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The Dynamic Range of Bursting in a Model Respiratory Pacemaker Network∗

Janet Best†, Alla Borisyuk†, Jonathan Rubin‡, David Terman§, and Martin Wechselberger†

Abstract. A network of excitatory neurons within the pre-Bötzinger complex (pre-BötC) of the mammalian
brain stem has been found experimentally to generate robust, synchronized population bursts of
activity. An experimentally calibrated model for pre-BötC cells yields typical square-wave bursting
behavior in the absence of coupling, over a certain parameter range, with quiescence or tonic spiking
outside of this range. Previous simulations of this model showed that the introduction of synaptic
coupling extends the bursting parameter range significantly and induces complex effects on burst
characteristics. In this paper, we use geometric dynamical systems techniques, predominantly a
fast/slow decomposition and bifurcation analysis approach, to explain these effects in a two-cell
model network. Our analysis yields the novel finding that, over a broad range of synaptic coupling
strengths, the network can support two qualitatively distinct forms of synchronized bursting, which
we call symmetric and asymmetric bursting, as well as both symmetric and asymmetric tonic spiking.
By elucidating the dynamical mechanisms underlying the transitions between these states, we also
gain insight into how relevant parameters influence burst duration and interburst intervals. We find
that, in the two-cell network with synaptic coupling, the stable family of periodic orbits for the
fast subsystem features spike asynchrony within otherwise synchronized bursts and terminates in a
saddle-node bifurcation, rather than in a homoclinic bifurcation, over a wide parameter range. As
a result, square-wave bursting is replaced by what we call top hat bursting (also known as fold/fold
cycle bursting), at least for a broad range of parameter values. Further, spike asynchrony is a
key ingredient in shaping the dynamic range of bursting, leading to a significant enhancement in
the parameter range over which bursting occurs and an abrupt increase in burst duration as an
appropriate parameter is varied.
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1. Introduction. The inspiratory phase of the respiratory rhythm is believed to originate
in a group of neurons in a region of the brain stem referred to as the pre-Bötzinger com-
plex (pre-BötC) [28]. Within the pre-BötC, when coupling among cells is removed, there are
silent cells, cells that spike continuously, and intrinsically bursting cells that generate groups
of spikes separated by pauses [28, 12, 14]. Cells in all of these classes seem capable of reg-
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ular oscillatory bursting, if provided with appropriate inputs experimentally, and thus these
cells are sometimes called “pacemaker cells.” Experiments in brain slices have shown that a
synaptically coupled network of pre-BötC pacemaker cells can display synchronous bursting
oscillations [28, 18].

In two papers, Butera and collaborators presented experimentally constrained conductance-
based models for individual pacemaker cells in the pre-BötC as well as for a network of these
cells [1, 2]. In the network, both excitatory synaptic coupling between cells and a depolariz-
ing input current from a tonically firing population were included, whereas the persistence of
respiratory rhythms in pre-BötC under experimental blockage of synaptic inhibition justified
its omission [14]. For the most part, each cell was coupled to all other cells, although similar
results were found with less complete connectivities. Following Butera, Rinzel, and Smith, let
the parameter gsyn−e denote the maximal conductance of an excitatory synaptic input from
one cell to another, and let gtonic−e denote the conductance of the tonic depolarizing current,
which is taken to be identical for all cells. A focal point of the Butera network study was the
characterization of the dynamic range of bursting in the model network. The dynamic range
here refers both to the range of gtonic−e over which the network displays bursting behavior,
for a fixed gsyn−e, and to the corresponding range of burst frequencies produced.

Uncoupled model pre-BötC cells are square-wave bursters, over a range of gtonic−e. In
their simulations, Butera, Rinzel, and Smith found that introducing synaptic coupling among
identical model cells, by increasing gsyn−e from zero to a nonzero level, increased the range of
gtonic−e over which synchronized bursting oscillations occurred, relative to the bursting range
for a single cell [2]. More precisely, the coupled network would burst synchronously for the
same gtonic−e values that led to single cell bursting, as well as for an interval of gtonic−e that
would cause continuous firing in a single cell. This effect was nonmonotonic, such that as
gsyn−e was increased, the bursting range of gtonic−e would reach a maximum and then would
begin to shrink back toward that observed for gsyn−e = 0. Butera, Rinzel, and Smith also
used simulations to map out the changes in burst frequency and other burst characteristics
with changes in gsyn−e and gtonic−e. In particular, they found that while the bursting range
of gtonic−e increased as gsyn−e increased from zero, network bursts with at least some nonzero
gsyn−e values achieved a more limited range of burst frequencies than achieved with gsyn−e = 0.

The primary goal of this work is to provide a thorough mathematical analysis of the
mechanisms underlying most of these findings. We employ a fast/slow decomposition [20, 22]
to focus on how changes in gsyn−e and gtonic−e affect the bifurcation structure of the Butera
pacemaker cell model. This approach allows us to elucidate the nature of the transitions from
quiescence to bursting and from bursting to spiking in the network, as gsyn−e and gtonic−e are
separately varied. We note that while both gsyn−e and gtonic−e are conductances for inward,
excitatory currents, increasing these parameters may have very different effects on network
dynamics. In particular, increasing gsyn−e may transform the network from spiking to bursting
and then back to spiking; however, increasing gtonic−e can never transform the network from
spiking to bursting. Importantly, our analysis raises the distinction that bursting and tonic
spiking in a coupled pair of cells can be symmetric, in that the trajectories converge to, and
oscillate regularly about, an axis of symmetry, or asymmetric, depending on features that
we derive from the network dynamics. In addition to explaining how these different activity
patterns arise, our results include an analysis of transitions between them. In the bursting
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regime, this leads to an understanding of how synaptic coupling and excitatory inputs combine
to influence the silent and active phase durations, and hence the period, of bursting.

Because the Butera, Rinzel, and Smith pacemaker cell model is a square-wave burster
under appropriate parameter choices, the results presented here advance the current math-
ematical understanding of transitions between activity modes in general networks of cells
capable of square-wave bursting [20, 30, 31, 11, 22]. The analysis also demonstrates how
coupling cells that exhibit one type of behavior, namely, spiking, can lead to a different firing
pattern, namely, bursting. Furthermore, our results, while mathematical in character, are rel-
evant to the study of the biology of respiration in that they elucidate dynamical mechanisms
that can lead to various activity patterns, which may be experimentally distinguishable in the
pre-BötC, along with the implications of these mechanisms for quantitative aspects of network
activity.

In section 2 of the paper, we introduce the full Butera model and the details of the
fast/slow decomposition that we employ, including the key mathematical features that com-
bine to govern both the network dynamics in the model and the influence of gtonic−e, gsyn−e

on network behavior. This analysis, in the case gsyn−e = 0, explains the transition from
quiescence to bursting to tonic spiking in a single uncoupled cell. Next, in section 3, we
start with a brief discussion of how the transition from quiescence to bursting seen without
synaptic coupling carries over directly to coupled cells. Following this, we turn to the much
more complex transition from bursting to spiking in the presence of synaptic coupling. We
progress through several levels of analysis of the associated phenomena. First, we consider the
special case of a single self-coupled cell. Second, we consider a pair of coupled cells under a
strong synchrony assumption. Finally, we consider a pair of coupled cells with no restrictions
imposed on their evolution. This progression demonstrates how each aspect of the dynamics
of the freely evolving coupled cell pair contributes to the overall transition landscape. In
particular, our analysis illustrates how the asynchrony of spikes during the active phases of
bursts can extend the dynamic range of bursting in a synaptically coupled pair of cells. In
section 4, we explain how variations in gsyn−e and gtonic−e lead to changes in burst duration
and interburst intervals, based on the bifurcation structures elucidated in the earlier sections.
Finally, certain aspects of the qualitatively different transition mechanisms that we find un-
derlying the switch between bursting and tonic spiking in different parameter regimes lead to
different experimental implications, which we describe as part of the discussion in section 5.

2. Model and basic fast/slow decomposition.

2.1. The Butera model. The results of Butera, Rinzel, and Smith show that single-cell
bursting, matching experimentally observed properties of pre-BötC cells, can be initiated by
the fast activation of a persistent sodium current, INaP , and terminated by the slow inacti-
vation of this same current [1]. Thus, using the Hodgkin–Huxley formalism, the membrane
potential dynamics of each pre-BötC cell within a coupled network can be modeled by the
equation

v′i = (−INaP − INa − IK − IL − Itonic−e − Isyn−e)/C,(1)

where each term on the right-hand side denotes an ionic current through the cell membrane and
the derivative is with respect to time t. Specifically, we have INaP = ḡNaPmP,∞(vi)hi(vi −
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ENa), INa = ḡNam
3∞(vi)(1 − ni)(vi − ENa), IK = ḡKn4

i (vi − EK), IL = ḡL(vi − EL), and
Itonic−e = gtonic−e(vi −Esyn−e). The functions and parameters in these currents are identical
to those presented in [1] and are listed in the appendix for completeness. Units for all variables
are also given in the appendix. These units are used for all simulations, figures, and analysis
in this work, and we omit explicit mention of them throughout the rest of the paper. The
dynamic auxiliary variables hi, ni satisfy

h′i = ε(h∞(vi) − hi)/τh(vi),(2)

n′
i = (n∞(vi) − ni)/τn(vi)(3)

with functions h∞(vi), τh(vi), n∞(vi), τn(vi) also specified in [1] and given in the appendix.
We have introduced the parameter ε in (2) to emphasize that the hi will be considered as slow
variables in the upcoming analysis.

