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Abstract. Oscillators in networks may display a variety of activity patterns. This paper
presents a geometric singular perturbation analysis of clustering, or alternate firing of syn-
chronized subgroups, among synaptically coupled oscillators. We consider oscillators in two
types of networks: mutually coupled, with all-to-all inhibitory connections, and globally
inhibitory, with one excitatory and one inhibitory population of oscillators, each of arbitrary
size. Our analysis yields existence and stability conditions for clustered states, along with
formulas for the periods of such firing patterns. By using two different approaches, we derive
complementary conditions, the first set stated in terms of time lengths determined by intrin-
sic and synaptic properties of the oscillators and their coupling and the second set stated in
terms of model parameters and phase space structures directly linked to parameters. These
results suggest how biological components may interact to produce the spindle sleep rhythm
in thalamocortical networks.

1. Introduction

Oscillatory behavior can take a variety of forms [10]. In one type of oscillation,
exemplified by relaxation oscillations, some property of an object varies repeatedly
between two distinct states. In such activity, the amount of time spent in each state
greatly exceeds the time spent in the transitions between states. For example, the
generation of action potentials by certain types of neurons fits into this category
of behaviors. Using neuroscience terminology, we can classify the two prolonged
states of such oscillators as an active phase and a silent phase, and we can refer to
the rapid transition from the silent phase to the active phase as firing.

When objects capable of assuming two such distinct states are coupled, the state
of one object influences the other objects in the resulting network. One effect seen
within networks of neurons, for example, is that cells that are normally in the silent
phase can be pulled into the active phase, or induced to fire, by the firing of other
cells to which they are coupled (for example, see [11]). Thus, coupling between
such oscillators can lead to many interesting patterns of activity.

One such activity seen in a network of coupled oscillators of the type discussed
above is the formation of clusters, such that the behaviors of oscillators in a single
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cluster are synchronized while oscillators from distinct clusters are never simul-
taneously active. One reason that such patterns are of interest is that they arise in
certain neurons in the thalamus, called thalamocortical relay cells, in drowsiness
and shallow non-REM sleep [6], [16], [17]. In this paper, for two general classes of
networks of relaxation oscillators motivated by thalamocortical neurons, we prove
that certain conditions imply the existence and stability of clustered solutions. This
entails consideration of two issues, namely what prevents oscillators in separate
clusters from firing together and what maintains the synchrony of oscillators be-
longing to the same cluster. Note that the latter issue may become especially subtle
when a clustered solution of a network is stable but the completely synchronous
state is unstable.

The remainder of the paper is organized as follows. In Section 2, we present the
models, for individual oscillators and for the dynamic coupling between oscillators,
to be considered, along with some relevant notation. The models of coupling that
we include are motivated by the properties of chemical synapses between neurons
[7]; hence, we refer to the connections between oscillators as synaptic coupling. We
introduce two different network architectures, namely a mutually coupled network
and a globally inhibitory network. A mutually coupled network consists of one
population of oscillators, coupled in an all-to-all manner with inhibitory synaptic
coupling. Such a network has been considered in many past works; see [11] for
a review of some recent results in the context of neuronal networks. A globally
inhibitory network consists of two distinct populations of oscillators; one popula-
tion excites the other, which in turn inhibits the first [11], [13]. It was shown in
[13] that quite different pattern formation mechanisms arise in these two different
architectures.

Section 2 also includes a brief introduction to some singular perturbation ter-
minology that is useful for our analysis, including the notion of a singular solution.
The idea of this geometrical dynamical systems approach is to construct singular
solutions by dissecting a system of differential equations into subsystems evolving
on disparate time scales. Actual solutions exist near these singular solutions under
certain general hypotheses (see [9]). In the models we consider, the relevant tempo-
ral disparity exists between the slow time scale that characterizes the time oscillators
spend in the active and silent phases and the fast time scale that characterizes their
transitions between these phases. Geometric singular perturbation methods have
been used previously to study the population rhythms of neuronal networks (for
example, see [11], [13], [14], [15], [19], [20], [21]). To our knowledge, howev-
er, these techniques have generally not been applied to analyze the formation of
clustered activity patterns in mutually coupled networks of oscillators with inhibi-
tory synaptic coupling or in networks with multiple oscillator populations, such as
globally inhibitory networks.

Our main focus in this work is on these globally inhibitory networks, since they
model the thalamocortical architecture. In Section 3.1, we describe an example of a
singular solution consisting of two clusters for such networks. Section 3.2 contains
additional notation useful for analyzing clustered solutions, and Sections 3.3-3.5
present the statement and proof of an existence and stability result for a certain class
of clustered solutions, along with a formula for the period of an n-cluster solution.
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Section 3.6 gives results on 2-cluster solutions of a more general type, under less
restrictive assumptions than the earlier sections.

Finally, in Section 4, we present a different approach to proving existence and
stability, and to computing period, for antisynchronous 2-cluster solutions, which
are characterized by alternation in firing of the two clusters. This approach is more
directly computational, leading to qualitatively different types of existence and
stability conditions than those given by the approach of the earlier sections. We
demonstrate this approach first for mutually coupled networks, where the resulting
conditions are the cleanest, and then discuss globally inhibitory networks. Since
the existence and stability conditions in Section 3 are sufficient but not necessary,
the analysis of Section 4 complements that of the earlier sections. Moreover, it
yields more direct statements about the quantitative effects of certain parameters on
the stability and period of clustered states. We conclude with a discussion in
Section 5.

2. Models

This section contains the models that we consider in subsequent sections. We start
by presenting the equations for individual oscillators. Then, we introduce the dy-
namics of the coupling between oscillators and the two arrangements of connections
that we will consider. We will distinguish between several types of coupling; the
properties of the coupling included can play an important role in pattern formation
within a network. Much of this discussion follows that in Section 2 of [13].

2.1. Single oscillators

We model the individual elements of our networks as relaxation oscillators, each
governed by the system

v′ = f (v,w)

w′ = εg(v,w)
(2.1)

where ′ = d
dt

, v ∈ IR, and w ∈ IRn; for simplicity, we take n = 1 in our analysis
(see [13] for an example with larger n). Here, ε is assumed to be a small parameter;
hence, w represents a slowly evolving quantity. We assume that the v-nullcline,
f (v,w) = 0, defines a cubic-shaped curve, with left, middle, and right branches,
in the (v,w) phase plane. We also assume f > 0 (f < 0) above (below) this
curve. Further, the w-nullcline, g(v,w) = 0, is a monotone decreasing curve that
intersects f = 0 at a unique point p0, with g > 0 (g < 0) below (above) this curve.
See Figure 1.

Definition 1. An oscillator is excitable if p0 lies on the left branch of f = 0. An
oscillator is oscillatory if p0 lies on the middle branch of f = 0.

Remark 1. For an excitable oscillator, p0 is a stable rest point. The term excitable
applies because the oscillator can be induced to jump to the vicinity of the right
branch of f = 0, or fire, if sufficiently excited by some input. In the oscillatory
case, (2.1) gives rise to a periodic solution for all ε sufficiently small, as shown in
Figure 1.
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Fig. 1. Nullclines for (2.1) in the oscillatory case. The dark line shows a singular periodic
solution for this system.

In singular perturbation terminology, system (2.1) represents evolution with
respect to the fast time t . Setting ε = 0 in (2.1) yields the fast subsystem

v′ = f (v,w)

w′ = 0

for which w is a parameter. Rescaling time by setting τ = εt provides the slow
evolution corresponding to (2.1), namely

εv̇ = f (v,w)

ẇ = g(v,w)
(2.2)

where ˙= d
dτ

. Setting ε = 0 in (2.2) yields the slow subsystem

0 = f (v,w)

ẇ = g(v(w),w)

which is valid as long as f (v,w) can be solved for v = v(w).
For neuronal models, the v-nullcline f = 0 describes a three-branched surface,

with adjacent branches joined by knees (or curves of knees forn > 1) and v = vi(w)

on the ith branch. Then, the fast subsystem governs jumps between branches of this
surface, while the slow subsystem governs the flow on each branch, with v slaved
to w. A fast jump occurs when a trajectory of the slow subsystem reaches a curve
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of knees. The generation of an action potential by a neuron, for example, corre-
sponds to a fast jump from the low-v branch (the silent phase) to the high-v branch
(the active phase). We can thus construct a singular solution in the ε = 0 limit,
consisting of solutions to the slow subsystem joined by jumps between branches
given by solutions to the fast subsystem; the analysis in this work deals with such
singular solutions, and we refer the reader to [9] for extensions to small positive ε.

