of the error (we observed in
Chow et al. [29] that the experimental error is often directly pro-
portional to the signal). One then seeks parameter sets that yield
model trajectories contained entirely within the confidence region.
If the error is high, the difficulty is that essentially anywhere
within the parameter space a region with some radius contains
parameters that fit the data equally well, which complicated the
isolation of meaningful parameter values. In such a case, additional
data are needed to constrain the parameter estimation error
sufficiently to guarantee meaningful modeling results. Our experi-
ence with large systems has been an observed erratic behavior, in
the sense that in any ball of small radius we can find parameter
values that yield qualitatively different model behavior. This
phenomenon is independent of data or statistical technique of
parameter estimation.

In almost all practical cases, the parameter values in the vectors
pij are obtained from population averages. In the case of local esti-
mation, information on the mechanisms of processes is typically
obtained from biological experiments that are executed in vitro un-
der standardized conditions and result in typical or average char-
acteristics for a given organism or cell type. In the case of top-
down estimation, the time series are mostly composites from
many organisms, tissues, or cells. Thus, because the parameters
are assigned average values within some population, the resulting
model constitutes a representation of the biological system that is
some sort of an average as well. This average may not necessarily
be the arithmetic or geometric mean, but is somehow a reflection
of what is considered ‘normal’ for this system.
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Personalization of the model is based on the assumption that
the ‘normal’ model is sufficiently robust. If so, the model accounts
adequately for responses to moderate deviations in parameter val-
ues. These deviations can be interpreted as a reflection of the par-
ticular metabolic or physiological profile of an individual.
Specifically, as far as measurements ~pij on an individual are known,
they are substituted in the system model equation (1). If they have
not been measured, it must be assumed by default that they are
more or less equivalent to the ‘normal’ state pij. The key point is
that, by virtue of the substitution of ~pij for pij, the average popula-
tion model moves away from the normal state and assumes a per-
sonalized state that might be healthy or diseased.

It is difficult to predict how consequential the differences be-
tween ~pij and pij might be in a specific instance, but it is easy to
compute them by integration of the ODE model, or, in the case of
ABM, by executing the corresponding simulations. In particular, if
it is known that certain profiles of metabolite concentrations, gene
expression levels, or proteins are associated with disease, it is pos-
sible to define metrics that characterize how close an individual
may be to a given disease state. In the same vein it is feasible to
establish an individual risk profile of the following type: given
the current state of ~pij, the individual’s physiological distance from
a disease state of interest is D(t), and this distance is a measure of
the person’s health risks. One may dissect this distance into dimen-
sions for each metabolite Xi in the profile and assess which metab-
olite might exceed the disease threshold first. This analysis may be
based on mathematical analysis of the effects of changes in ~pij on
each Xi or on simulation studies that change components of ~pij

individually or in combination and record the resulting metabolic
profile associated with each change. A more detailed account of a
theoretical formulation of health and disease is presented else-
where in this volume [60].

As an illustration for assessing interpersonal variations,
consider the branching process in Fig. 2, which could represent a
metabolic pathway or signaling system or even a logical cause-
and-effect diagram. For simplicity of discussion assume that the
pathway is metabolic. It contains an initial substrate X0, four inter-
mediate metabolites X1, . . .,X4, and three inhibitory signals.
Corresponding equations are also shown in the figure, along with

initial values and parameters that are subject to numerical varia-
tion in this illustration. Suppose the main feature of significance
in the system is the ratio X3/X4 which, when out of balance, is a sign
of disease. With the settings given in Fig. 2, this ratio happens to be
0.84, which represents the ‘normal,’ healthy case. The question
now becomes what happens if an individual exhibits variations
in one or more of the parameters p1, . . .,p4. The consequences of
such variations are difficult to intuit, but easy to compute numer-
ically. For instance, if p1 is increased by 50%, the total amount of
material in the system increases. X1 changes the most; with a value
that is increased approximately fivefold (Fig. 3). Nevertheless, the
ratio X3/X4 is essentially unchanged. The change in input affects
the metabolic profile quite considerably, but the resulting meta-
bolic state would not be considered ‘unhealthy,’ even though var-
iable X1 is potentially ‘outside the norm.’ Expressed differently,
neither p1 nor X1 is a good biomarker for diseases associated with
an imbalance in X3/X4. Note that the transients are not of particular
interest for this illustration, and are shown primarily to facilitate
comparisons with the normal state at which each simulation starts.
If p2 is doubled, X1 decreases considerably, but other variables,
including the ratio X3/X4 are essentially unaffected. Parameter p3

reflects the strength of inhibition of X3 on the transformation of
X1 into X2. If the inhibition is doubled in strength (from �0.5 to
�1), X1 increases, but the remaining system features are more or
less unaffected. In contrast, if p4, representing the turnover rate
of the conversion of X2 into X4, is doubled, the ratio X3/X4 decreases
from 0.84 to 0.46, which could be a characteristic of disease. In this
case, p4 could be considered a biomarker.