The architecture of synaptic connections in the network contributes to the form of the
synaptic current Isyn−e. We will consider a single self-coupled cell and a pair of coupled cells.
In both cases, let Isyn−e = gsyn−esi(vi − Esyn−e) where

s′i = αs(1 − si)s∞(vj) − si/τs,(4)

with the function s∞(v) and the constants αs, τs specified in the appendix. In the self-coupled
cell case, i = j = 1, while with a pair of coupled cells, i, j ∈ {1, 2} with j = 3 − i.

2.2. Fast/slow decomposition and bifurcation structure for a single cell. For a single
cell, let us omit the subscripts i = j = 1 on the dependent variables in the model. In system
(2)–(3), ε/τh(v) � 1/τn(v) for all relevant v; further, the evolution of h is much slower than
that of v, as given by (1). Thus, it is natural to treat h as a parameter and to consider the
bifurcation structure of the fast subsystem (1), (3), and (4) as h varies, a standard approach
described, for example, in [20, 22]. Of course, in the full model, h does evolve, and the position
of the h-nullcline determines the sign of the change in h at each location in phase space. Thus,
the position of the h-nullcline relative to the bifurcation structures of the fast subsystem will
contribute crucially to the dynamics of the network.

An example of the relevant bifurcation structures, for (gtonic−e, gsyn−e) = (0.2, 0), appears
in Figure 1. For each fixed h, the fast subsystem, which we now take as (1), (3) since
gsyn−e = 0, has 1, 2, or 3 critical points. The collection of all such points forms a curve in
(h, v, n)-space, which we call the fast nullcline and denote by S. The solid/dashed, S-shaped
curve in Figure 1 is the projection of S to (h, v)-space. Note that this nullcline has 3 branches
over an intermediate range of h values. At an h value near 0.8, the middle and lower branches
come together in a saddle-node bifurcation; we refer to the coalescence point as the lower
knee of S. Similarly, at an h value near −1.5, the middle and upper branches coalesce in a
saddle-node bifurcation at the upper knee of S. The lower branch consists of stable critical
points for (1), (3), while points on the middle branch are unstable saddles. Points on the
upper branch are unstable for small h. As h increases, a subcritical Hopf bifurcation occurs
along the upper branch of critical points, above which the critical points are stable. A family
of unstable periodic orbits emanates from this bifurcation. This family meets with a second,
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Figure 1. The bifurcation diagram for the fast subsystem (1), (3) with (gtonic−e, gsyn−e) = (0.2, 0), projected
into (h, v)-space, along with the h-nullcline. The solid (dashed) black curve is the curve S of stable (unstable)
critical points of (1), (3) with h fixed at the levels indicated on the abscissa. A family of unstable periodic orbits,
with maxima and minima labeled by open circles, emanates from S in a Hopf bifurcation at the point marked
HB. This family coalesces with the family of stable periodic orbits P, with maxima and minima labeled by dark,
thick curves, in a saddle-node bifurcation at h near 1.3. The thick grey curve shows the h-nullcline, namely,
h = h∞(v), where h′ = 0.

outer family of periodics in a saddle-node bifurcation at a larger h value than the Hopf point.
The outer periodics are stable and terminate in a homoclinic bifurcation as h decreases from
the saddle-node. We will denote this outer family by P. Finally, the h-nullcline, or slow
nullcline, intersects S in three places, which are critical points of the full system (1)–(3) (with
gsyn−e = 0). The only stable critical point occurs on the fast nullcline’s lower branch and is
attracting.

As gtonic−e increases, with gsyn−e = 0, it has three effects on the bifurcation diagram for
the fast subsystem. Increasing gtonic−e causes the lower part of S to move to smaller h values,
causes P to move to smaller h values, and causes the homoclinic point to move toward the
lower knee of S. These effects can be seen in the left column of Figure 2. These changes will
have significant implications for the dynamics of the model cell. For comparison with the case
of a coupled pair of cells, to be considered in section 3, it is important to note that we have
numerically computed the saddle quantity [15] of the homoclinic point on the middle branch
of S for gsyn−e = 0 and a range of values of gtonic−e. The saddle quantity remains negative
over all relevant gtonic−e, which implies that it is indeed a stable family of periodic orbits that
emanates from each homoclinic point, and the saddle quantity decreases as gtonic−e increases,
corresponding to the fact that the homoclinic point approaches the left knee of S as gtonic−e

increases (Figure 2).

Examples of voltage traces derived from the evolution of (1), (2), and (3), with gsyn−e = 0,
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Figure 2. Dependence of the bifurcation structure of (1), (3), and (4) on gtonic−e and gsyn−e. The upper
plots show curves of critical points and families of periodic orbits for varying values of gtonic−e and gsyn−e.
Left: gtonic−e = 0, 0.4, 0.7, gsyn−e = 0. Right: gtonic−e = 0.2, gsyn−e = 0, 4, 8. Larger values correspond to more
leftward structures. The bottom plots show how the positions of the lower knee (LK) and Hopf bifurcation point
(HB) vary with gtonic−e (with gsyn−e = 0) and gsyn−e (with gtonic−e = 0.2), respectively. Note that the lower
knee and indeed the entire curve of critical points are approximately invariant under changes in gsyn−e.

corresponding to a single uncoupled cell, are shown in Figure 3. Observe that as gtonic−e

increases, the cell switches from quiescence to bursting to tonic spiking, as also shown in
[2, 24]. In the quiescent case in Figure 3A, the trajectory is attracted to a stable critical
point. In the bursting solution shown in Figure 3B, the trajectory spends some time on
the lower branch of S, where it is below the slow nullcline, such that h slowly increases.
This is referred to as the silent phase of the solution. Although the two nullclines intersect
very close to the lower knee, and it is difficult to discern in the figure, the intersection now
occurs on the middle branch of S. Thus, the trajectory can reach the lower knee and jump
up to P, and oscillations ensue, yielding the active phase of the solution. P lies above the
slow nullcline, so h decreases during the active phase. Finally, the trajectory approaches the
homoclinic bifurcation where P terminates, and it falls back to the lower branch. This form
of bursting is called square-wave bursting and has been analyzed extensively in previous work
[3, 20, 30, 31, 16].

Note that in the bottom panel of Figure 3B, there is an interval of h-values, extending on
both sides of h = 0.6, for which the dynamics of the fast subsystem are bistable. Specifically,
for each h in this range, there are a stable critical point on the lower branch of S and a stable
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Figure 3. Voltage traces (top row) and bifurcation diagrams with superimposed trajectories and (grey) h-
nullclines (bottom row). In all panels, gsyn−e = 0. The parameter gtonic−e takes values 0.2 (A - quiescence;
stable critical point on the lower branch of S denoted by ∗), 0.3 (B - bursting), 0.4 (C - bursting), and 0.7 (D -
tonic spiking). In the top row, the scale bar corresponds to 2 seconds. Note the different h-axis scales in each
panel in the bottom row.

periodic orbit from P. The case in Figure 3C again represents square-wave bursting, but the
range of bistable h values is much smaller than in Figure 3B. In this case, this leads to short
bursts relative to Figure 3B. Finally, in Figure 3D, there is no region of bistability, and the
trajectory is pinned in the vicinity of P, such that tonic spiking results. Note from the bottom
part of Figure 3D that the trajectory extends both above and below the slow nullcline (grey
curve). While it is above (below) the slow nullcline, h decreases (increases). In the attracting
state for the network, the net drift in h is zero, leading to the pinning and continuous spiking
seen here [31].

Rather than varying gtonic−e, we can keep gtonic−e fixed and consider the effect of varying
gsyn−e on the bifurcation structure of the fast subsystem, now including (4), with i = j = 1,
corresponding to a single self-coupled cell. Because of the influence of (4), changes in gsyn−e

are not equivalent to changes in gtonic−e. In particular, s ≈ 0 along all branches of the fast
nullcline S, where v does not become much larger than −30, due to the form and parameters
of s∞(v), as given in the appendix. Thus, increasing gsyn−e leaves the projection of S to
(h, v)-space largely unchanged, as seen in the right column of Figure 2. Increasing gsyn−e

from 0 does cause P to move to smaller h values, however, since s can become significant
at the larger v values reached along P. This shift widens the range of h values for which
bistability occurs in the fast subsystem. Further, with its leftward motion, a greater part of
this family lies below the slow nullcline, resulting in a decrease in the leftward drift during the
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active phase of a burst. Eventually, this effect can cause pinning, corresponding to a transition
from bursting to tonic spiking.

We explore the transitions between activity modes more systematically in the subsequent
sections of the paper.

3. Analysis of transitions between modes of activity.

3.1. The transition from quiescence to bursting. As noted in section 2, a cell or network
of identical cells is quiescent when the fast and slow nullclines have an intersection on the lower
branch of S. Given a network in the quiescent state, bursting can be induced by increasing
gtonic−e. Indeed, as also observed in [2] (see Figure 2 of [2], also reproduced in Figure 18
below), the value of gtonic−e at which the switch from quiescence to bursting occurs, namely,
gtonic−e ≈ 0.26, depends only very weakly on the value of gsyn−e.