2.2. Coupling and architectures

We consider networks with dynamic connections between oscillators. The dynamics
of the connections are motivated by models for synaptic coupling between neurons
[2], [5], [22]. Such connections affect the v-evolution of the cells receiving inputs.
We consider two different architectures, or arrangements of connections between
oscillators in a network.

One relatively simple architecture consists of a collection ofN mutually coupled
oscillators. In this arrangement, each oscillator is connected to all of the other
oscillators in the network and to itself. The governing equations for this network are

v′
i = f (vi, wi) − gsyn

(
1
N

∑N
j=1 sj

)
(vi − vsyn)

w′
i = εg(vi, wi)

i = 1, . . . , N (2.3)

for parameters gsyn > 0 and vsyn and dynamic synaptic coupling variables sj .

Definition 2. The coupling to the ith oscillator is inhibitory if vi−vsyn > 0 always
holds over the range of vi values under consideration. This coupling is excitatory
if vi − vsyn < 0 always holds.

That is, inhibitory coupling decreases v′
i , making it harder for an oscillator to fire,

while excitatory coupling increases v′
i , making firing easier.

We consider two different models for the evolution of the sj . If an sj is direct,
it satisfies a first order equation of the form

s′
j = α(1 − sj )H(vj − θsyn) − εKsj . (2.4)

Here, H is the Heaviside step function and θsyn is a threshold. The positive con-
stants α and K are O(1) with respect to ε and govern the rate of evolution of sj .
Note that the turn on of sj occurs on the fast time scale while the turn off occurs on
the slow time scale. This choice of rates is suggested by experimental observations
in thalamocortical networks [3], [5], [18].

A second category of dynamics characterizes indirect synaptic coupling, which
features a delay between the crossing of the threshold θsyn and the onset of its
inhibitory or excitatory effect. This delay arises when secondary processes, such
as G-protein activation in neuronal synapses, are needed to transmit information
about the state of one oscillator to another oscillator to which it is coupled. Indi-
rect coupling is modeled by introducing an intermediate variable xj for each sj
[5],[13],[19]. The equations for (xj , sj ) are

x′
j = εαx(1 − xj )H(vj − θsyn) − εKxxj

s′
j = α(1 − sj )H(xj − θx) − εKsj

(2.5)

for constants α, αx,K,Kx, θx > 0.
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The other network architecture that we consider, on which much of this work
focuses, involves two distinct populations of oscillators. In this globally inhibitory
architecture, J oscillators inhibit E oscillators, which in turn excite the J . In the
rhythms of interest, the oscillators within the J population are completely synchro-
nized with each other, in which case we can model the entire J population as a
single oscillator, which sends a “global inhibition” to the E population. Under this
assumption, in the case of direct coupling, the system of equations corresponding
to each Ei , i = 1, . . . , N is

v′
i = f (vi, wi) − ginhsJ (vi − vinh)

w′
i = εg(vi, wi)

s′
i = α(1 − si)H(vi − θexc) − βsi

(2.6)

with ginh, α, β > 0, while the system for J is

v′
J = fJ (vJ ,wJ ) − gexc

(
1
N

∑N
i=1 si

)
(vJ − vexc)

w′
J = εgJ (vJ , wJ )

s′
J = αJ (1 − sJ )H(vJ − θinh) − εKJ sJ

(2.7)

with gexc, αJ ,KJ > 0. We assume that β = O(1) in (2.6); however, there is no
problem extending the analysis if β = O(ε). If vi > θexc, then si → sA ≡ α

α+β
on the fast time scale. Define

stot = 1

N

N∑
i=1

si (2.8)

and note that stot ≤ sA since each si ≤ sA.
We may also take the inhibitory coupling from the J oscillators to the E oscil-

lators as indirect. In that case, the model includes an indirect variable xJ such that
the variables (xJ , sJ ) evolve according to as system analogous to (2.5), namely

x′
J = εαx(1 − xJ )H(vJ − θinh) − εKxxJ

s′
J = αJ (1 − sJ )H(xJ − θx) − εKJ sJ .

Remark 2. We will see that, without loss of generality, inhibition can be taken as
direct for the consideration of the existence of clustered solutions. The distinction
of direct versus indirect coupling is quite important, however, in the consideration
of the stability of clustered solutions. In particular, indirect synapses are needed for
stable synchronization of oscillators within a single cluster (see Section 3.5).

Remark 3. We analyze solutions of the model by constructing singular solutions.
If ginh is not too large then {(v,w) : f (v,w) − ginhsJ (v − vinh) = 0} defines a
cubic shaped curve for each sJ ∈ [0, 1]. We denote these curves as CsJ ; curves C0
and C1 are displayed in Figure 2. Each Ei will lie on the left or right branch of one
of these curves during the silent or active phase. Jumps between these phases take
place when an Ei reaches a left or right knee of its respective cubic. In a similar
manner, J lies on the cubic curve determined by its total synaptic input stot .
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Fig. 2. Singular trajectories for both E clusters in one half-cycle of a 2-cluster solution.
The solid line represents the trajectory for cluster E1 and the dashed line that for E2. The
trajectories are superimposed on the corresponding E nullclines, with C0 corresponding to
sJ = 0 and C1 to sJ = 1 as in the text.

Remark 4. The globally inhibitory model is motivated by thalamocortical networks.
These networks consist of two coupled populations of cells, namely thalamocortical
relay cells, which play the role of E oscillators, and thalamic reticular cells, which
are the corresponding J oscillators. In these networks, spindle states, in which the
J population is synchronized while the E population forms clusters, exist during
drowsiness and shallow non-REM sleep.

3. Globally inhibitory networks with fast decay of inhibition

3.1. Singular orbits

In this subsection, we describe the singular trajectory corresponding to a 2-cluster
solution. The number of E oscillators in the network may be arbitrary, but we as-
sume for ease of notation that the two clusters have equal numbers of oscillators.
The J oscillators are assumed to be synchronized; we may therefore consider the
J population as a single J oscillator and refer to its members as a single entity
J . We assume throughout that each cell, whether an E or J , is excitable for fixed
levels of synaptic coupling.

As we shall see, the construction of a 2-cluster solution easily generalizes to
an arbitrary number of clusters. The geometric construction will require certain
assumptions, however, and a precise theorem is stated and proved in the following
subsections. By considering a 2-cluster solution here, we can more easily motivate
the assumptions and the statement of the main theorem that follows.
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Fig. 3. Singular J trajectory for a 2-cluster solution, superimposed on corresponding
nullclines.

The singular trajectories corresponding to a 2-cluster solution are illustrated in
Figures 2 (E) and 3 (J ). We assume that one cluster, call it E1, jumps up to the
active phase at τ = 0, where τ is the slow time variable, and the resulting excitation
causes J to also jump up. Since the jump up is instantaneous on the slow time scale,
we can think of E1(0) as lying on the left or the right branch of the sJ = 1 cubic,
but in any case, E1 evolves on the right branch of the sJ = 1 cubic for τ > 0.
Similarly, J evolves on the right branch of the stot = 1

2 sA cubic for τ > 0. We also
assume that the other cluster, call it E2, is silent at τ = 0 and hence lies on the left
branch of the sJ = 1 cubic.

For τ > 0, each oscillator evolves along its respective branch until one oscilla-
tor reaches a knee. We will assume that the E oscillators in E1 have shorter active
phases than J , so E1 jumps down before J does, say at τ = τ1. The assumption
that J has a longer active phase than E1 implies that it lies above the right knee of
the stot = 0 cubic at this time, so it continues along the right branch of the stot = 0
cubic until it reaches the right knee and then jumps down, say at τ = τ2. During
the time that J remains active, both E1 and E2 move along the left branch of the
sJ = 1 cubic C1.

After J jumps down, sJ (τ ) decreases on the slow time scale. If E2 is able to
reach the left knee of CsJ for some sJ , then it fires and this completes the first
half cycle of the singular solution. Suppose that this is the case and that τ = τF
when this occurs. Let wi denote the w-value of all oscillators in cluster Ei . If
w2(τF ) = w1(0), w1(τF ) = w2(0), and wJ (τF ) = wJ (0), then the trajectories
described represent one-half of a 2-cluster solution.

The analysis in Section 3.4 shows that a 2-cluster solution as described above
will exist, under certain assumptions on the nonlinear functions and parameters.
For example, we will need to assume that the active phase of J is not too long or too
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short, compared with the active phase of the Ei . If J ’s active phase is too long, then
the network exhibits synchronous behavior [13]. If J ’s active phase is too short,
then the system approaches the stable quiescent state.

