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Abstract. This paper summarizes some lessons learned from the computational study of burst-
ing oscillations in small networks of model pre-Bötzinger complex (pBC) neurons.   

1 Introduction 

While a diversity of dynamic behaviors is observed across different isolated pBC 
cells, excitatory synaptic coupling promotes synchronized bursting oscillations, 
consisting of alternating active phases of repetitive spiking and silent phases of re-
covery without spikes, in pBC slice preparations.  Simulations in networks of model 
pBC cells show that the dynamic range of bursting is further enhanced by heteroge-
neity (Butera, Rinzel and Smith 1999b).  The focus of this work is on the dynamical 
mechanisms, based on the interaction of intrinsic cellular properties and synaptic 
dynamics, that explain these observations.  The results presented here (see also But-
era, Rubin, Terman, and Smith 2005) also include a novel classification of bursting 
and spiking activity patterns that emerges from the study of coupled pairs of model 
pBC cells.  Further, the analysis shows that intrinsically bursting cells are not re-
quired for network bursting and characterizes how cells that are intrinsically quies-
cent or tonically active contribute to bursting in a heterogeneous pBC network.  

2 Model and Dynamical Systems Analysis 

Consider the following model (Model I of Butera, Rinzel, and Smith 1999a): 

v’ = -INaP-INa-IK-IL-Itonic-e-Isyn-e-Iapp            (1) 

n’ = (n∞(v)-n)/τn(v)              (2) 

h’ = (h∞(v)-h)/τh(v),              (3) 

INa=gNam∞(v)(1-n)(v-ENa), IK=gKn4(v-EK),  INaP=gNam∞,P(v)h(v-ENa), IL=gL(v-EL), with 
x∞(v)=(1+exp((v-θx)/dx)-1 and τx(v)= τx/(cosh((v-θx)/(2dx))) for x ∈ {h,m,mP,n}. Eqs. 
1-3 represent the dynamics of a single pBC cell with a persistent sodium current INaP.  
The external input currents in the model consist of an applied stimulus Iapp, a 
background excitatory tonic drive Itonic-e = gtonic-e(v-Esyn), and an excitatory synaptic 
input Isyn-e=gsyn-eΣsj(v-Esyn), with summation over the synaptic conductances sj 
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associated with presynaptic cells.  A complete list of model equations and parameters 
are specified in the papers of Butera et al. (Butera et al. 1999a; Butera et al. 1999b).  

To analyze the above model, note that τh(v) is large, and thus the inactivation h 
of INaP evolves much slower than the other variables in the model.  This observation 
suggests the utility of a fast-slow decomposition (Rinzel 1987).  In this approach, for 
a single cell, the fast subsystem is formed from the (v,n) equations of the model, with 
the slow variable h taken as a constant parameter.  The structure of the important 
dynamic states of the fast subsystem is mapped out over a range of h values; that is, 
the bifurcation diagram of the fast subsystem, with bifurcation parameter h, is gen-
erated.  This process yields the diagrams shown in Fig. 1.  Next, the slow dynamics 
of h, as given in Eq. 3, is used to sweep the fast subsystem through the relevant dy-
namic states, which generates a prediction for the dynamics of the full model (Eqs. 
1-3).  The Butera model is a square-wave burster (Rinzel 1987), with activity onset 
promoted by the deinactivation of the inward current INaP and with gradual repolari-
zation via the inactivation of INaP.  Similar bursting can be achieved by other combi-
nations of currents that result in an analogous bifurcation structure. 

 
Fig 1.  Bifurcation diagrams from a fast-slow decomposition of Eqs. 1-3 for different values of 
gtonic-e.  Left:  Solid curves denote stable features, the dashed curve consists of unstable fixed 
points, and the curves of open circles show the maximum and minimum v along an unstable 

family of periodics, formed in a Hopf bifurcation (HB).  The stable family P of periodics 
terminates in a homoclinic orbit, with a homoclinic point on an unstable part of the fixed point 
curve S.  Finally, the h-nullcline, along which h’=0, is shown, and a stable fixed point for the 
full system (Eqs. 1-3), corresponding to quiescence, occurs where this nullcline intersects a 
stable part of S.  Left panel used with permission from J. Best et al. (2005), SIAM J. Appl. 