The mechanism underlying the switch from quiescence to bursting is that as gtonic−e

increases, S, and in particular its lower knee, moves leftward in the (h, v)-plane, to smaller
h-values, as mentioned in section 2 (Figure 2). Since the slow nullcline is independent of
gtonic−e, this trend causes the lowest v intersection of the nullclines (call it p) to transition
from lying on the lowest branch of S to lying on the middle branch of S, by passing through
the lower knee of S. In this transition, an eigenvalue of the linearization of (1)–(4) about p
crosses from the negative real axis to the positive real axis, such that on the middle branch,
p is an unstable critical point of (1)–(4). Trajectories starting in the silent phase now flow
past the lower knee of S and are attracted to the family of periodic orbits P. Bursting, rather
than tonic spiking, results from the transition for the parameter values of interest due to a
combination of two factors seen in Figure 3B; there is always bistability between the lower
branch and P when this transition occurs, and there is a net leftward drift in h during the
active phase. Finally, the transition is relatively independent of gsyn−e because, as noted in
section 2 (e.g., Figure 2, right top panel), gsyn−e has little impact on the position of S and
hence on the position of the critical point p.

3.2. The transition from bursting to tonic spiking in a self-coupled cell. The transition
from bursting to tonic spiking is much more complex than that from quiescence to bursting.
In fact, there are several different mechanisms underlying the transition from bursting to
tonic spiking, depending on parameter values. Here we will briefly return to the simplest
case of a single self-coupled cell, as considered in subsection 2.2; note that this case is also
equivalent to a pair of coupled cells that are completely synchronized. As we shall discuss in
the subsequent subsections, the completely synchronized solution is generally unstable with
respect to the full system, and coupled cells fire spikes that are out of phase in the stable
bursting and tonic spiking solutions. However, the progression in analysis presented in this
and subsequent subsections will illustrate the precise way in which asynchrony between cells
within the spiking phase can fundamentally alter the fast/slow bifurcation structure and be
a significant ingredient in determining the model’s dynamic range of bursting.

Consider a single, self-coupled cell, which satisfies (1)–(4) with (vi, hi, ni, si) replaced by
(v, h, n, s). As in subsection 3.1, we analyze this system using fast/slow analysis with h as
the slow variable, and representative bifurcation diagrams are shown in Figure 2. Define the
h-nullsurface G = {(v, h, n, s) : h = h∞(v)} and let p = G ∩ S as in subsection 3.1. Note
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that (1)–(4) exhibits square-wave bursting if there is an interval of h-values where the fast
subsystem exhibits bistability and p lies between the lower knee of S and the homoclinic point
P ∩ S. Alternatively, if p lies at a smaller h-value than that of the homoclinic point on the
middle branch of S, then, in the limit ε → 0 in (2), system (1)–(4) will exhibit tonic spiking.
Thus, as demonstrated in [31], the transition from square-wave bursting to tonic spiking, in
the limit ε → 0, occurs when the homoclinic point on the middle branch of fixed points crosses
G.
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Figure 4. The curve of fixed points p of (1)–(4), together with the curves of homoclinic points P ∩S of the
fast subsystem (1), (3), and (4) for gsyn−e = 0 and gsyn−e = 2, as a function of gtonic−e. The intersections
of these curves yield the values of gtonic−e at which the transition from bursting to tonic spiking is predicted
to occur, based on a fast/slow decomposition of the single self-coupled cell. Note that although p switches from
the lower branch of S to the middle branch at gtonic−e ≈ 0.26, the h-value of p is a monotonically decreasing
function of gtonic−e, because all of S moves toward smaller h values as gtonic−e increases.

As illustrated in the examples in Figure 2 and particularly in Figure 4, the homoclinic
point for the self-coupled cell lies at smaller h than that for the uncoupled cell. Thus, gtonic−e

must be increased more for G to cross the curve of homoclinic points in the self-coupled case,
and the transition to tonic spiking occurs at a higher value of gtonic−e than for the uncoupled
cell; that is, a self-coupled cell has a larger dynamic range of bursting oscillations than an
uncoupled cell has.

To finish this analysis, we use XPPAUT [9] to follow the curve in (gtonic−e, gsyn−e) pa-
rameter space where G intersects the homoclinic point P ∩ S. This generates a transition
curve, shown in Figure 5, with a shape that qualitatively matches that in Figure 2 of [2]
(see Figure 18 below). There is a significant quantitative difference between the two results,
however, with the curve in Figure 5 substantially underestimating the extent of the bursting
region. Thus, we conclude that the dynamics of a single self-coupled cell, while interesting in
their own right, do not capture the complexity of the bursting and spiking behaviors in the
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pre-BötC model with multiple, synaptically coupled cells.
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Figure 5. The transition curve (G ∩ P ∩ S) between bursting (to the left) and tonic spiking (to the right)
predicted by analysis of a single self-coupled cell. This curve significantly underestimates the extent of the
bursting region.

3.3. The transition from bursting to spiking in coupled cells with h1 = h2. In the
previous section, we assumed that the cells were completely synchronized and concluded that
this does not accurately predict the full increase in dynamic range for the coupled system.
Figure 6 illustrates why this should not be surprising. Here we show the voltage traces of the
two cells for (gtonic−e, gsyn−e) = (0.5, 8). Note that while the cells appear to burst together,
their spikes fire out-of-phase. We must, therefore, extend the fast/slow analysis to the case
in which we consider asynchronous spiking. This will be done in two steps. In this section,
we assume that the slow variables h1 and h2 are equal; we can then perform the fast/slow
analysis with a single slow variable, h = h1 = h2. As we shall see, this assumption leads to
an accurate prediction for the transition to tonic spiking for large values of gsyn−e (see Figure
7). Moreover, the resulting bifurcation structure has some rather novel features not seen in
the analysis of the self-coupled cell. For moderate and low values of gsyn−e, we can no longer
assume that h1 = h2; these must be considered as separate slow variables (Figure 7). The
two-slow-variable analysis will be carried out in the next subsection.

Denote the system of eight equations, consisting of (1)–(4) taken with both i = 1 and
i = 2, by (1)i–(4)i. Figure 8 shows an example of the bifurcation diagram generated by the
fast subsystem consisting of the six equations (1)i, (3)i, (4)i with h1 = h2 = h as the single
bifurcation parameter. This diagram is projected onto the (h, v1)-plane. Note that two families
of periodic orbits emanate from the single curve of equilibria S in distinct subcritical Hopf
bifurcations. As we move from right to left along the h-axis, starting above both Hopf points,
the critical points on S are stable. They lose stability in the first Hopf bifurcation, which
gives rise to an unstable family of periodic orbits, labeled as IP in Figure 8 and consisting
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of in-phase oscillations, as h is decreased. Both branches of periodics in IP, which merge at
a saddle-node bifurcation, are unstable with respect to the fast subsystem, except possibly
for the outer branch in some relatively small neighborhood of the saddle-node bifurcation.
The second family of periodics (call it AP) occurs at lower h and corresponds to antiphase
oscillations. This family consists of three branches. The branch that emanates from the
subcritical Hopf consists of unstable limit cycles. This branch terminates at a saddle-node of
periodic orbits, at h = hR in Figure 8, where it coalesces with a second branch of periodic
orbits. This second branch is stable, at least away from a relatively small neighborhood of the
saddle-node bifurcation. It will be very important in the analysis and we label it as APS . This
branch terminates in another saddle-node bifurcation of periodic orbits, at h = hL in Figure
8, where it coalesces with a third branch of unstable periodics. The third branch terminates
in an orbit homoclinic to the middle branch of S. (Note that the upper branch corresponding
to this family lies very close to that of APS , and hence cannot be distinguished at the scale
shown in Figure 8.) A similar emergence of antiphase and in-phase periodic orbit families is
also seen when diffusive coupling is introduced between square-wave bursters derived from a
model for bursting in pancreatic β-cells [25].
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Figure 8. Bifurcation structure of the fast subsystem for (gtonic−e, gsyn−e) = (0.5, 8). Here we assume
that h = h1 = h2 is the bifurcation parameter. The branch of fixed points S is shown in blue. There are two
branches of periodic orbits; in-phase solutions (IP) are shown in red, while antiphase solutions are shown in
green. The stable portion of the antiphase branch is denoted as APS and exists on the interval [hL, hR]. The
projection of a bursting solution (purple) onto this bifurcation diagram is shown in the right panel. Note that
the active phase ends at a saddle-node of periodic solutions of the fast subsystem.

Remark 3.1. For h values below both Hopf bifurcations, linearization of the 6-dimensional
fast subsystem around each critical point on the upper branch of S yields four eigenvalues
with positive real parts. As S is followed around the upper knee, although all four unstable
eigenvalues become real, two of these cross through the origin, by symmetry. Similarly, the
other two unstable eigenvalues stabilize at the lower knee, such that the critical points on the
lower branch of S are indeed stable.