The singular trajectory for an n-cluster oscillation represents a natural general-
ization of that for the 2-cluster oscillation. In the singular n-cluster solution, if we
start when J falls down, then inhibition to the Ei decays until one E cluster fires
and causes J to fire; while these are active, the other (n − 1) E clusters evolve in
the silent phase. The active E cluster falls down before J , and the E clusters then
evolve in the silent phase such that each E oscillator reaches the initial position
of the oscillator ahead of it in the firing sequence at the moment that J falls down
again. Precise conditions for the existence and stability of such a solution are given
in the next subsection.

Remark 5. The preceding construction of the singular solutions helps to motivate
the assumptions and statement of the theorems in this section. For example, the
2-cluster solution can exist only if an E oscillator is able to reach the jump-up
curve once it is released from inhibition after the J oscillator jumps down. We
will see that this is possible only if the rate of decay of inhibition is sufficiently
fast and the E oscillator recovers sufficiently in its silent phase before J jumps
down.

The time an E oscillator has for recovery is related to the duration of the J

oscillator’s active phase. Hence, we will need to assume that KJ is sufficiently
large and J ’s active phase is sufficiently long. We will also need to assume that the
J oscillator recovers quickly in its silent phase. This is needed because once an E

oscillator reaches the jump-up curve, the J oscillator must be ready to jump up in
response to the firing E oscillator.

Finally, the singular construction helps to determine the number of clusters
which emerge in a given network. In the construction of an n clustered solution,
we have at most one cluster of E oscillators active at any particular time, with
the remaining n − 1 clusters silent. This implies that each cluster is silent for at
least n − 1 times as long as it is active. The number of clusters that can be
supported depends on several factors including the duration of the J oscillator’s
active phase and the time it takes for inhibition to wear off before an E

oscillator can reach the jump-up curve and fire. The theorems in this section
give precise conditions for when an n cluster solution exists in terms of these
various lengths of time.

3.2. Notation for slow phase space analysis

The following notation will be useful for the statement and proof of the theorems.
Some of it is illustrated in Figure 2. Much of it is based on the approach of consid-
ering separate phase spaces for the E and J oscillators, with the dynamics in each
phase space influencing that of the other as indicated in (2.6)-(2.7) [13]. Let CsJ

be the cubic-shaped curve for the E oscillators defined in Remark 3 and assume
that the left and right branches of CsJ can be written as vi = %L(wi, sJ ) and
vi = %R(wi, sJ ), respectively. Assume that the left knee of CsJ is at w = wL(sJ )
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for each sJ . We assume that the w-nullcline {g(v,w) = 0} intersects each CsJ

along its left branch. From the first two equations in (2.6), this implies that the E

oscillators are excitable for constant levels of synaptic input sJ . Suppose that this
point of intersection of nullclines occurs at w = wF (sJ ).

Remark 6. Note that if ∂f/∂w > 0 and ∂g/∂v < 0 near CsJ , then both wL(sJ ) and
wF (sJ ) are increasing functions of sJ . This follows, since sJ represents inhibitory
input, from implicit differentiation of the equations f (%L(wL(sJ ), sJ ), wL(sJ ))−
ginhsJ (%L(wL(sJ ), sJ ) − vinh) = 0 and g(%L(wF (sJ ), sJ ), wF (sJ )) = 0.

We can obtain reduced equations for the slow variables corresponding to
each E oscillator as follows. First suppose that the E oscillator is silent.
If the J oscillator is also silent, then the slow variables corresponding
to the E oscillator are (wi, sJ ). This can be seen from (2.6)-(2.7) after
rescaling in terms of the slow time variable τ = εt and then setting ε = 0.
While in the silent phase, the E oscillator lies on the left branch of CsJ ; that
is, vi = %L(wi, sJ ). Hence, if we let GL(w, sJ ) = g(%L(w, sJ ), w), then the
slow variables satisfy

ẇi = GL(wi, sJ )

ṡJ = −KJ sJ .
(3.1)

Note that if the J oscillator is active then sJ ≡ 1. In this case, wi is the only slow
variable and it satisfies

ẇi = GL(wi, 1). (3.2)

In a similar manner, we can derive a reduced equation for the evolution of E

oscillators while they are active. Let GR(w, sJ ) = g(%R(w, sJ ), w). We will only
consider solutions in which the J oscillator is active whenever an E oscillator is
active. Hence, sJ = 1 and wi satisfies the reduced equation

ẇi = GR(w, 1). (3.3)

We assume that the right knee of C1 is at w = wRK . This is where the E oscillators
jump down from the active phase. In the clustered solutions that we will consider,
all E slow dynamics occur in the (w, sJ ) phase space bounded by the curves dis-
played in Figure 4. We assume that wRK < wL(0) < wF (1), as shown, throughout
the paper.

Finally, we consider the J oscillator. Let CJ
stot

denote the cubic shaped curve
{(vJ , wJ ) : fJ (vJ ,wJ )− gexcstot (vJ − vexc) = 0}. Assume that the left and right
branches can be written as vJ = %J

L(wJ , stot ) and vJ = %J
R(wJ , stot ), respective-

ly, and the left and right knees can be written as wJ = wJ
L(stot ) and wJ = wJ

R(stot ).
We assume that the wJ -nullcline intersects each CJ

stot
along its left branch and this

point of intersection is at wJ = wJ
F (stot ). Note that each si , and therefore stot ,

changes on the fast time scale. Hence, the only slow variable corresponding to the
J oscillator is wJ . If GJ

κ (wJ , stot ) ≡ gJ (%
J
κ (wJ , stot ), stot ) for κ = L,R, then

wJ satisfies the slow equation
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Fig. 4. The region in (w, sJ ) phase space relevant for the E dynamics. The heavy solid line
shows an example trajectory for large KJ , such that jump-up occurs. The dashed line shows
an example for small KJ , such that jump-up does not occur. As indicated in Section 3.3, it
takes time τesc for a solution of (3.2) with initial condition w = wRK to reach wesc.

ẇJ = GJ
κ (wJ , stot ). (3.4)

Remark 7. The reduced systems are very useful in analyzing the behavior of the E

oscillators while they are silent. For example, one important issue will be whether
each E oscillator is able to reach the jump-up curve after the J oscillator jumps
down and releases the E oscillators from inhibition. When the J oscillator jumps
down, sJ = 1. Hence, we need to determine for which values of w0 the solution
of (3.1) beginning at (wi, sJ ) = (w0, 1) reaches the jump-up curve. Note that so-
lutions reach the curve for large KJ and w0 > wL(0); that is, if KJ is sufficiently
large, then the solution of (3.1) is nearly vertical as shown in Figure 4. Thus, for
any KJ sufficiently large, there exists a corresponding wesc < wF (1) such that the
solution of (3.1) beginning at (w0, 1) will reach the jump-up curve for precisely
those w0 ≥ wesc. Note that if KJ is too small, then “escape” is never possible for
any w0. This is because the solution of (3.1) beginning at (w0, 1) will track close
to the curve w = wF (sJ ), as shown in Figure 4.

Numerical examples of clustered solutions in a globally inhibitory network with
indirect inhibition, with two and three clusters in a population of 12 E oscillators,
are shown in Figures 5–6. For these figures, each E and J oscillator was modeled
with Hodgkin-Huxley type equations, with a leak current and a T -type calcium
current; interested readers should see [5], [11], [13] for details. To switch between
two and three clusters, we decreased θinh, increased ε, and decreased KJ (with a
net increase in εKJ ) in (2.7).



524 J. Rubin, D. Terman

Fig. 5. Numerical example of a 2-cluster solution in a globally inhibitory network with 12 E
oscillators. Each subplot shows the evolution of v versus t for a different cluster as the two
clusters alternate firing. This and other numerical figures were generated using XPPAUT,
developed by G.B. Ermentrout.

Figure 7 shows a numerical example of a segment of an E oscillator trajectory
in (w, sJ ) space during the 2-cluster oscillation of Figure 5. The segment shown
starts with sJ ≈ 1 and sJ beginning to decay; the slow variablew begins to decrease
when the trajectory crosses the fixed point curve wF (sJ ). The oscillator fires when
it hits the jump-up curve wL(sJ ); this corresponds to one of the sharp increases in v

seen in Figure 5, but the increase in v does not show up in the projection to (w, sJ )

space. After this, the oscillator is in the active phase, and hence on the right branch
of CsJ , where w continues to decrease. This is why the trajectory in Figure 7 ap-
pears to cross through the jump-up curve. Soon after the firing, inhibition resumes,
and sJ jumps up to near 1 while w continues to decrease since the E oscillator
is active. When the oscillator reaches the right knee wRK , it falls back down to
the silent phase and evolves with sJ = 1 and increasing w until J falls down (not
shown).