Dyn. Syst. 4, 1107-1139.  Middle: A zoomed view for larger gtonic-e shows that the fixed point 
has moved to an unstable part of S, yet lies below the homoclinic point.  Thus, the full system 

is predicted to show bursting oscillations.  Right: For still larger gtonic-e, the fixed point lies 
above the homoclinic point.  Thus, the full system is predicted to show tonic spiking.   

3 How synaptic coupling promotes bursting  

Increasing gtonic-e can switch the Butera et al. model from quiescence to bursting to 
tonic spiking (Butera et al., 1999a).  Interestingly, even though the synaptic coupling 
between pBC cells is also excitatory, introducing synaptic coupling between two 
tonically active pBC cells can switch them back to burst mode.  More generally, as 
gsyn-e is raised from zero, the range of gtonic-e over which pBC cells burst initially 
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expands and then contracts.  Moreover, changes in gtonic-e and gsyn-e induce complex 
variations in burst characteristics (Butera et al. 1999b). 

 The key to these results (Best et al. 2005) is the observation that both gtonic-e and 
gsyn-e affect the bifurcation structure of the pBC cell’s fast subsystem.  Consideration 
of a single self-coupled cell gives a first approximation to the effect of gsyn-e.  Note 
from Fig. 1 that the fast-slow decomposition predicts a transition from bursting to 
tonic spiking when the fixed point of the full system intersects the homoclinic point 
of the fast subsystem.  Increasing gtonic-e promotes spiking by moving the fixed point 
to smaller h values, such that it may overtake the homoclinic point (Fig. 2).  Increas-
ing gsyn-e, however, pushes the homoclinic point to smaller h values, such that a lar-
ger gtonic-e is needed to attain the bursting-to-spiking transition (Fig. 2; Best et al. 
2005).  These findings can also be cast in terms of INaP. Specifically, an elevated 
gtonic-e allows the cell to spike with lower INaP availability and to reach lower voltages 
on each spike, such that the deinactivation of INaP on each spike downstroke can 
balance out its inactivation on each spike upstroke, promoting tonic spiking.  Excita-
tory synaptic coupling also allows for spiking with lower INaP.  However, the synap-
tic input curtails the downstroke of each spike, such that a net inactivation of INaP still 
occurs on each spike and eventually spiking terminates. 

      
Fig. 2.  The parameters gtonic-e, gsyn-e have different effects on the fast subsystem bifurcation 

structure.  Left: As gtonic-e increases, both the curve of fixed points (p0 ; solid dotted curve) and 
the curve of homoclinic points (solid or dashed) move to smaller h, but the fixed points over-
take the homoclinic points.  Left panel used with permission from J. Best et al. (2005), SIAM 

J. Appl. Dyn. Syst. 4, 1107-1139.   Right: As gsyn-e increases, only the homoclinic points 
(solid) move to smaller h, while the fixed points (solid dotted) remain unchanged. 

An additional broadening of the burst region as gsyn-e increases results from the 
fact that synaptic coupling induces spike asynchrony within the synchronized active 
phases of bursting pairs of coupled pBC cells.  Spike asynchrony implies that while 
both cells are in the active phase, a cell receives strongest synaptic input during the 
downstroke of its spike.  This input mitigates the downstroke, which prevents dein-
activation of INaP, such that the cell is prevented from becoming tonically active.  A 
full analysis of the coupled cell pair requires treatment of a system of two slow vari-
ables and is given elsewhere (Best et al. 2005; see also Butera et al. 2005).  One 
outcome of this analysis was the discovery of four different modes of activity in the 
coupled pBC network, namely two types of bursting (symmetric and asymmetric) 
and two types of spiking (symmetric and asymmetric), with corresponding differ-
ences in burst characteristics.  Examples of each pattern are shown in Fig. 3.  The 
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nomenclature refers to the behavior of the slow variables h1,h2; in the symmetric 
case, h1 and h2 follow identical but phase-shifted time courses in the active phase, as 
seen in Fig. 3.  The bottom line from this analysis is that the presence of synaptic 
coupling in networks of pBC cells can introduce a subtle variation in the availability 
of INaP across cells, even when the parameter values used for the cells are identical.   