Remark 3.2. Numerical calculations suggest that when the fast subsystem is linearized
about the homoclinic point at which the third branch of AP terminates, which lies on the
middle branch of S, the unstable pair of eigenvalues has larger magnitude than that of the
leading stable eigenvalues. Because the multiplicity of these eigenvalues comes from symmetry
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and not degeneracy, the saddle quantity [15] is relevant, and based on this, the periodic
orbits on this third branch are unstable, as we observe in our bifurcation diagrams and direct
numerical simulations. This differs from the standard square-wave bursting scenario, seen in
the case of the single, self-coupled cell in subsection 2.2, in which the leading stable eigenvalue
has larger magnitude than the unstable eigenvalue and stable periodic orbits emerge from the
homoclinic point as h is increased.

Figure 8 also shows the projection of the bursting solution shown in Figure 6 onto the
fast subsystem bifurcation diagram. As usual, the silent phase lies along the lower branch
of S and the active spiking phase begins when the trajectory reaches the lower knee of S.
During the active phase, the trajectory lies close to APS and the active phase ends when
the trajectory reaches the saddle-node of periodics. Note that this bifurcation structure no
longer corresponds to square-wave bursting, where spiking ends at a homoclinic orbit, but
rather represents a different bursting class (see also [11, 27, 4, 26]). We have, therefore,
demonstrated that synaptic coupling of cells leads to a change in the class of bursting activity
that occurs. As we demonstrate below, this will contribute to the fact that the coupled system
has an increased dynamic range. A 3-dimensional caricature of this induced form of bursting
is illustrated in Figure 9. We shall refer to this bursting class, which is called fold/fold cycle
bursting in [11], as top hat bursting.

fast1

h

fast2

Figure 9. A schematic illustration of a top hat burster. A similar top hat structure would arise from a
system with two fast variables and one slow variable or from a projection of a higher-dimensional system, such
as we consider, onto two fast dimensions and one slow dimension.
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Top hat bursters have several important features that distinguish them from square-wave
bursters. The active phase of a square-wave burster ends at a homoclinic orbit. For this
reason, the spike frequency becomes small at the end of each burst. For top hat bursters,
the active phase ends at a saddle-node of limit cycles. Hence, the spike frequency approaches
some fixed value, bounded away from zero, at the termination of burst activity.

A second difference between square-wave and top hat bursting is related to the transition to
tonic spiking as a parameter, such as gtonic−e, is varied. Recall that for a square-wave burster,
this transition takes place as the homoclinic point crosses the slow nullsurface, denoted by
G earlier. For top hat bursters, this transition arises from a very different mechanism. To
understand this new mechanism, we use singular perturbation methods to reduce the full
system of (1)i–(4)i to a reduced system for just the slow variables. Since we are now assuming
that h1 = h2, this will lead to a reduction of the full model to a single equation. The reduction
is carried out separately for the silent and active phases.

While in the silent phase, the solution lies close to the lower branch of S and we invoke
a steady state approximation. That is, introduce the slow time variable τ = εt in (1)i–(4)i
and then set ε = 0. The right hand sides of (1)i, (3)i, and (4)i then become zero and we may
solve for fast variables (vi, ni, si), i = 1, 2, in terms of h. While there are multiple possible
solutions, we choose that with the smallest v, corresponding to the silent phase. As a result,
since we use the same h for i = 1 and i = 2, we obtain (v1, n1, s1) = (v2, n2, s2) in the silent
phase. After substituting v1 = v2 into (2), we obtain a single equation for the evolution of h
in the silent phase.

For the active phase, we use the method of averaging. Suppose that APS exists for
hL ≤ h ≤ hR (Figure 8). For hL ≤ h ≤ hR, let (vi(t, h), ni(t, h), si(t, h)), i = 1, 2, be the
corresponding antiphase periodic orbit of the fast subsystem and assume that its period is
T (h). Then, in the limit ε → 0, the evolution of h during the active phase is governed by the
averaged equation

ḣ =
1

T (h)

∫ T (h)

0
(h∞(vi(t, h)) − h)/τh(vi(t, h))dt ≡ a(h).(5)

Here, differentiation is with respect to τ . We may use v1 or v2 in (5), since we are assuming
that h1 = h2 and we are therefore integrating over a common periodic orbit, belonging to the
stable family APS , for i = 1 and i = 2, although the cells may be out of phase along the orbit.

Now the system exhibits bursting if a(h) < 0 for all h ∈ (hL, hR). In this case, the solution
drifts to the left while oscillating along APS . The onset of tonic spiking occurs at the minimal
value of gtonic−e for which there exists a stable fixed point of (5) in [hL, hR] that has the lower
knee of S in its basin of attraction. In theory, such a fixed point could arise at the saddle-node
of periodic orbits at hL (Figure 8), yielding a unique tonic spiking solution, or it could first
appear via a double zero of a(h) in (hL, hR), leading to a saddle-node bifurcation of tonic
spiking solutions, one stable and one unstable, as gtonic−e increases [27, 4, 26]. (Recall that
we only evaluate (5) along periodic orbits in APS , ignoring possible unstable tonic spiking
solutions corresponding to the unstable branch of periodic orbits that is also born at h = hL.)
Our simulations show that a(h) is a monotone decreasing function on [hL, hR] for each fixed
gtonic−e. Thus, bursting occurs, with a(h) < 0 on [hL, hR], for sufficiently small gtonic−e,
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and the transition from bursting to tonic spiking happens at the minimal gtonic−e such that
a(hL) = 0. An example is given in Figure 10.
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Figure 10. The function a(h) plotted over [hL, hLK ] for gsyn−e = 8 and several gtonic−e values, where
hLK is the h-value for the lower knee of S. For all gtonic−e, a(h) remains monotone decreasing. As gtonic−e

increases from 0.61 to 0.62, a zero of a(h) occurs at h = hL, and this zero moves away from hL toward larger
h-values as gtonic−e increases further. Note that the actual values of hL, hLK depend on gtonic−e, and hence we
omit numerical lables from the h-axis; all of the curves shown have been aligned according to their respective
hL values for comparison.

The criterion a(hL) = 0 gives an accurate prediction for the value of gtonic−e at which
the transition from bursting to tonic spiking occurs for large values of gsyn−e. For small and
moderate values of gsyn−e, this curve does not match the actual transition; it severely under-
estimates the increase in dynamic range of bursting activity. The reason for this discrepancy
is that, for small and moderate values of gsyn−e, the behavior of the full system is inconsistent
with the assumption that h1 = h2. We must, therefore, extend our fast/slow analysis to the
case of two slow variables.

3.4. The transition from bursting to tonic spiking in the full model for two coupled
cells.

3.4.1. Using slow averaged dynamics in the oscillation region to analyze activity states.
The previous subsections demonstrate that to capture the full picture of the dynamic range
of bursting for two coupled pre-BötC cells, it is necessary to consider the full four-equation
model (1)–(4) for each cell. Again, there is a natural fast/slow decomposition, achieved by
taking h1, h2 as slow variables; below, we refer to the fast subsystem to mean the other six
equations with h1, h2 frozen. Rather than visualizing fast subsystem bifurcation structures,
we will now consider dynamics projected to the (h1, h2)-plane.

To start, fix (gtonic−e, gsyn−e) and note that for some pairs (h1, h2), the fast subsystem will
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support regular, stable tonic spiking, while for others, such sustained oscillations will not exist.
We can use direct simulation of the fast subsystem (e.g., fixing h2, varying h1 systematically,
and then repeating for a different h2), to estimate a boundary curve for the oscillation region
O in (h1, h2)-space, such that for (h1, h2)-values below this curve, regular, stable oscillations
do not exist for the fast subsystem. In what follows, we denote this boundary curve as B.

Remark 3.3. We use the term regular oscillations to refer specifically to periodic solutions
in which the two cells fire in alternation, with constant interspike intervals. We will return to
the issue of regular versus irregular oscillations of the fast subsystem later in this subsection.

We use averaging to reduce the full system to a system of two equations for just the slow
variables. For g(v, h) ≡ (h∞(v) − h)/τh(v), the reduced system can be written as

ḣ1 = 1
T (h1,h2)

∫ T (h1,h2)
0 g(v1p(h1, h2; t), h1) dt ≡ a1(h1, h2),

ḣ2 = 1
T (h1,h2)

∫ T (h1,h2)
0 g(v2p(h1, h2; t), h2) dt ≡ a2(h1, h2),

(6)

where (h1, h2) ∈ O, T (h1, h2) is the period of the fast subsystem periodic orbit for this choice
of (h1, h2), and v1p , v2p are the time courses of v1, v2 around the orbit, which both depend on
both h1 and h2, since the orbit itself does. Note that tonic spiking corresponds to a stable
fixed point of (6). In fact, as we now demonstrate, the complete transition from bursting to
tonic spiking for the full system can be understood by analyzing the phase planes generated
by (6).