Figure 8 shows a numerical example with trajectories from two different E os-
cillator clusters in the 3-cluster oscillation of Figure 6, one of which (dashed line)
fires during the time shown and one of which (dash-dotted line) does not. Along the
parts labeled ‘1’, inhibition decays, while along ‘2’, inhibition resumes. After the
period shown, the oscillators evolve, one in the active phase and one in the silent
phase, with sJ ≈ 1, such that the projections of their trajectories to (w, sJ ) space
cross (not shown).
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Fig. 6. Numerical example of a 3-cluster solution in a globally inhibitory network with 12
E oscillators.

3.3. Statement of the main result

In this subsection, we state our main result concerning the existence and stability of
clustered solutions in a globally inhibitory network with a population ofN excitable
E oscillators. To clarify the presentation and notation, we make some simplifying
assumptions. A more general analysis, with less restrictive assumptions, is given
in Section 3.6. We begin by introducing some additional notation; these denote
the durations of various stages of the oscillation, namely silent and active phase
lengths for the different oscillator populations and the length of time during which
inhibition decays. Theorem 1 will give precise conditions for when a particular
clustered solution exists in terms of these times. We note that these times can in
turn be directly related to parameters in a particular model. This is discussed in
more detail in Remark 9, in the discussion following Corollary 1, and in Section 4.

Let τE and τJ denote the durations of the E and J active phases, respectively.
These actually depend on several factors including where the jumps up and down
take place and which right branch an oscillator lies on; however, we assume here
that both τE and τJ are constant. In Section 3.6, we demonstrate that one can easily
obtain bounds on the sizes of τE and τJ ; these bounds allow us to generalize the
theorem which follows.

Let wesc be as defined in Remark 7 and shown in Figure 4. That is, the solution
of (3.1) beginning at (w0, 1) will reach the jump-up curve if and only if w0 ≥ wesc.
We denote by τS the time it takes for this solution to reach the jump-up curve (e.g.,
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Fig. 7. A single E trajectory in a 2-cluster solution, projected to the phase space of the slow
variable (w) and inhibition (sJ ). The oscillator evolves from the point labeled START as
its inhibition gradually decays; arrowheads show direction of evolution. Once it crosses the
jump-up curve, it is in the active phase.

the duration of the solid line in Figure 4 for large KJ ). Note that τS depends on the
initial position w0; however, we ignore this dependence in this section. Otherwise,
we could state our results in terms of minimum and maximum times τ̄S and τS ; this
is done in Section 3.6 below. Note that wesc → wL(0) and τS → 0 as KJ → ∞.
Let τesc be the time for the solution of (3.2) with initial condition w = wRK to
reach wesc.

We next need an assumption that implies that the J oscillator jumps up if it
receives excitation from a sufficiently large number of E oscillators. It is possible
that just a few E oscillators is not enough to excite the J oscillator to fire. The J

oscillator will be able to jump up upon receiving excitation of strength S only if
the left knee of the cubic CJ

S lies below the point wJ = wJ
F (0). From (2.8), if m E

oscillators are active, then stot = m
N
sA. Therefore, we assume that there exists M

such that if m ≥ M , then

wJ
L(

m

N
sA) < wJ

F (0) (3.5)
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Fig. 8. Projection of E trajectories from two different E clusters in a 3-cluster solution.
Arrowheads show directions of evolution. After a decay of inhibition (‘1’), one oscillator
shown (dashed trajectory) hits the jump-up curve and fires while the other one (dash-dotted
trajectory) does not jump up before inhibition resumes (‘2’).

Finally, we define a time length that is related to the time the J oscillator spends
recovering in the silent phase. Since we are assuming that the J oscillator is active
for longer than the E cluster, the J oscillator jumps down at the right knee of the
stot = 0 cubic; that is, at wJ = wJ

R(0). After this, wJ satisfies (3.4) with κ = L and
stot = 0 as long as the J oscillator is silent. Let τR(M) be the time for the solution
of (3.4) with κ = L and stot = 0, starting at wJ

R(0), to reach wJ
L(

M
N
sA). Together

with the discussion in the previous paragraph, it then follows that if the J oscillator
spends more than time τR in the silent phase, and if at least M E oscillators then
jump up, then the J oscillator will also jump up in response to the E cluster firing.

Recall that in Section 3.2, we assumed that wRK < wL(0) < wF (1) . The first
inequality implies that when an E oscillator jumps down, it does so below the left
knee of C0. The second inequality is motivated by the discussion in Remark 7; it
is needed to guarantee that E oscillators are able to reach the jump up curve once
they are released from inhibition. Under this structural assumption, the following
theorem holds.
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Theorem 1.. Fix N . Assume there exists M such that (3.5) holds for all m ≥ M

and assume that τE < τJ . Let n be the unique positive integer such that both of the
following hold:

i) nτJ − τE + (n − 1) τS > τesc
ii) (n − 1)τJ − τE + (n − 2) τS < τesc

If n ≤ N
M

, τR(M) < τS , and KJ is sufficiently large, then there exists an n-cluster
periodic solution of (2.6), (2.7) such that each E cluster contains at least M oscilla-
tors. This solution is stable, for KJ sufficiently large, if |GL(w, sJ )| < |GR(w, 1)|
for wL(0) < w < wF (1).

Remark 8. The assumption τE < τJ was discussed earlier in Section 3.1. It is need-
ed so that E oscillators are able to recover sufficiently in their silent phase before
the J oscillator jumps down and releases them from inhibition. As discussed in Re-
mark 7, we need to assume that KJ is sufficiently large so that when E oscillators
are released from inhibition, they are capable of reaching the jump-up curve. The
assumption τR < τS is needed so that the J oscillator is able to recover sufficiently
in its silent phase before a cluster of E oscillators jump up.

Remark 9. Parameters appearing in specific globally inhibitory networks of the
form (2.6)-(2.7) affect the times τE, τJ , τR, τS in clearly traceable ways. For ex-
ample, the main effect of strengthening the low-threshold calcium conductance of
thalamocortical relay cells, whose burst behavior can be described by (2.6), is a
lowering of the right knee for E. This lengthens the relay active phase and increases
τE . Other examples of such effects, specifically related to the period of oscillations,
are explored following Corollary 1 in the next subsection.

Remark 10. The stability condition |GL(w, sJ )| < |GR(w, 1)| implies that the rate
at which the slow variable wi evolves just before an E oscillator jumps up is slower
than the rate wi evolves just afterwards. This condition is very similar to that need-
ed in [15] in their discussion of Fast Threshold Modulation (FTM); see Remark
13 in Section 3.5. One expects this condition to be satisfied in general, because
Ei jump up when they reach the curve wL(sJ ), typically close to wF (sJ ), where
GL(wF (sJ ), sJ ) = 0.

Remark 11. Condition (i) maintains the oscillation, while condition (ii) prevents
each cluster from catching up to the one ahead of it.

Remark 12. If n = 1, then condition (i) becomes τJ > τE + τesc. This is exactly
the condition derived in [13] for the existence of a synchronous solution. Here,
condition (ii) is not relevant. For the 2-cluster case, conditions (i), (ii) reduce to
τJ − τE < τesc < 2τJ − τE + τS . In the limit of fast inhibitory decay, τS → 0 and
the condition becomes 1

2 (τE + τesc) < τJ < τE + τesc, which was also derived in
[13].



Clustered firing patterns 529

3.4. Existence of the clustered solution

Here we prove that the globally inhibitory network exhibits an n-cluster solution if
the hypotheses of Theorem 1 are satisfied. We consider n ≥ 3; the case of n = 2
is analogous but simpler and hence we omit details. We first assume that n divides
N and seek a solution for which each of the clusters consists of exactly N/n mem-
bers. In this case the analysis is identical to the consideration of a population of
n E oscillators with each oscillator representing its own cluster.

Suppose the network starts with J active and with each E cluster in the silent
phase, on the left branch of the sJ = 1 nullclineC1. Label the E clusters as 1, . . . , n
with wi < wi+1 for i = 1, . . . , n − 1. Further, assume that cluster 1 is initially
at (wRK, 1), the position it would have if it had just jumped down from the active
phase. In this configuration, cluster n will be the next to fire; a change in the cluster
ordering cannot occur for KJ large relative to the rate of change of w in the silent
phase.

We measure distance between adjacent clusters along the left branch of C1 in
terms of a time metric (e.g. [8], [15], [21]). In this metric, the statement that two
clusters lie a distance T apart at time τ means that the trailing cluster will reach the
current position of the lead cluster after time T . This measurement is meaningful
if we measure at times when all E clusters are in the silent phase but J is active,
such that sJ = 1. Then all E clusters lie on the same trajectory in (w, sJ ) phase
space, given by (3.2). Hence, for large KJ , such that each wi changes little during
the interludes of inhibitory decay, the distance between clusters remains invariant
to leading order as long as they are in the silent phase.