It is also easy to study combinations of deviations. For instance,
if all perturbations are implemented simultaneously, all variables
increase in value, but the ratio X3/X4 decreases from 0.84 to 0.59
(results not shown). Suppose this case occurred frequently, but
that p4 was never measured. The natural interpretation would be
that p1, . . .,p3 should be considered strong biomarkers of the dis-
ease, because their abnormal values would ‘typically’ be observed
in subjects with a decreased X3/X4 ratio. Of course, we know from
the above that this deduction would be wrong.

Monte Carlo simulations may also be executed, in which each
parameter is drawn from a probability distribution that is to be de-
fined over the range that has been observed within a population or
is clinically reasonable. These simulations reveal the most likely as
well as rare scenarios and discover all parameter combinations
that lead to a profile of system variables that corresponds to a dis-
ease state.

Thus, the average model, which is established and parameter-
ized entirely from population information, can be ‘adjusted’ to an
individual patient and, given criteria of disease, it is feasible to
study exhaustively all deviations in physiological parameters that
are either harmless or lead to disease. Furthermore, if these param-
eters change over time, as it happens in chronic diseases like type-
2 diabetes over a long time scale or in inflammatory processes over
a much shorter time scale, the model not only classifies ultimate
health and disease states but also characterizes trajectories toward
a disease state. While the example above used metabolic pathways
as a focus for illustration, the general concepts are independent of
this particular aspect and any health and disease model can be per-
sonalized and analyzed in the same fashion.

3. Conclusions and future directions

The field of acute inflammation is inundated with literature that
describes various aspects of the process but fails to link these
important details into a comprehensive whole suitable to the goal
of clinical translation. The recently presented concept of ‘transla-
tional systems biology’ aims to unify mechanisms described in
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Fig. 2. Generic branched pathway used to illustrate the personalization of an
average pathway model. Equations are formulated in the manner of Biochemical
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the scientific literature using methods and tools developed by the
computational and systems biology communities [10,11]. By doing
so, we hope to uncover novel insights into the pathobiology of
inflammation and the intertwined damage/healing response, and
add a mechanistic, rational basis to the design and implementation
of therapies [10,11]. Progress in this area is dependent not only on
incorporating many mathematical tools, but examining data from
many related clinical processes. The not-too-distant future in-
cludes rational, model-driven design and testing of novel thera-

pies; clinical trials that are first run in computational simulations
[22,51,76]; inpatient care in which diagnosis is aided by mathe-
matical models [24]; and outpatient care plans prepared using
model-driven decisions along the fragmented continuum of care
which currently constrains modern medicine (Fig. 4).

Successful achievement of these objectives will benefit from
several advances. Models are currently initiated and modified
through a painstaking and time-consuming process of manual
extraction of relevant data from the scientific literature. Thus,
translational systems biology will benefit from automated means
of searching the literature and mining and extracting data in a form
that will support continued updating of the core models [77,78].
Similarly, non-mathematically inclined clinician-investigators of-
ten struggle with converting even simple biological interactions
into mathematical models using software optimized for mathema-
ticians. Accordingly, translational systems biology would benefit
from software designed to facilitate the translation of biological
and clinical knowledge into mathematical models, especially soft-
ware integrated with electronic medical records.

The ultimate therapeutic utility of these approaches is still in
debate within the clinical community [79]. We in the translational
systems biology community hope that the exciting developments
outlined herein, and the many more on the way, will build bridges
to the larger computational and systems biology communities to
aid us in these translational efforts.

Acknowledgments

This work was supported in part by the National Institutes of
Health Grants R01-GM-67240-02 (Y.V., J.R., G.C.), P50-GM-53789-
08 (Y.V., G.C.), R01-HL080926-01 (Y.V., G.C.), and R01-HL-76157-
02 (Y.V., J.R., G.C.); National Institute on Disability and Rehabilita-
tion Research Grant H133E070024 (Y.V., G.A.); National Science
Foundation Grants DMS041423 and DMS0716936 (J.R.); as well
as grants from the Commonwealth of Pennsylvania (Y.V.), the Pitts-
burgh Lifesciences Greenhouse (Y.V.), and the Pittsburgh Tissue
Engineering Initiative (Y.V.).

0

3

6

Y1

Y2
Y3
Y4
Y5

0

3

6
re

sp
on

se
s

0

1

2

Y1

Y5

Y2, Y3, Y4Y2, Y3, Y42 3,

0

1

2

time

Y1

Y5

Y2, Y3, Y4

re
sp

on
se

0

2

Y1

Y5

Y2, Y3, Y4Y2, Y3, Y4

0

1

2

Y4

Y5

Y1, Y2, Y3

0 100
0

1

2

Y4

Y5

Y1, Y2, Y3Y1, Y2, Y3

50
time

0 10050

A

C D

B

Fig. 3. Results of select simulations of the pathway model in Fig. 2. Y1, . . .,Y4 denote X1, . . .,X4 divided by their ‘normal’ steady-state initial values, respectively. Y5 denotes the
ratio X3/X4. (A) Increase of p1 by 50%. (B) Doubling of p2. (C) Increase in strength of inhibition (p3) from �0.5 to �1. (D) Doubling of p4.

Pre-clinical
studies

Clinical
trials

In-hospital
care

Chronic / 
rehabilitative care 

NIH Roadmap / FDA Critical Path

Inflammation

Computational Simulations
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