Figure 11 illustrates phase planes of (6) with gsyn−e = 3 and four values of gtonic−e. Note
that for this value of gsyn−e, the analysis in the preceding section, in which we assumed that
h1 = h2, does not give an accurate prediction for when the transition from bursting to spiking
takes place for the full system. In each panel of Figure 11, the black curve represents B, the
boundary of the oscillation region. When a bursting solution crosses B, it falls back to the
silent phase (not shown in the figure), and spiking activity stops until a subsequent burst cycle
begins. The red and blue curves in Figure 11 are numerically computed averaged nullclines,
namely, A1 = {(h1, h2) : a1(h1, h2) = 0} and A2 = {(h1, h2) : a2(h1, h2) = 0}. Fixed points
of (6) are given by the intersections of these nullclines, and one can usually determine the
stability of the fixed points by considering the nullcline configuration. Note that to estimate
the positions of A1 and A2, we simulate the fast subsystem (1)i, (3)i, (4)i. This consists
of fixing h2 and systematically varying h1 to identify locations where either a1(h1, h2) or
a2(h1, h2) is sufficiently close to zero, repeating the process for each h2 on a partition of the
relevant h2 range, which corresponds to the interior of the region O as determined by the
location of B.

In Figure 11A, gtonic−e = .57. Note that A1 and A2 are not present in O, and therefore
both ḣ1 and ḣ2 remain negative along every trajectory in O. Hence, every solution of the
averaged slow equations (6) must eventually leave O through B and the full system (1)i–(4)i
exhibits bursting. The bursting is symmetric in the sense that trajectories of (6) converge
to the line L ≡ {(h1, h2) : h1 = h2} over successive burst cycles and oscillate symmetrically
about it while in O, and hence we refer to this as symmetric bursting. In general, this is a
top hat burster and can be analyzed using the one slow variable analysis described in the
preceding section.
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Figure 11. Averaged phase planes, corresponding to (6), with superimposed trajectories of (1)i–(4)i, for
gsyn−e = 3. Throughout this figure, the jump-down curve B is solid black, the nullclines A1,A2 are red and
blue, respectively, the symmetry axis L is dashed black, and trajectories are green. (A) For gtonic−e = .57,
ḣ1, ḣ2 are negative everywhere in the oscillatory region O. Thus, every solution of the averaged equations
leaves the oscillatory region O through B and the system exhibits symmetric bursting. The trajectories here
correspond to the flow of (1)i–(4)i during the active phases of several bursts only, with the silent phases omitted.
(B) For gtonic−e = .83, there is an unstable fixed point p0 in O where the averaged nullclines intersect. The
system exhibits asymmetric bursting. Again, the trajectory shown is from the active phase of bursting. (C) For
gtonic−e = .87, the averaged nullclines intersect at three fixed points in O, namely, p0, which is still unstable,
and qA, qB, which are stable. The system exhibits asymmetric tonic spiking. An asymmetric tonic spiking
solution is shown in green; similar solutions exist near qA. (D) For gtonic−e = .91, p0 is a stable fixed point
and the system exhibits symmetric spiking. Here B is not visible since it lies at smaller (h1, h2) values than
those shown in this plot.

In Figure 11B, gtonic−e = .83 and the full system still exhibits bursting. However, the
slow system (6) now has a fixed point, denoted by p0 in Figure 11B, inside of O. Indeed, this
fixed point enters O through the intersection point of B with the line L ≡ {(h1, h2) : h1 = h2}
as gtonic−e increases. Using the fact that the slope of the h2-nullcline at p0 is more negative
than the slope of the h1-nullcline there and the reflection symmetry of (6), we have nb ≡
∂ḣ1/∂h2 = ∂ḣ2/∂h1 < ns ≡ ∂ḣ1/∂h1 = ∂ḣ2/∂h2 < 0. Thus, the eigenvalues ns ± |nb| of the
linearization of (6) about p0 have opposite signs, such that p0 is an unstable saddle of (6). The
stable manifold of p0 lies along the line L, while each solution of (6) that does not begin along
L must eventually leave the oscillation region through B, after crossing through A1 and A2

and experiencing a change in the sign of ḣ1 and ḣ2, respectively. As a result, the full system
generically exhibits bursting oscillations. We shall refer to this as asymmetric bursting since
h1 	= h2 along the solution. We note that it is essential here to consider two-slow-variable
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analysis. If, as in the preceding section, we assumed that h1 = h2, then we would incorrectly
predict that the full system exhibits tonic spiking as soon as p0 enters O, which occurs at
significantly smaller gtonic−e than the actual spiking onset. That is, p0 is stable with respect
to solutions of (6) that lie along the stable manifold L. This explains why the analysis in
the preceding section does not accurately predict the full dynamic range of rhythmic bursting
oscillations. Further, the fact that no saddle-node bifurcation gives rise to critical points of (6)
along L, away from B, as gtonic−e increases corroborates our earlier claim that no saddle-node
bifurcation occurs in the fixed points of (5).

For Figure 11C, we set gtonic−e = .87. While there is still an unstable fixed point p0 ∈ O,
the averaged nullclines A1 and A2 now intersect at two new fixed points, labeled as qA and qB,
in the oscillatory region O. These fixed points are stable, as can be seen from the configuration
of the nullclines, and they represent tonic spiking of the full system. We say that this is
asymmetric tonic spiking because h1 	= h2 at qA and qB; that is, the stable fixed points do
not lie along the axis of symmetry L.

Finally, suppose that gtonic−e = .91. In this case, as shown in Figure 11D, p0 is a stable
fixed point of (6) and the full system exhibits symmetric tonic spiking. The configuration
of the nullclines A1 and A2 at p0 has now switched from the previous cases. That is, as we
increase gtonic−e from .87 to .91, a pitchfork bifurcation occurs. In this bifurcation, the stable
fixed points qA and qB come together at p0, and p0 switches from being a saddle to being a
stable node. Figure 11D also shows an example of how a tonic spiking trajectory oscillates
symmetrically about p0. It is important to note that, even in these symmetric tonic spiking
solutions, we expect v1 and v2 to be antiphase. This can be checked for small gsyn−e by
calculating the H-function [13, 10]. The functions H(φ) and Hodd(φ) ≡ (H(φ) − H(−φ))/2
for gtonic−e =1.05 and gsyn−e =1 appear in Figure 12. A zero of Hodd(φ) represents a phase-
locked, periodic solution of the full system, which is stable (unstable) if the derivative of Hodd

is positive (negative) there. Since the phase shift in a solution is given by the value of φ at
which the corresponding zero of Hodd(φ) occurs, Figure 12 predicts that v1, v2 will be exactly
antiphase for this (gtonic−e, gsyn−e) (see also Figure 6).
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Figure 12. H-function and its odd part Hodd for gtonic−e = 1.05 and gsyn−e = 1. Since Hodd(0.5) = 0 and
H ′

odd(0.5) > 0, the antiphase symmetric spiking solution is predicted to be stable.

Remark 3.4. We have also numerically computed the H-function for symmetric bursting
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for particular values of gtonic−e, gsyn−e. The results agree with our analysis, showing that
spikes are out of phase within the stable solution. The results also suggest that a completely
antiphase solution, in which the cells take turns bursting, should also be stable. However, it is
important to note that this calculation is relevant in the weak coupling limit. Our simulations
show that such antiphase bursting solutions indeed may stably exist, but only for extremely
small gsyn−e. Further consideration of antiphase bursting solutions is outside of the scope of
this work.

Figure 13 shows regions in (gtonic−e, gsyn−e) parameter space where the full coupled system
(1)i–(4)i is predicted to exhibit symmetric bursting (SB), asymmetric bursting (AB), asym-
metric spiking (AS), and symmetric spiking (SS). As seen above, the SB region corresponds
to the absence of fixed points in O, and the symmetry expected here refers to an approximate
equality of h1 and h2. We have not yet justified why solutions in SB should, in general, have
h1 ≈ h2, however, and this is discussed in subsection 3.4.3 in the context of synchronization of
bursts. The blue curve corresponds to when the fixed point p0 first appears in O as gtonic−e is
varied, representing the transition from SB to AB. This is where the one-slow variable analysis
described in the previous section predicts that there should be the transition from bursting to
tonic spiking. The green curve corresponds to the transition from AB to AS. Recall that this
occurs when the additional intersections of the averaged nullclines A1 and A2, namely, the
stable fixed points qA and qB, appear in O. The red curve corresponds to the transition to SS.
This corresponds to the occurrence of a pitchfork bifurcation for the slow averaged equations
(6).
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Figure 13. A summary of how the activity of a pair of coupled pre-BötC cells depends on the parameters
gtonic−e, gsyn−e. Each solid curve represents a boundary between regions in (gtonic−e, gsyn−e)-space correspond-
ing to different activity patterns. The question mark indicates that for very weak coupling gsyn−e, numerical
difficulties prevent us from distinguishing precisely where the AS → SS transition occurs. See the text for a full
discussion of the regions and transitions specified in this figure.
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3.4.2. Changes in the transition pathway as gsyn−e is increased. In Figure 13, the region
between the black line and the green curve where it exists, or the blue curve where the green
curve does not exist, gives the set of parameter values for which bursting is predicted. This
gives excellent quantitative agreement with the simulation results from [2]. Note from Figure
13 that qualitatively different transitions through activity states occur for gsyn−e above or
below a threshold of approximately 7.5. Figure 14 shows examples of SB and SS solutions for
gsyn−e = 8.