Let τ−
esc = τesc − (τJ − τE), which is positive by condition (ii). We then define

a = τ−
esc/(n − 1) and b = τ−

esc/(n − 2). To prove the existence part of Theorem
1, we assume that the distance between each pair of adjacent clusters is initially
within the interval (a, b). We then prove that this assumption is still satisfied at
the moment of each subsequent E cluster fall-down. Moreover, the clusters take
turns firing, along with the J oscillator (since τR(M) < τS), in such a way that no
two clusters are ever simultaneously active. This yields a fixed point which is the
desired n-cluster periodic solution.

Assume that when τ = 0, the clusters are lined up on the left branch of C1 as
described above; in particular, the distance between adjacent clusters is within the
interval (a, b). One thing we need to prove, which is shown below, is that cluster n
will then be able to reach the jump up curve and fire. If this is the case, then choose
T to be the time when cluster n jumps down again. We must also prove that no
other cluster fired in the interval τ ∈ [0, T ]; moreover, when τ = T , the distance
between each pair of adjacent clusters lies within (a, b).

Suppose, for the moment, that cluster n does indeed jump up and it is the only
cluster to do so for τ ∈ [0, T ]. The distance between the other clusters remains in-
variant, so it is obvious that when τ = T , the distance between cluster i and cluster
i + 1, for i = 1, 2, .., n − 2 lies within (a, b). We must still show that the distance
between cluster n and cluster 1 lies within (a, b). Since w1(0) = wn(T ) = wRK ,
this is equivalent to showing that T ∈ (a, b). From the definitions, cluster n fires
after time τJ − τE + τS and the time it spends in the active phase is τE . Hence,
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T = τJ + τS . Then T ∈ (a, b) follows from the definitions and conditions (i) and
(ii).

We next show that cluster n must, in fact, reach the jump up curve and fire. Since
the time between each adjacent cluster is initially greater than a = τ−

esc/(n − 1),
it follows that the time between wRK = w1(0) and wn is initially greater than
(n − 1)a = τ−

esc = τesc − (τJ − τE). Now, J jumps down when τ = τJ − τE .
Hence, when J jumps down, the time from wRK to wn is greater than τesc, so, from
the definitions, wn > wesc. This is exactly what is needed to guarantee that cluster
n is able to reach the jump-up curve. A similar argument shows that when J jumps
down, E cluster n − 1 has wn−1 < wesc, so cluster n − 1 cannot jump up during
this cycle.

In the preceding proof, we assumed that n divides N ; however, the proof
also holds if this last condition is not satisfied. Since n ≤ N/M we may
assume that each of the n clusters has at least M oscillators. We then proceed
as before. The primary difference in the analysis is that the input that the J

oscillator receives depends on which cluster is active. Hence, the J oscillator
will lie on different right branches in its active phase, depending on which
cluster of E oscillators it receives input from. However, we are currently
assuming that the time the J oscillator spends in its active phase is constant; in
particular, τJ does not depend on the level of input the J oscillator receives.
For this reason, no change in the proof of the theorem is needed. In Section
3.6, we will discuss what modifications to Theorem 1 are needed if τJ is no
longer assumed to be constant. This will clarify how changing the number of
oscillators per cluster affects the analysis.

Corollary 1. When an n-cluster solution exists, it has period Tn given by Tn =
n(τJ + τS)

This follows immediately from the construction of the n-cluster solution. Each os-
cillation can be decomposed into a part of duration τJ when J is active and a part
of duration τS when inhibition decays. Thus, the influence of parameters on period
follows directly from their influence on these durations.

Figures 9–10 show several examples of the effects of parameters on period in
the 3-cluster oscillation of Figure 6. The most obvious of these in Figure 9 is the
dashed curve, which shows the decrease in period with increase in KJ , the inhib-
itory decay rate, in (2.7); this clearly decreases τS . In our simulations, we take
g(vi, wi) = φ(w∞(vi)−wi)/τ(vi) in (2.6). The solid curve in Figure 9 represents
the effect of varying φ. This variation affects τE , which has little effect on period;
however, increasing this rate influences period slightly by moving the Ei farther
along in the silent phase with sJ = 1, such that they can fire with less decay of sJ
and thus smaller τS . The other two curves show the effects of increasing parameters
in (2.6) that raise the curve of knees in the silent phase, thereby slightly increasing
τS and thus slightly increasing the period. One of these parameters is ginh, which
corresponds to the strength of inhibitory coupling to the E (the other is the leak
current conductance for the E). Thus, we see the surprising effect, also seen in
the context of synchronous solutions in [5], [13], that increasing the strength of
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Fig. 9. Relative change in period of a clustered solution as parameters relevant to dynamics
of the E oscillators vary. Parameters were started at fixed initial values and period was mea-
sured. Relative refers to the ratio of the size of change to the initial value. Dashed curve: KJ

in (2.7) was varied. Solid curve: the time constant of g(vi, wi) in (2.6) was varied. Solid-
dotted curve: ginh in (2.6) was varied. Dash-dotted curve: a parameter in f (vi, wi) in (2.6)
was varied, raising the left knee of f = 0.

inhibition has little effect on period, and the effect that it does have is to lengthen
the period of the oscillations.

Figure 10 shows some analogous results for parameters that affect, or might be
expected to affect, times associated with J . The relatively steep curves show the ef-
fects of increasing the parameterφJ in the equationw′

J = φJ (wJ∞(v)−wJ )/τJ (v)

in (2.7) and of raising the cubics for J (by increasing its leak current conductance),
which both decrease τJ and hence the period. The solid curve displays the addi-
tional surprising fact that changes in the strength of excitation to J , namely gexc in
(2.7), have little effect on period. This follows from a different mechanism than the
invariance of period with respect to changes in inhibitory strength, since τJ , unlike
τE , strongly influences period. The insensitivity of period to gexc occurs primarily
because the J active phase is longer than the E active phase, such that J always
returns to the stot = 0 cubic in the active phase before jumping down, no matter
how excited J is while the E are active.

The role of parameters in determining the period of clustered oscillations can
also be seen directly via the approach of Section 4. This approach leads to the period
formula for a 2-cluster solution in Corollary 2, the utility of which is explored in
the discussion which follows its statement in Section 4.1 below.
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Fig. 10. Relative change in period of a clustered solution as parameters relevant to J dy-
namics vary. Dashed curve: the time constant of gJ (vJ , wJ ) in (2.7) was varied. Solid curve:
gexc in (2.7) was varied. Dash-dotted curve: a parameter in fJ (vJ , wJ ) in (2.7) was varied.

3.5. Stability of clustered solutions

There are two issues related to the stability of the clustered solutions. The analysis
in the proof of existence in the previous subsection shows that oscillators within
different clusters remain separated from each other; in particular, they can never
lie in the active phase at the same time. We must also prove that if the oscillators
within a cluster are perturbed slightly from their trajectories in phase space, then
they are compressed back towards each other under the subsequent flow.

We now consider initial conditions in which the positions of the oscillators
within each cluster are close, but not necessarily equal, to each other. We also take
the inhibition to be indirect, since the solution cannot be stable if the synapses are
direct (see [12], [13]). The instability with direct synapses follows because if two E

oscillators E1, E2 start from slightly different positions in the silent phase and E1
jumps up, then J may immediately jump up. Direct inhibition will then instantly
(with respect to the slow time scale) make sJ = 1. Thus, E2 will instantly jump
back to the left branch of C1 away from its firing threshold, breaking up the clus-
ter and hence destabilizing the clustered solution. Indirect synapses, on the other
hand, induce a lag between the firing of one E oscillator and the onset of inhibition,
providing a window of opportunity for other E oscillators to fire.

To establish stability within clusters with indirect inhibition requires showing
that oscillators that start close together in phase space are brought closer together as
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they evolve. This can be understood by again measuring distance in a time metric,
or more specifically a time metric corresponding to the w-coordinate, call it ρw. We
can define the distance between two oscillators in the silent phase in the metric ρw

as a function of inhibition sJ . This is done, for fixed sJ , by letting the time measure-
ment between the oscillators equal the time for the oscillator with smaller w value
to evolve to the position of the other oscillator under the first equation of (3.1). In
a similar manner, we define the metric ρw while the oscillators are in the active
phase. With this definition, under the hypothesis that |GL(w, sJ )| < |GR(w, 1)|
for wL(0) < w < wF (1) (given in Theorem 1), it is easy to show that ρw decreases
when oscillators in the same cluster jump up. That is, after the oscillators jump
up, the faster flow that they experience causes the same difference between their w
coordinates to correspond to a shorter time lag between them. There is no change
in ρw over the jump down since, for a small perturbation from the state of complete
synchrony within the cluster, all oscillators in a cluster jump down from the right
knee wRK . Thus, the time by which one oscillator lags another in the active phase
remains the time by which it lags the other just after they reach the silent phase.

