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Abstract. Oscillators in networks may display a variety of activity patterns. This paper
presents a geometric singular perturbation analysis of clustering, or alternate firing of syn-
chronized subgroups, among synaptically coupled oscill ators. We consider oscillatorsin two
types of networks: mutually coupled, with all-to-all inhibitory connections, and globally
inhibitory, with one excitatory and one inhibitory population of oscillators, each of arbitrary
size. Our analysis yields existence and stability conditions for clustered states, along with
formulasfor the periods of such firing patterns. By using two different approaches, we derive
complementary conditions, the first set stated in terms of time lengths determined by intrin-
sic and synaptic properties of the oscillators and their coupling and the second set stated in
terms of model parameters and phase space structures directly linked to parameters. These
results suggest how biological components may interact to produce the spindle sleep rhythm
in thalamocortical networks.

1. Introduction

Oscillatory behavior can take a variety of forms [10]. In one type of oscillation,
exemplified by relaxation oscillations, some property of an object variesrepeatedly
between two distinct states. In such activity, the amount of time spent in each state
greatly exceeds the time spent in the transitions between states. For example, the
generation of action potentials by certain types of neurons fits into this category
of behaviors. Using neuroscience terminology, we can classify the two prolonged
states of such oscillators as an active phase and a silent phase, and we can refer to
the rapid transition from the silent phase to the active phase as firing.

When objects capabl e of assuming two such distinct statesare coupled, the state
of one object influences the other objectsin the resulting network. One effect seen
within networks of neurons, for example, isthat cellsthat are normally in the silent
phase can be pulled into the active phase, or induced to fire, by the firing of other
cells to which they are coupled (for example, see [11]). Thus, coupling between
such oscillators can lead to many interesting patterns of activity.

One such activity seenin anetwork of coupled oscillators of the type discussed
aboveisthe formation of clusters, such that the behaviors of oscillatorsin asingle
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cluster are synchronized while oscillators from distinct clusters are never smul-
taneoudly active. One reason that such patterns are of interest is that they arise in
certain neurons in the thalamus, called thalamocortical relay cells, in drowsiness
and shallow non-REM sleep [6], [16], [17]. In this paper, for two general classes of
networks of relaxation oscillators motivated by thalamocortical neurons, we prove
that certain conditionsimply the existence and stability of clustered solutions. This
entails consideration of two issues, namely what prevents oscillators in separate
clusters from firing together and what maintains the synchrony of oscillators be-
longing to the same cluster. Note that the latter issue may become especially subtle
when a clustered solution of a network is stable but the completely synchronous
state is unstable.

The remainder of the paper isorganized asfollows. In Section 2, we present the
models, for individual oscillatorsand for the dynamic coupling between oscillators,
to be considered, along with some relevant notation. The models of coupling that
we include are motivated by the properties of chemical synapses between neurons
[7]; hence, werefer to the connections between oscill ators as synaptic coupling. We
introduce two different network architectures, namely amutually coupled network
and a globally inhibitory network. A mutually coupled network consists of one
population of oscillators, coupled in an all-to-all manner with inhibitory synaptic
coupling. Such a network has been considered in many past works; see [11] for
areview of some recent results in the context of neuronal networks. A globally
inhibitory network consists of two distinct populations of oscillators; one popula-
tion excites the other, which in turn inhibits the first [11], [13]. It was shown in
[13] that quite different pattern formation mechanisms arise in these two different
architectures.