As gsyn−e is increased to larger values, the AB and AS regions in (gtonic−e, gsyn−e) space
shrink, as shown in Figure 13. For all gsyn−e < 7.5, the AS region persists, although it becomes
so narrow that it can hardly be distinguished from AB on the scale used in Figure 13. Note
that in fact there cannot be a direct transition from SB to AB to SS. That is, in the AB state,
the unstable symmetric fixed point p0 of (6) lies in O, and in the SS state, this fixed point is
stable. The stabilization occurs through a pitchfork bifurcation as gtonic−e is increased, which
requires the existence of the two stable equilibria qA, qB in O for gtonic−e sufficiently close to,
but below, the onset of SS. For such gtonic−e values, AS will occur.
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Figure 14. Averaged phase planes from (6), with superimposed trajectories of the full system (1)i–(4)i,
for gsyn−e = 8, corresponding to a direct transition from SB to SS. The labels here are as in Figure 11. (A)
Symmetric bursting solution for gtonic−e = .6. The green trajectory shown travels first from the upper right
part of the region to the lower left, where it hits the black boundary curve B. At this point, the cells enter the
silent phase and h1, h2 both increase. Correspondingly, the trajectory here moves back from lower left to upper
right, although the cells are not spiking and the dynamics of (6) are irrelevant. The jump up to the active phase
for the next burst cycle corresponds to the trajectory turning around and heading back toward B. Note that h1

and h2 become closer during the silent phase and jump up, such that the trajectory subsequently travels close
to L (black dashed line). (B) Symmetric spiking solution for gtonic−e = .63. The red and blue curves are the
nullclines A1 and A2, respectively, of (6). The inset shows how the sample trajectory shown approaches the
fixed point p0 where A1 ∩ A2 occurs.

In theory, there could be a direct transition from SB to AS, if qA, qB were to enter O
before p0 as gtonic−e were increased. However, our numerical simulations indicate that both
the AB and the AS regions terminate together, at gtonic−e ≈ 7.5. The schematic diagram in
Figure 15 illustrates the transition from SB → AB → AS → SS to SB → SS that occurs as
gsyn−e is raised through 7.5. As noted above, Figure 14 gives examples of the dynamics in O
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Figure 15. A schematic diagram showing how the change occurs in the bifurcation diagram for the dynamics
of (6) inside O as gsyn−e crosses through 7.5. The horizontal black lines indicate the presence of the fixed point
p0 in O, while the black curves denote the fixed points qA and qB; stable fixed points are given by solid curves,
while unstable ones are indicated by dashed curves. As gsyn−e increases toward 7.5, the AB and AS regions
become narrower, until they cease to exist together at gsyn−e ≈ 7.5.

on both sides of the SB → SS transition for gsyn−e = 8.

3.4.3. Details of activity patterns within regions. The analysis illustrated in Figure 11
characterizes a path in (gtonic−e, gsyn−e) space along which all four activity states occur as
gtonic−e increases. While this same set of transitions arises for an interval of gsyn−e values,
subtle differences in activity within the same state may emerge for different (gtonic−e, gsyn−e)
values, based on what happens when trajectories leave O. We next consider a mechanism
underlying these differences, and then we briefly return to the issue of synchronization of
bursting solutions.

To understand how differences in the details of asymmetric bursting can arise, note that
the cells are only coupled through the variables si, each of which depends on vj . For each i,
we can consider the (vi, hi) bifurcation diagram generated by the dynamics of (vi, ni) with hi
as a bifurcation parameter and with si also frozen. This will yield a picture similar to those
in Figure 2, with the value of si (for fixed gsyn−e) selecting the relative positions of P and of
the homoclinic orbit that terminates P; for si treated as a fixed constant in this way, changes
in si also affect the position of S, unlike in the right panel of Figure 2. In reality, the si have
fast dynamics, so one can think of the (vi, hi) bifurcation diagram as jumping around rapidly,
driven by changes in si, but at each instant in time, there exists an appropriate diagram.
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Based on this collection of structures, for each fixed (gtonic−e, gsyn−e), there exists a curve H
of (h, s)-values such that at each value on the curve, the (v, n)-system has a homoclinic orbit.
Note that ds/dh is negative on H (cf. Figure 2); an example appears in Figure 16A. For a
trajectory of (6) to exit O through the boundary curve B, it is necessary but not sufficient
that the (h, s) coordinates for one cell should move to the nonoscillatory side of H, where
no periodic oscillations are supported by the (vi, ni) dynamics. If one cell, say, cell 1, does
cross H, then the input from the other cell, via s1, may pull it back across, causing regular
network oscillations to continue. If this does not happen, then the trajectory of cell 1 will
be attracted to the lower branch of S, causing s2 to drop. One possibility is that this loss
of synaptic input will pull cell 2 across H as well, terminating the pair’s oscillations. This is
exactly the case in which exit from O through variation of one or both of the parameters h1, h2

yields an abrupt transition from tonic spiking to quiescence in the fast subsystem (1)i, (3)i,
(4)i, as illustrated in Figure 16B. For gsyn−e = 3 and other intermediate values of gsyn−e, at
least away from a small neighborhood of the AB → AS transition, this possibility is realized.
Correspondingly, when trajectories of the slow averaged equations (6) that start from initial
conditions in O leave O, the fast variables stop oscillating altogether and the subsequent silent
phase dynamics of the full system (1)i–(4)i causes (h1, h2) to grow. Eventually, oscillations
return, with (h1, h2) somewhere in O, and the dynamics of (6) becomes relevant again.
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Figure 16. Exit from O for an asymmetric bursting solution with gsyn−e = 3, gtonic−e = 0.8. (A) When
cell 1 crosses the homoclinic curve (H in the text) from above to below, it pulls cell 2 down with it, resulting
in a cessation of oscillations, with s1, s2 ≈ 0 while h1, h2 increase (in the silent phase). The arrows show
the direction of time evolution for cell 1, as it transitions from its final oscillation (down arrow) to the silent
phase (horizontal arrow) to its return to the active phase (up arrow). The evolution for cell 2 is similar. (B)
Correspondingly, the transition across B yields an abrupt switch from oscillations to quiescence in the dynamics
of the fast subsystem (1)i, (3)i, and (4)i. Here, a crossing of B was implemented by decreasing h1 from .169 to
.168, at time 999, with h2 = .180. The v time course is only shown for one cell; it was qualitatively similar for
the other cell.

An alternative scenario, which arises most prominently for small gsyn−e, is that even for
s2 = 0, cell 2 can continue to oscillate. In this case, it is possible that successive oscillations
of cell 2 can cause cell 1 to resume oscillating after cell 1 crosses H, even though a single
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Figure 17. The sustained oscillations of one cell can rescue the oscillations of another cell to which it is
coupled, as shown here for gsyn−e = 2, gtonic−e = 0.88. (A) Even when cell 1 crosses from above to below the
curve of homoclinic orbits (H in the text), cell 2 continues to oscillate. The coupling from cell 2 pulls cell 1
back across H, where it resumes oscillations. (B) The transition across B yields a switch from tonic spiking to
irregular sustained oscillations in the dynamics of the fast subsystem (1)i, (3)i, and (4)i. Here, a crossing of B
was implemented by decreasing h1 from .1693 to .1692 at time 999, with h2 = .205. The v time course is only
shown for one cell; it was qualitatively similar for the other cell. (C) The dynamics of the full system shows
asymmetric bursting with short interburst intervals, with a change in burst cycle occurring when cell 2 (blue)
fires two consecutive spikes. (D) This asymmetric bursting solution (green) remains very close to B (black) in
the (h1, h2)-plane; the red and blue curves show the nullclines A1,A2 of (6) as they terminate on B.

oscillation of cell 2 does not; in particular, as seen in Figure 17A, cell 2 never crosses H.
When this form of rescued oscillation arises in the fast subsystem (1)i, (3)i, (4)i with h1, h2

fixed, as shown in Figure 17B, this does not qualify as regular tonic spiking, and thus by
our definition (h1, h2) do not lie in O. Further, this effect yields bursting solutions of the
full system (1)i–(4)i featuring a very small interburst interval, in which one cell never spends
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time in the silent phase; see Figure 17C. Figure 17D shows a corresponding example of an
asymmetric bursting solution with gsyn−e = 2, projected onto the (h1, h2)-plane, which differs
from that shown in Figure 11B for gsyn−e = 3 in that the projection of the burst trajectory
onto (h1, h2) stays very close to B for all time. If the net drift in (h1, h2) during such a
solution were actually zero, then there could exist a bursting solution of the full system (1)i–
(4)i that never enters O. In summary, the transition across B corresponds to different fast
subsystem dynamics for different (gtonic−e, gsyn−e) values, leading to differences in the details
of the asymmetric bursting that results. We emphasize that the existence of such possibilities
does not affect the validity of our analysis of transitions between bursting and tonic spiking;
as long as there is no stable fixed point of (6) in O, regular tonic spiking of the full system
will not occur.

Finally, from the idea of considering changes in bifurcation structure as both s and h vary,
it becomes clear that the synchronization of the cells in bursting solutions relates in part to a
form of fast threshold modulation (FTM) [29, 33]. In theory, FTM can act at either or both
of the jump down to the silent phase and the jump up to the active phase. Based on our
simulations, most of the compression toward synchrony occurs in the silent phase and in the
jump up to the active phase of each burst (e.g., bottom panel of Figure 7). When one cell,
say, cell 1, reaches the lower knee of its corresponding critical point curve S1 and begins to
oscillate, the coupling from cell 1 to cell 2 shifts S2 to the left, advancing the jump-up time of
cell 2. This can allow compression in the h-coordinates of the cells relative to the uncoupled
case, in which h2 would have had to evolve to larger values before jumping up. During this
additional evolution in the uncoupled case, h1 would have been decreasing, leading to an
approximately constant magnitude of |h2 − h1| before and after jump-up.