The metric ρw is invariant for most of the time that the oscillators are actually in
the silent and active phases, since they evolve under the first equation of (3.1) with
the same sJ in most of the silent phase and under (3.3) in the active phase. The only
exception occurs during the interludes in the silent phase when sJ decreases from
1; for KJ large, these affect ρw only negligibly. Thus, the hypotheses of Theorem
1 yield stability within clusters.

Remark 13. The compression mechanisms responsible for the stability of the syn-
chronous solution [13] and the stability of oscillators within a cluster for a clustered
solution are very similar. In fact, this compression mechanism is also similar to the
compression mechanism in Fast Threshold Modulation [8], [15], [21]. In each of
these scenarios, the oscillators undergo fast jumps between slow phase spaces and
the slow variable, w, evolves slower before the jump up than after. This produces
compression in a time metric. What distinguishes these situations is the mechanism
that allows them to jump up. In FTM, one oscillator reaches the jump-up point at
a knee, so that it can escape from the silent phase. This, in turn, lowers the other
oscillators’ nullclines so that they are forced to jump up. For the synchronous so-
lution in globally inhibitory networks, all the E oscillators jump up after J falls
down and releases them from inhibition. In a clustered solution, the oscillators in
the silent phase cannot fire until another cluster jumps down. The J must then still
jump down before a new E cluster is released from inhibition.

Remark 14. In terms of Euclidean distance, there is exponential compression of
trajectories near wF (1); if τJ is sufficiently long, such that E oscillators spend a
long time in the silent phase, then this easily dominates any possible expansion
over the remainder of the oscillators’ trajectories. Of course, if τJ were extremely
long, then synchrony of the E oscillators would result [13].

3.6. Less restrictive assumptions; 2-cluster case

In the preceding subsections, we simplified the analysis by assuming that the time
durations τE, τJ , and τS are constant. This amounts to assuming that eachE cluster
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active phase has the same duration, each J active phase has the same duration, and
the time from J jump-down to the next E firing is constant; that is, we restricted the
class of clustered solutions under consideration. Here we demonstrate how one can
generalize Theorem 1 if these assumptions are no longer satisfied. We first obtain
upper and lower bounds for each of the time durations and then derive conditions
similar to those in Theorem 1 for when a particular clustered solution exists. Here,
we only consider the case of a solution consisting of two equal sized clusters of
E oscillators in detail.

We obtain bounds on the active phase of each E oscillator as follows. Each
E oscillator jumps up at some value of w that satisfies wL(0) < w < wF (1) and
jumps down at w = wRK . Let τE be the time for the solution of (3.3) beginning
at wL(0) to reach wRK and let τ̄E be the time for the solution of (3.3) beginning at
wF (1) to reach wRK . Then the length of each E oscillator’s active phase is bounded
from below by τE and bounded from above by τ̄E .

In a similar way we obtain a bound for the J oscillator’s active phase. The
J oscillator jumps up at some wJ that satisfies wJ

L(
sA
2 ) < wJ < wJ

F (0) and jumps
down at wJ = wJ

R(0). Let τJ be the time for the solution of (3.4), beginning at
wJ

L(
sA
2 ) with stot = sA/2 and switching to stot = 0 after time τ̄E , to reach wJ

R(0)
and let τ̄J be the time for the solution of (3.4), beginning at wJ

F (0) with stot = sA/2
and switching to stot = 0 after time τE , to reach wJ

R(0). Then the length of the
J oscillator’s active phase is bounded by τJ and τ̄J .

We next obtain a bound for τS ; this is the time required for the synapse to recover
sufficiently after the J oscillator jumps down before an E oscillator can reach the
jump up curve and fire. Let wesc and τesc be as before. Recall that an E oscillator
can fire if and only if its w coordinate lies in the interval [wesc, wF (1)) when the
J oscillator jumps down. Let τ̄S be the time for the solution of (3.1) beginning
at (wesc, 1) to reach the jump up curve and let τS be the time for the solution of
(3.1) beginning at (wF (1), 1) to reach the jump up curve. Since wesc < wF (1), it
follows that τS < τS < τ̄S .

As in the preceding section we assume that wRK < wL(0) < wF (1). We need
to also assume that if one cluster of E cells fire, then the J oscillator also fires. If
there are just two clusters, the total input the J oscillator receives is stot = sA/2.
Therefore, we assume that wJ

L(sA/2) < wJ
F (0). Using the notation of the preceding

section, this implies that we can take M = N/2. We let τR be the recovery time of
J in the silent phase, as in the preceding section with this choice of M .

We can now state the following theorem. This gives precise conditions for when
there exists a 2-clustered solution.

Theorem 2. If KJ is sufficiently large then a 2-cluster singular periodic solution
exists, if each of the following three conditions are satisfied:

(C1) τ̄E < τJ

(C2) τ̄J − τE < τesc < τJ

(C3) τR < τS

This solution is stable, for KJ sufficiently large, if |GL(w, sJ )| < |GR(w, 1)| for
wL(0) < w < wF (1).
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This theorem is proved just as the previous one so we do not give the details.
The condition (C1) is needed to ensure that the E active phase is shorter than the
J active phase. The first inequality in (C2) ensures that the trailing E cluster flows
to have its w > wesc while J is active. The trailing cluster will then be able to
reach the jump-up curve and fire once inhibition decays sufficiently. The second
inequality in (C2) ensures that after the leading E cluster jumps down, its w value
does not reach wesc while J is still active. Hence, this leading cluster will not be
able to reach the jump-up curve and fire together with the trailing cluster. Finally,
(C3) is needed for the same reason as in Theorem 1; it ensures that the J oscillator
is sufficiently recovered when each E cluster jumps up. Hence, the J oscillator can
jump up in response to the firing E cluster, as needed to sustain the oscillation.

4. A more explicit map approach

In Section 3, we derived sufficient conditions for existence and stability of clustered
solutions, stated in terms of times for various phases in an oscillatory cycle. In this
section, as earlier, we consider clustered states as fixed points of maps; however,
we now make certain simplifications which allow us to write down the maps more
explicitly. This leads to fixed point equations for which we can show the existence
of solutions, together with precise stability conditions and a period formula. These
are given in terms of parameters in the equations and positions of certain key struc-
tures in phase space, such as the positions of left and right knees. These conditions
are particularly useful in that they explicitly reveal the roles of these parameters
and structures in forming clustered solutions. We begin with consideration of a
mutually coupled network, since the conditions can be stated most cleanly in that
setting. Globally inhibitory networks are considered in Section 4.2.

4.1. 2-cluster solutions in a mutually coupled network

To begin, we consider the case of a population of 2 mutually coupled oscillators
with direct inhibitory coupling. We focus on a periodic solution in which the os-
cillators fire alternately, with a relative phase shift given by half the period of the
oscillation, as shown in Figure 11. This was generated using a model with Hodg-
kin-Huxley type equations, with a leak and T -type calcium current for each cell,
as used in the globally inhibitory figures [5], [11], [13].

We refer to this solution as an antisynchronous state. Set stot = s1 + s2 where
each si satisfies (2.4). Note that stot = 1/2 while one of the oscillators is active.
The active oscillator will jump down at wRK , the position of the right knee of the
stot = 1/2 cubic. As before (e.g. Figure 4), let wF (stot ) denote the curve of critical
points and let wL(stot ) denote the jump-up curve in slow (w, stot ) phase space. We
let w∗ = wF (1/2).

We assume thatg(v,w) = φS(w
∗−w) in the silent phase andg(v,w) = −φAw

in the active phase. Here, φS and φA are constants. The form of g in the silent
phase derives from the fact that v is approximately constant on the left branch of
the stot = 1/2 cubic in the models of interest, which typically have g(v,w) =
(w∞(v) − w)/τ(v) for a sigmoid, monotone decreasing function w∞(v). Further,
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Fig. 11. Numerical example of an antisynchronous 2-cluster solution for a mutually coupled
network.

in an excitable regime, the intersection of w∞(v) with each cubic v-nullcline yields
wF (stot ). The form of g in the active phase is also based on these models, since
w∞(v) ≈ 0 and τ(v) ≈ τA, a constant, in the active phase.

Under these assumptions, plus the assumption that K is sufficiently large, we
next derive a map which has the antisynchronous solution as a fixed point. The as-
sumption of sufficiently large K allows us to approximate g(v,w) by φS(w

∗ −w)

even for stot < 1/2 in the silent phase and to ignore the fact that trajectories must
cross the curve wF (stot ) to reach wL(stot ).