    
Fig. 3.  Different solutions arising for a pair of synaptically coupled model pBC cells, each 
governed by Eqs. 1-3.  For each solution, the top panel shows v versus time for both cells, 

while the bottom shows h versus time for both cells.  From left to right:  symmetric bursting, 
asymmetric bursting, asymmetric spiking, symmetric spiking (all in a pair of identical cells), 
bursting, and tonic spiking.  The last two columns were generated with the same parameter 
values but different initial conditions, using a non-identical pair of cells (one cell shown).  

4 Synaptic coupling in a heterogeneous network 

With mild heterogeneity between the cells, the qualitative finding that different types 
of bursting and spiking solutions exist at different points in (gtonic-e, gsyn-e) parameter 
space persists.  One interesting new result is the existence of a parameter regime for 
which there is bistability between a bursting and a tonic spiking solution, with initial 
conditions picking which is observed (Fig. 3).  If enough heterogeneity is introduced, 
the cells may behave qualitatively differently from each other, in the absence of 
coupling.  What activity patterns emerge when the cells are synaptically coupled?  
The discussion in Section 3 shows that synaptic coupling does not necessarily yield a 
network behavior that averages the cells’ intrinsic behaviors.  In recent work, I de-
rived sufficient conditions for network bursting to arise when a quiescent (Q) and a 
tonically active (T) pBC cell are coupled with synaptic excitation (Rubin 2006).  
First, the input from the T cell to the Q cell must be strong enough to recruit the Q 
cell into the active phase yet not strong enough to prevent the Q cell from exiting the 
active phase after a period of spiking.  How strong an input is required depends on 
the rate of deinactivation of INaP for the Q cell (see below).  Second, the synaptic 
input from the Q cell to the T cell will inactivate the INaP of the T cell, relative to its 
resting level in the absence of coupling.  The most subtle point in the analysis is that 
bursting requires the resulting additional inactivation to be sufficient such that, once 
the Q cell enters the silent phase and the synaptic input to the T cell wears off, the T 
cell cannot continue spiking and therefore falls silent as well.  This outcome requires 
a sufficiently rapid decay of synaptic input, in addition to sufficient inactivation of 
INaP.  Finally, note that the T cell will eventually return to the active phase and re-
excite the Q cell.  The duration of the T cell silent phase sets the time available for 
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the deinactivation of the Q cell’s INaP before synaptic input arrives and therefore 
determines, for a given strength of synaptic coupling, how fast a deinactivation is 
required for the Q cell to be activated again, maintaining the bursting oscillation. 

This analysis (Rubin 2006) shows why intrinsically bursting cells are not needed 
for bursting in a heterogeneous network of synaptically coupled pBC cells.  Like the 
other results discussed here, this finding carries over qualitatively to other models of 
the same burst class.  Clearly, the biological relevance of this work will be enhanced 
by its extension to larger networks of cells, which is in progress (see also Rubin and 
Terman, 2002).  However, the results of this analysis already suggest some principles 
that likely apply to synchronized bursting in a heterogeneous pBC population.  In 
particular, intrinsically tonic cells within the network will enhance the robustness of 
bursting by preventing the network from falling completely silent, as long as these 
cells can induce a sufficiently strong synaptic excitation to recruit the other cells in 
the network.  At the same time, robust bursting will require the presence of suffi-
ciently many non-tonic cells such that when these cells enter the silent phase, the 
resulting withdrawal of excitation from the tonic cells will cause them to fall silent as 
well.  Of course, the emergent activity patterns within a larger pBC network will 
depend on its synaptic connectivity architecture, which remains for future experi-
mental elucidation.  In the meantime, computational simulations and mathematical 
analysis represent powerful tools for exploring activity under a variety of network 
architectures and intrinsic activity pattern distributions. 
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