There is also compression in the silent phase, which in theory could be analyzed using the
slow dynamics [32, 21]. In the AB case, after this compression and FTM bring trajectories
toward synchrony, they are pushed away from the axis of symmetry L in the active phase by
the flow of (6) in O. In the SB case, no such instability occurs to counteract synchronization.
It remains to explore the full details of synchronization of bursts in the SB region in the full
8-dimensional system (1)i–(4)i.

4. Burst duration and interburst interval of coupled pre-BötC cells. Our analysis in
the previous section explained the dynamic range of bursting of coupled pre-BötC cells. We
next give an explanation for the numerically observed changes in burst duration (active phase)
and interburst interval (silent phase) under variations of (gsyn−e, gtonic−e), as shown in Figure
18. The features of the different bursting regimes, symmetric (SB) and asymmetric (AB), are
critical for understanding how the burst duration is determined.

4.1. The symmetric bursting regime. The onset of bursting is described in section 3.1
and is due to the crossing of the h-nullsurface G from the stable lower branch to the unstable
middle branch of S. Recall that this crossing is almost independent of gsyn−e, because the
position of the lower knee of S depends only very weakly on gsyn−e, and happens at gtonic−e ≈
0.26. After the onset of bursting, we are in the symmetric (or top hat) bursting regime, which
was analyzed in section 3.3.

If we fix gtonic−e in this SB regime and increase gsyn−e, then the burst duration as well
as the interburst interval increase. The reason is the following: as gsyn−e increases, the Hopf



THE DYNAMIC RANGE OF BURSTING 1131

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

g
tonic−e

 (nS)

g sy
n−

e (
nS

)

asymmetric      
bursting (AB)   silent symmetric     

bursting (SB) 

Figure 18. Simulated burst durations and (inter)burst intervals from Butera, Rinzel, and Smith [2]. (A)
The color-coded plot shows how burst duration in a pair of coupled pre-BötC cells changes with gtonic−e and
gsyn−e. The transition curves that we have computed for the onset and offset of symmetric and asymmetric
bursting, from Figure 13, are shown for comparison, illustrating in particular that the transition from symmetric
to asymmetric bursting is responsible for the abrupt increase in burst duration with gtonic−e. (B) Interburst
interval increases with gsyn−e and decreases as gtonic−e increases. The color-coded plots of burst duration
and interburst interval shown here appeared in [2] and are used with permission of the American Physiological
Society.

point as well as the stable branch of periodic orbits APS corresponding to the top hat burster
move to the left, while the lower knee of S is fixed, increasing the bistable region of the top
hat burster; an example appears in Figure 19A. Thus, solutions stay longer in both the active
phase and the silent phase for increased gsyn−e.

If we fix gsyn−e in the SB regime and increase gtonic−e, then the lower knee of S moves to
the left. The Hopf point and the stable branch of periodic orbits APS associated to the top
hat burster move to the left as well, but they do so more slowly, as seen in Figure 19B and
analogously to what is shown in the bottom left panel of Figure 2. This causes a net decrease
in the size of the bistable region. Further, this smaller bistable region is moved to the left,
with APS becoming closer to the h-nullsurface G and the lower branch of S becoming farther
from G (see, e.g., the bottom row of Figure 3). These changes cause both a slower drift in the
active phase and a faster drift in the silent phase. It follows immediately that for increased
gtonic−e the interburst interval decreases, because the bistable region gets smaller and the drift
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Figure 19. Changes in APS induced by changes in gsyn−e and gtonic−e. (A) With gtonic−e = 0.3, increasing
gsyn−e from 4 (blue) to 8 (green) moves APS , and the corresponding Hopf point, to the left, while the lower
knee of S remains unchanged. (B) With gsyn−e = 8, increasing gtonic−e from 0.3 (green) to 0.6 (black) moves
both APS and the lower knee of S to the left. (Note that the green copies of APS in both panels are identical.)

in the silent phase becomes faster.
On the other hand, although the bistable region gets smaller, the slower drift in the active

phase counters this effect and in fact causes the burst duration to increase with gtonic−e. To
understand why the slower drift dominates, recall from section 3.3 that the transition from
bursting to spiking in the analysis of the top hat burster is described by a zero drift condition
a(hL) = 0 of system (5), which describes the averaged evolution of h during the active phase.
For values of gsyn−e > 7.5, this analysis captures the transition from bursting to spiking
of coupled pre-BötC cells. In this parameter regime, the average drift in the active phase
decreases to zero with increasing gtonic−e, causing the transition to spiking. Since the size
of the bistable region is bounded away from 0 because of the folded termination of the top
hat structure, this slowing overcomes the shrinking of the bistable region and thus the burst
duration generally increases with increasing gtonic−e.

For intermediate and lower values gsyn−e ≤ 7.5, the increase of burst duration with in-
creasing gtonic−e still occurs in the SB regime, by the same argument. However, the zero drift
condition (for h1 = h2) now corresponds to the appearance of the unstable fixed point p0 in
O and thus determines the transition from SB to AB, given by the blue curve in Figure 18,
rather than the transition from SB to SS. Changes in burst duration in the AB region are
discussed in the following subsections.

4.2. The asymmetric bursting regime for moderate and large gsyn−e ≤ 7.5. Here we
discuss the abrupt change in burst duration seen at the transition from SB to AB (Figure
18A), the impact of gtonic−e and gsyn−e on burst duration within AB, and the impact of
gtonic−e and gsyn−e on interburst interval within AB, for gsyn−e ≤ 7.5 but not too small.

The AB regime was analyzed in section 3.4 via the study of the reduced system (6). The
appearance of the saddle point p0 in (h1, h2)-space forces solutions to leave the neighborhood
of the symmetry axis L (see Figure 11B). This scenario causes a very sharp increase in burst
duration near the onset of asymmetric bursting. More precisely, AB solutions of system (6)
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follow close to L, heading toward the boundary B of the oscillatory region O. Once they pass
close to the saddle point p0, however, they are diverted to a path between the nullclines A1,A2

and the curve B, crossing both A1 and A2 before they can reach B and jump from the active
phase to the silent phase (see Figure 11B). This excursion can be of quite substantial duration
even for gtonic−e close to the SB → AB transition, depending on where A1,A2 lie relative to B.
Thus, this phase plane analysis for the reduced system (6) explains nicely the sharp increase
in burst duration seen in Figure 18A. Note in particular that the “discontinuity” observed in
the burst duration as gtonic−e is increased matches exactly the SB → AB transition curve for
7.5 ≥ gsyn−e ≥ 3.

The transition from AB to AS happens due to the appearance of two asymmetric stable
fixed points, qA and qB, in the phase space of system (6), as shown in Figure 11C. These
fixed points correspond to two new intersection points of the (convex) nullclines A1 and A2.
Thus, with increasing gtonic−e in the AB regime, A1 and A2 get closer until they intersect in
the oscillatory region O at the transition value of gtonic−e. Therefore, as gtonic−e increases,
solutions will spend more time following the path between the nullclines A1 and A2 and the
boundary B before leaving O; as a result, the burst duration increases with increasing gtonic−e.

The same argument holds also for fixed gtonic−e and increasing gsyn−e; that is, the burst
duration will increase due to the geometry of the nullclines. With increasing gsyn−e, A1 and
A2 again get closer, and pull away from B, before they intersect at the transition to AS.
Therefore, the burst duration increases monotonically with increasing gsyn−e.

The interburst interval behaves the same as in the symmetric case, because the bistable
region of each of the oscillators increases with increasing gsyn−e, with no change in position
relative to G in the silent phase, and decreases with increasing gtonic−e, with an increased
distance from G in the silent phase. Correspondingly, the interburst interval increases with
increasing gsyn−e and decreases with increasing gtonic−e as well.

Finally, the smaller bistable region that occurs for larger gtonic−e can mitigate the increases
in burst duration, discussed above, somewhat, but as in the previous subsection, the bistable
region size is bounded away from zero by the top hat structure, and a net increase in burst
duration occurs as gtonic−e is increased. We shall see in subsection 4.3 that this relation may
differ for smaller gsyn−e.

4.3. Asymmetric bursting for small gsyn−e. As seen in Figure 20, the top hat structure of
APS can be eliminated either by decreasing gsyn−e for fixed gtonic−e or by increasing gtonic−e

for fixed gsyn−e, yielding a transition from top hat bursting back to square-wave bursting.
This transition happens at smaller gtonic−e for smaller gsyn−e (e.g., near gtonic−e = 0.6 for
gsyn−e = 2 and near gtonic−e = 0.4 for gsyn−e = 0.1).