Consider the situation in which oscillator 1 has just fallen down from the active
phase, so that stot = 1/2 and w1 = wRK , and oscillator 2 has initial coordinates
(w0, 1/2) in the silent phase for some fixed constant w0. Due to the nature of the
coupling, s1, s2 subsequently decay via ṡ = −Ks. Let τs denote the time from
stot = 1/2 until oscillator 2 reaches the curve of knees, say at stot = sk < 1/2;
then

τs = 1

K
ln

(
1

2sk

)
.

Let τa denote the amount of time that oscillator 2 is active after it jumps up. This
is determined by the evolution of ẇ = −φAw with w(0) = wL(sk) such that
w(τa) = wRK < wL(sK), so

τa = 1

φA

ln

(
wL(sk)

wRK

)
.
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A 1-dimensional map 6 can be defined by inputing the initial w-value of os-
cillator 2, namely w0, and outputting the w-value of oscillator 1 when oscillator
2 falls down. Then for sufficiently large K , 6(w0) is approximately given by the
evolution of ẇ = φS(w

∗ − w),w(0) = wRK for a time τs + τa ; that is,

6(w0) = w∗ + (wRK − w∗)e−φS(τs+τa)

= w∗ + (wRK − w∗)(2sk)φS/K
(

wRK

wL(sk)

)φS/φA

.
(4.1)

Note that sk is defined implicitly as follows. The evolution of oscillator 2 in the
silent phase for sufficiently large K is approximated by the initial value problem

ẇ = φS(w
∗ − w), w(0) = w0,

ṡ = −Ks, s(0) = 1/2
(4.2)

until τ = τs , at which time s = sk . The time τs is distinguished as the first time
such that w(τ) = wL(s(τ )). From (4.2) we thus obtain

w∗ + (w0 − w∗)
(

1

2sk

)φS/K

= wL(sk), (4.3)

which defines sk .
With this definition, we can conclude the existence of a fixed point of6, namely

the desired symmetric antisynchronous solution, by using the fact that (4.1) yields
the fixed point equation

w∗ + (wRK − w∗)(2sk)φS/K

(
wRK

wL(sk)

)φS/φA

= w0 (4.4)

or

(2sk)
φS/K

(
wRK

wL(sk)

)φS/φA

= w0 − w∗

wRK − w∗ , (4.5)

where sk = sk(w0) from (4.3). At w0 = wRK , clearly w0−w∗
wRK−w∗ = 1 > (2sk)φS/K(

wRK

wL(sk)

)φS/φA

, since sk < 1/2 and wRK < wL(sk). Thus, (4.5) surely holds for

some w∗
0 ∈ (wRK,w∗) if

(2sk(w
∗))φS/K

(
wRK

wL(sk(w∗))

)φS/φA

> 0. (4.6)

Since sk(w
∗) = 1/2 and wL(1/2) = w∗, the left hand side of (4.6) is exactly

(wRK/w∗)φS/φA , a positive number. This gives us the existence of a fixed point.

Remark 15. In the above existence proof, we implicitly assumed a trajectory of
(4.2) with w0 = wRK would reach wL(s). The same type of argument works oth-
erwise as well. In that case, there exists some minimal w0 value, wesc, for which
jump-up can occur, and at w0 = wesc, the right hand side of (4.5) exceeds the left
hand side.
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Proposition 1. For fixed parameter values, with the simplified w-dynamics de-
scribed above, the singular antisynchronous solution that forms a fixed point of 6
is stable if and only if

(2sk)
φS/K < w′

L(sk) + 2(w∗ − w∗
0)

(
φS

Ksk

)
(2sk)

φS/K (4.7)

where (wL(sk), sk) is the point on wL(stot ) from which each oscillator jumps up.

Remark 16. In application, one might know the values of εK, εφS rather thanK,φS .
Since K and φS always appear as a ratio in 4.7, they can be replaced by εK and
εφS , respectively.

Proof. A necessary and sufficient condition for the stability of a fixed point w∗
0 is

|6′(w∗
0)| < 1. A simple differentiation of (4.1) yields

6′(w0) =
(wRK − w∗)(2sk)φS/K

(
wRK

wL(sk)

)φS/φA
[

φS

Ksk
− φS

φA

w′
L(sk)

wL(sk)

]
∂sk
∂w0

,
(4.8)

where implicit differentiation of (4.3) yields

∂sk

∂w0
= (2sk)φS/K

w′
L(sk) + (w∗ − w0)(2sk)φS/K φS

Ksk

, (4.9)

a positive quantity.
Let w∗

0 denote a fixed point of 6 which constitutes an antisynchronous solution.
Observe that

6′(w∗
0) = A

−A + B
+ C > −1 + C > −1, (4.10)

where A = (w∗
0 − w∗)( φS

Ksk
)(2sk)φS/K < 0, B = w′

L(sk) > 0, and C = (w∗ −
w∗

0)(
φS

φA
)(

w′
L(sk)

wL(sk)
)
∂sk
∂w0

> 0. Given the equation (4.9), we can also rewrite (4.10) as

6′(w∗
0) = A + D

−A + B

for A,B as above and D = (2sk)φS/K . Thus, if (4.7) holds, then 6′(w∗
0) < 1, so

the fixed point w∗
0 is stable. This completes the proof of Proposition 1.

Remark 17. Equation (4.8) matches the geometry of the silent phase slow dynam-
ics: when w0 increases, the jump-up curve wL(stot ) is reached sooner, at a larger
value of sk . Thus geometrically, (4.8) encodes the competition between the fact
that an increase in w0 shortens τs , tending to diminish 6(w0), but also increases
sk , hence increasing the amount of time oscillator 2 spends in the active phase and
tending to increase 6(w0).

Remark 18. In the limit of large K , condition (4.7) reduces to the inequality 1 <

w′
L(sk).
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Remark 19. Given that 6′(w∗
0) > −1 from (4.10), we can refer to (4.8) to observe

that 6′(w∗
0) ∈ (−1, 0) if the simple condition Ksk <

wL(sk)φA

w′
L(sk)

holds. This is of

interest because it is analogous to the stability condition for Case II in [19]. If it
holds for all sk , then 6 is monotone decreasing and has a unique fixed point, which
is stable. Given that K is large, however, this condition may be difficult to satisfy.

Remark 20. We can obtain a different global stability condition by deriving a criteri-
on for 6 to be uniformly contracting on (wRK,w∗). This entails finding a condition
under which |6(w0)−6(w′

0)| < |w0 −w′
0| for any two initial conditions w0, w

′
0

on {stot = 1/2}; see [1], [15]. This yields the more complicated condition that

|(wL(sk) − w∗)(sk)φS/K − (wL(s
′
k) − w∗)(s′

k)
φS/K | <∣∣∣∣(wRK − w∗)(wRK)φS/φA

(
(sk)

φS/K

wL(sk)
φS/φA

− (s′
k)

φS/K

wL(s
′
k)

φS/φA

)∣∣∣∣
for all sk, s′

k ∈ (0, 1/2).

Corollary 2. The period T of an antisynchronous solution is

T = ln

[(
1

2sk

)2/K (
wL(sk)
wRK

)2/φA
]

= ln

[(
wL(sk)−w∗
w∗

0−w∗
)2/φS

(
wL(sk)
wRK

)2/φA
]

= ln

[(
wRK−w∗
w∗

0−w∗
)2/φS

]
,

where sk = sk(w
∗
0)

This follows from the definition of 6(w0), which implies that the period is
given by 2(τs + τa), with the equalities coming from (4.3) and (4.5). It provides
more explicit information about the influence of parameters on period than the
expression given in Corollary 1 in Section 3.4. In Figure 12, we demonstrate this
result by comparing the results of the first formula given for period T in Corollary
2 (solid line) with periods derived from numerical simulations (dashed line) of a
mutually coupled network of the form (2.3) with direct inhibition (2.4). To employ
the formula, we substituted the approximation

sk(w0) ≈ 1/2 − λ(wL(1/2) − w0), (4.11)

where λ denotes the slope of the approximately linear jump-up curve wL(stot ), into
the fixed point equation (4.4) and solved numerically for w0 as a function of K

with φS, φA fixed. Then we used the resulting values w0(K) to solve for sk from
(4.11), which we plugged in to compute T as a function of K from the formula;
we also set wL(sk) = w0 in the formula. This latter substitution can be expected to
hold for K large since w should not change much as inhibition decays. As it turns
out, this substitution is quite accurate for more moderate K , since the increase in w
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Fig. 12. Simulated (dashed) and approximate predicted (solid) period of antisynchronous
oscillation, plotted versus decay rate of inhibition.

before wF (stot ) is crossed roughly cancels the decrease in w after the crossing. The
error in the formula actually increases with K due to drift in w just before wL(stot )

is reached; this occurs because as sk shrinks, so does Ksk , slowing the decay of
inhibition relative to the rate of change of w.

This analysis immediately generalizes to networks of arbitrary size: if there are
N oscillators, then (4.7) gives a condition for stability between clusters for an anti-
synchronous solution of 2 clusters of N/2 oscillators each. Conditions for stability
within clusters for a larger network follow from the analysis of fully synchronized
oscillators in [19] and in Appendix B of [13], taking into account that in a mutually
coupled network, oscillators receive less inhibition in a clustered solution than in
a synchronized one, since fewer oscillators fire in each oscillation.

4.2. Globally inhibitory networks and other extensions

The next issue to address is how the map 6 changes relative to the above for
a solution with antisynchronous E clusters, and a synchronized J population, in
a globally inhibitory network. Under a few basic assumptions, we find that such a
solution exists and is stable.

We can arrange the dynamics of the J oscillators such that they fire and jump
down following the firing and the falling down, respectively, of the active E clus-
ter. The J then jump up to an excited level and jump down after the excitation has
disappeared. Assume that both E clusters spend the same length of time, τa , in
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the active phase after firing. If there are the same number of E oscillators in each
cluster or the J dynamics in the active phase does not depend on the number of E
oscillators exciting the J , then all J active phases will have a constant duration, as
we assumed for much of Section 3. In this case, the total time from the activation
of an E cluster to the moment when the resultant (indirect) inhibition felt by all of
the E oscillators begins to diminish (via ṡJ = −KsJ ) will be constant, call it τact .

Suppose that a solution consisting of two antisynchronous E clusters exists for
large K and that one of the clusters, say E1, jumps up to the active phase from the
point (wL(sk), sk). The time τa that E1 subsequently spends in the active phase
may be computed from the evolution of ẇ = −φAw with the boundary values
w(0) = wL(sk) and w(τa) = wRK , which yields

τa = 1

φA

ln(
wL(sk)

wRK

).

The additional time until ṡJ = −KsJ kicks in is then τinh = τact − τa . With the
same definitions as earlier (but w∗ = wF (1)), 6(w0) is given by the evolution of
ẇ = φS(w

∗ − w), with w(0) = wRK , for time τinh + τs + τa = τact + τs . This
yields

6(w0) = w∗ + (wRK − w∗)e−φSτact (2sk)
φS/K.

Here, sk is defined by

wL(sk) = w∗ + (w0 − w∗)e−φSτinh(2sk)
φS/K. (4.12)

This gives a fixed point equation which can be written as

(w0 − w∗)2 = (wRK − w∗)(wL(sk) − w∗)
(

wRK

wL(sk)

)φS/φA

. (4.12)

As in the previous subsection, we can see that this has a solution by observing that
at w0 = w∗, the left hand side of (4.12) is less than the right hand side, while at
w0 = wRK (or w0 = wesc as in Remark 15) the opposite holds. This last fact
follows since

wRK − w∗

wL(sk) − w∗ > 1 >

(
wRK

wL(sk)

)φS/φA

.

Likewise,

6′(w0) = (wRK − w∗)e−φSτact (2sk)
φS/K

(
φS

Ksk

)
∂sk

∂w0

where ∂sk
∂w0

depends on w0 and can be obtained from (4.12). In fact, using the nota-
tion in (4.10), 6′(w∗

0) = A/(−A + B) at an arbitrary fixed point w∗
0 , so all fixed

points are stable.

Remark 21. Above, we have assumed a constant length of active phase for each fir-
ing E cluster and a corresponding fixed length of active phase for the J population.
The analysis becomes more complicated if we allow the duration of the E and J

active phases to depend on sk, w0, and the number of E oscillators per cluster.
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Remark 22. We have also extended the computation of the map 6(w0) and its
derivative to a mutually coupled network with indirect coupling and to networks
having an additional variable that evolves on the slow time scale in the silent phase
(and on the fast time scale in the silent phase). Although these changes require ad-
ditional notation and calculations, there is no technical obstacle to these or similar
extensions. We leave the details to the interested reader.

5. Discussion

In this paper, we prove that certain conditions imply the existence and stability
of clustered solutions for mutually coupled and globally inhibitory networks of
oscillators with synaptic coupling. The models that we analyze and the assump-
tions that we make about them are motivated by biological experiments on certain
synaptically coupled neuronal networks, exemplified by those involved in thalamic
sleep rhythms. In the context of sleep rhythms, clustered solutions correspond to
what are known as spindling states, in which clusters of excitatory thalamocortical
relay cells take turns firing along with a population of inhibitory thalamic reticular
cells [6], [16], [17]. Since thalamic reticular cells are known to have longer active
states than relay cells [4], we assume that the J oscillators in our globally inhibitory
networks are active longer than the E. There are also many examples of mutual
inhibitory connections in the nervous system; in fact, since thalamic reticular cells
inhibit each other, our mutually inhibitory network can be taken as a reduced model
for reticular interactions during periods of quiescence of relay cells [5].

The results given in Section 3 provide existence and stability conditions that
are stated in terms of a balance of time lengths. These times are associated with
intrinsic properties of the oscillators and their coupling and arise naturally in our
geometric analysis. Many model parameters have clear relations to the time lengths
of interest. For example, changes in the inhibitory decay rate directly effect changes
in the decay time τS , while parameters that alter the speed with which oscillators
evolve in the active phase directly influence the active phase durations τE and τJ .
Many of the results that we present were based on simplifying assumptions made
for ease of notation and clarity. There is no technical obstacle to removing these as
desired, as demonstrated in Section 3.6.

In Section 4, we derive a map with a fixed point that is an antisynchronous solu-
tion, state a stability condition for any such solution, and provide a formula for the
period of antisynchronous oscillations. This requires additional assumptions on the
models, but in return we obtain results given directly in terms of model parameters
and phase space structures that are directly linked to model parameters. The results
in both sections can be used to generate clustered states numerically, to compute
information about these states, or to predict how changes in parameters will affect
the stable states of a system. The explicit results in Section 4 may be especially
useful in that they offer insight into the effects of relatively subtle changes in pa-
rameters, such as changes in parameters in f (v,w) that affect the position or shape
of the cubic v-nullclines.

Our results show that the combination of a short J active phase (relative to that
needed for a stable synchronous solution) and a relatively fast decay of inhibition
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promotes stable clustered solutions in globally inhibitory networks. To sustain any
oscillation involving a synchronized J population in such networks, it is necessary
to have a sufficiently fast J recovery so that the J are ready to fire in response to
the excitation they receive from E firing; this is especially true when the decay of
inhibition that releases the E is fast. While the rate of evolution of the E in the
silent phase also affects the number of clusters that can coexist, this rate does not
affect the period of a clustered solution of a fixed type; a period consists entirely
of alternating J active phases and phases of decay of inhibition.

In some sleep states, it may be that a slowly decaying form of inhibition is
the dominant form of coupling to the relevant E population (the relay cells) [17],
[18]. If we gradually decrease the size of KJ to model this slower decay, then the
E oscillators can experience larger and larger changes in their w-values as inhibi-
tion decays. Such effects may result in suppression of particular clusters or other
more exotic solutions. Alternately, a global synchronization mechanism may arise

Fig. 13. A global synchronization mechanism. Top: voltage versus time for two different E
clusters in a network that begins in the 3-cluster state. The label START marks the start of
the time interval on which the curves in the bottom figure are defined. Bottom: projection of
the trajectories of these clusters to (w, sJ ) space. After the dashed cluster fires (not shown),
it catches up to the solid cluster.
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in which non-firing oscillators experience great declines in w as inhibition decays,
such that their w values are still near wRK when a firing group jumps down.

Figure 13 displays a related phenomenon, in which a non-firing cluster (solid
line) experiences a sizeable decrease in w during a period of inhibitory decay, such
that another cluster (dashed line) catches up to it; this was generated with the same
equations and parameters as Figures 6 and 8-10 but with smaller KJ . In the con-
text of the n-cluster solutions considered in this paper, a comparison of the flow
of (3.1) to that of (3.2) proves that slow decay of inhibition enhances compression
within clusters in the silent phase. At the same time, slow decay of inhibition may
pull separate clusters closer together, as in Figure 13, having an overall effect of
destabilizing a clustered state in favor of a synchronous state or a state with fewer
clusters. The full treatment of these effects would require combining the analysis
in this paper with that in [13] and [19].
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