Within both the top hat and the square-wave scenarios, it is possible for the fast subsystem
to feature bistability between periodic orbits on APS and critical points on the lower branch
of S. In the top hat case, this bistability is always present. As a result of the transition
back to the square-wave scenario, however, it is possible for the size of the bistable region for
the fast subsystem to go to zero, corresponding to a saddle-node on an invariant circle, or
SNIC, bifurcation in which the homoclinic point that terminates AP lies on the lower knee
of S, as gtonic−e increases. Thus, the outcome of the competition between slower drift in the
active phase and shrinkage of the bistable region as gtonic−e increases, and correspondingly
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Figure 20. Changes in the antiphase (green) and in-phase (red) periodic orbit families as gtonic−e and
gsyn−e vary. As gtonic−e is increased for fixed gsyn−e, the antiphase family switches from three branches,
connected by two saddle-node bifurcations, to two branches, corresponding to the switch from top hat bursting
to square-wave bursting. Lowering gsyn−e for fixed gtonic−e has a similar effect.

the changes in burst duration with gtonic−e, cannot be predicted. On the other hand, the
shrinking bistable region and accelerating flow in the silent phase still synergistically induce
shorter interburst intervals for larger gtonic−e, as discussed previously for larger gsyn−e.

5. Discussion. This work represents an effort to explain the finding that the introduction
of synaptic coupling in a network of model pre-BötC cells, relevant to respiratory rhythms,
extends the range of parameters over which synchronized bursting oscillations occur, relative
to the uncoupled case. Many subtle issues lurk within this finding, including differences in
the effects of within-network coupling (Isyn−e in (1)) versus external tonic coupling (Itonic−e

in (1)) and a wide range of complex changes in burst characteristics with changes in the
strengths of these inputs. Using geometric fast/slow analysis of a two-cell network, we find
that the introduction of synaptic coupling qualitatively changes the class of bursting seen in the
network, from square-wave bursting to top hat bursting or fold/fold cycle bursting [11], except
possibly for a small range of parameters with small coupling strengths. Further, through a
progression of levels of analysis, we have shown that the apparent transition from bursting
to tonic spiking can actually encompass a transition from symmetric bursting to asymmetric
bursting to asymmetric spiking to symmetric spiking, with significant implications for burst
characteristics that we analyze using the two-variable slow averaged system (6). In particular,
the fact that the cells’ spikes are out of phase in the solutions observed plays a key role in
extending the dynamic range of bursting to larger gtonic−e.

While the equations that we have studied were introduced to model particular cells impli-
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cated in the generation of respiratory rhythms, dynamically they give rise to generic square-
wave bursting, and hence the qualitative aspects of our results apply directly to general pairs
of coupled square-wave bursters. Past work has shown that the introduction of diffusive cou-
pling between two square-wave bursters can split the associated family of periodic solutions
into an unstable in-phase family and an antiphase family, with an associated increase in burst
period [25, 5]. This finding is similar to what we report here with synaptic coupling, although
in the diffusive case the antiphase family is stable and affects period only when coupling is
weak, whereas we find that it remains stable for strong synaptic coupling. Further, in ad-
dition to demonstrating that this splitting occurs, we note that qualitative changes in burst
pattern result from the saddle-node termination of the stable antiphase periodic branch, as
also noted in [11, 27, 4, 26]. An additional difference between the diffusive and synaptic
analyses is that the analysis done for diffusive coupling capitalizes on the observation that
h2 − h1 ≈ constant, where hi is the slow variable for cell i, to focus on the single bifurcation
parameter δ = (h2 − h1)/2 for the coupled system. In the synaptic case, we have shown that
this single slow variable picture fails to capture the full dynamic range of bursting, which we
have explained using analysis of a two-variable slow averaged system. This approach allows
us to consider a range of dynamic effects resulting from turning on and varying the strength
of synaptic coupling, including complex changes in burst duration and interburst interval, in
addition to transitions between asymmetric and symmetric bursting and tonic spiking states.

Clearly, it will be interesting to see whether the effects of changes in gsyn−e and gtonic−e on
pre-BötC activity patterns predicted by this analysis can be observed experimentally. In an
experimental recording, if different cells’ voltage and persistent sodium current time courses
were identical, except for a systematic time shift, then the network activity pattern could
be classified as symmetric, whereas other differences in these time courses across different
(coupled) cells would characterize asymmetric activity patterns. Our results indicate that
asymmetric states would be present only if gsyn−e were not too large. Of course, noise would
complicate the distinction between symmetry and asymmetry. Interestingly, the analysis in
subsection 4.3 points out that bistability of periodic and rest states may be lost as gtonic−e

increases for relatively small gsyn−e. This leads to the prediction, illustrated in Figure 21, that
transient, hyperpolarizing inputs to tonic spiking solutions could be used to gauge the strength
of synaptic coupling in an experimental preparation. More precisely, for large enough gsyn−e,
such an input would lead to a prolonged delay before return to spiking, because it would
induce a prolonged excursion along a branch of stable steady states of the fast subsystem, as
seen in Figure 21 A,B. On the other hand, for sufficiently small gsyn−e, bistability would be
lost, and the effects of a transient, hyperpolarizing input would be gone as soon as the input
were terminated, as seen in Figure 21 C,D.

We use a fast/slow decomposition in the singular limit, in which solutions consist of
trajectories generated by a slow subsystem, connected by jumps formed by solutions of a fast
subsystem. This approach has been used effectively in past analyses of bursting (e.g., [19,
20, 22]), and rigorous analysis has shown that sufficiently close to the singular limit, for most
initial conditions, trajectories of square-wave bursters behave similarly to such concatenated
solutions [31, 30, 16]. In the case of the pre-BötC in particular, the predictions from our
fast/slow analysis yield good quantitative agreement with past simulation results [2] while
explaining the mechansims underlying many of the burst characteristics that were observed
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Figure 21. Effects of transient, hyperpolarizing inputs on tonic spiking solutions. (A) With
(gtonic−e, gsyn−e) = (0.9, 5), a hyperpolarizing input of 100 msec leads to a prolonged delay before tonic spik-
ing resumes. (B) Bifurcation diagram showing a critical point curve (solid stable points and dashed unsta-
ble points) and the family of antiphase periodic orbits AP (thick dotted curve) for the fast subsystem for
(gtonic−e, gsyn−e) = (0.9, 5). The (h, v) coordinates of the trajectory from (A) are superimposed. Before the
input, this trajectory consists of an oscillation with h at a constant value below the knee of the critical point
curve. The initial effect of hyperpolarization is to pull the trajectory below AP, as marked by the arrow. After
this, the trajectory makes a prolonged excursion along the branch of stable critical points before jumping toward
AP and then drifting leftward, back to the h-value where it started. (C) With (gtonic−e, gsyn−e) = (0.9, 1),
cessation of a 100 msec hyperpolarizing input leads to an immediate return to tonic spiking. (D) Bifurcation
diagram and trajectory for (gtonic−e, gsyn−e) = (0.9, 1), labeled as in (B). The arrow shows the small drop in v
due to hyperpolarization.

in the simulations. However, the rigorous extension of these ideas beyond the singular limit
remains to be performed.

Clearly, our study of a pair of synaptically coupled cells has yielded new insights into
the fundamental influences of gtonic−e and gsyn−e and the role of asynchrony of spikes. To
understand fully the bursting dynamics observed in the pre-BötC experimentally, additional
biological features will need to be considered, starting with the addition of more cells and the
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inclusion of heterogeneity in parameter values and features across cells. Indeed, heterogeneity
in parameters was observed to enhance the robustness of synchronized bursting in simulations,
and while we have analyzed conditions for synchrony in the presence of heterogeneity previ-
ously [23], that work focused on a reduced model and on a restricted class of heterogeneities.
Further, it appears that there may be heterogeneous ionic mechanisms that contribute to
rhythmic oscillations across an entire pre-BötC cell network [6, 17, 7], and the interactions
of multiple mechanisms could be a rich source of network dynamics. Finally, while this work
has focused on synchronized bursting, experiments have shown that modifications, such as
increases in external potassium concentration or decreases in gsyn−e, can lead to clustered
or aperiodic behavior [8, 24]. Since various quasiperiodic and mixed-mode oscillations have
been observed in spontaneous breathing of human infants and neonatal rodents [8], it will be
important to analyze transitions away from full-population bursting to characterize fully the
dynamics of the pre-BötC.

Appendix. Equations (1), (2), and (3) were introduced in [1], while the synaptic equation
(4) is given in [2]. In these equations, for x ∈ {mP ,m, h, n, s}, the function x∞(v) takes the
form x∞(v) = {1 + exp[(v− θx)/σx]}−1, and for x ∈ {h, n}, the function τx(v) takes the form
τx(v) = τ̄x/ cosh[(v− θx)/2σx]. The parameter values used in these equations are listed in the
table below.

Parameter Value Parameter Value Parameter Value Parameter Value

gNaP 2.8 nS ENa 50.0 mV θm,P −40 mV σm,P −6 mV

τ̄h/ε 10000 msec θh −48 mV σh 6 mV

gNa 28 nS θm −34 mV σm −5 mV

gK 11.2 nS EK −85.0 mV

τ̄n 10 msec θn −29 mV σn −4 mV

gL 2.8 nS EL −65.0 mV C 21 pF Esyn−e 0 mV

αs 0.2 msec−1 τs 5 msec θs −10.0 mV σs −5 mV
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