Section 2 aso includes a brief introduction to some singular perturbation ter-
minology that is useful for our analysis, including the notion of asingular solution.
The idea of this geometrical dynamical systems approach is to construct singular
solutions by dissecting a system of differential equationsinto subsystems evolving
on disparate time scales. Actual solutions exist near these singular solutions under
certain general hypotheses (see[9]). In the model swe consider, the rel evant tempo-
ral disparity existsbetween theslow timescal ethat characterizesthetimeoscillators
spend in the active and silent phases and the fast time scale that characterizestheir
transitions between these phases. Geometric singular perturbation methods have
been used previoudly to study the population rhythms of neuronal networks (for
example, see [11], [13], [14], [15], [19], [20], [21]). To our knowledge, howev-
er, these techniques have generally not been applied to analyze the formation of
clustered activity patternsin mutually coupled networks of oscillators with inhibi-
tory synaptic coupling or in networks with multiple oscillator populations, such as
globally inhibitory networks.

Our main focusin thiswork ison these globally inhibitory networks, sincethey
model the thalamocortical architecture. In Section 3.1, we describe an example of a
singular solution consisting of two clustersfor such networks. Section 3.2 contains
additional notation useful for analyzing clustered solutions, and Sections 3.3-3.5
present the statement and proof of an existence and stability result for acertain class
of clustered solutions, along with aformulafor the period of an n-cluster solution.
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Section 3.6 gives results on 2-cluster solutions of a more general type, under less
restrictive assumptions than the earlier sections.

Finally, in Section 4, we present a different approach to proving existence and
stability, and to computing period, for antisynchronous 2-cluster solutions, which
are characterized by alternation in firing of the two clusters. This approach is more
directly computational, leading to qualitatively different types of existence and
stability conditions than those given by the approach of the earlier sections. We
demonstrate this approach first for mutually coupled networks, where the resulting
conditions are the cleanest, and then discuss globally inhibitory networks. Since
the existence and stability conditions in Section 3 are sufficient but not necessary,
the analysis of Section 4 complements that of the earlier sections. Moreover, it
yields more direct statements about the quantitative effects of certain parameterson
the stability and period of clustered states. We conclude with a discussion in
Section 5.

2. Models

This section contains the models that we consider in subsequent sections. We start
by presenting the equations for individual oscillators. Then, we introduce the dy-
namicsof the coupling between oscillatorsand thetwo arrangements of connections
that we will consider. We will distinguish between severa types of coupling; the
properties of the coupling included can play an important role in pattern formation
within a network. Much of this discussion follows that in Section 2 of [13].

2.1. Sngle oscillators

We model the individual elements of our networks as relaxation oscillators, each
governed by the system

vV = f(v, w)
w = egv, w) 21
where’ = %, v e R, and w € R"; for simplicity, wetaken = 1in our analysis

(see[13] for an examplewith larger n). Here, € isassumed to be asmall parameter;
hence, w represents a slowly evolving quantity. We assume that the v-nullcline,
f (v, w) = 0, defines a cubic-shaped curve, with left, middle, and right branches,
in the (v, w) phase plane. We also assume f > 0 (f < 0) above (below) this
curve. Further, the w-nullcline, g(v, w) = 0, is a monotone decreasing curve that
intersects f = O at aunique point pg, withg > 0(g < 0) below (above) thiscurve.
See Figure 1.

Definition 1. An oscillator is excitableif pg lies on the left branch of f = 0. An
oscillator is oscillatory if pg lies on the middle branch of f = 0.

Remark 1. For an excitable oscillator, pg is a stable rest point. The term excitable
applies because the oscillator can be induced to jump to the vicinity of the right
branch of f = 0, or fire, if sufficiently excited by some input. In the oscillatory
case, (2.1) givesriseto aperiodic solution for all € sufficiently small, as shown in
Figure 1.
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Fig. 1. Nullclines for (2.1) in the oscillatory case. The dark line shows a singular periodic
solution for this system.
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In singular perturbation terminology, system (2.1) represents evolution with
respect to the fast time ¢. Setting e = 0in (2.1) yields the fast subsystem

vV = f(v, w)

w =0

for which w is a parameter. Rescaling time by setting t = ¢r provides the slow
evolution corresponding to (2.1), namely

€v = f(v, w)
W = g(v, w) (2.2

where' = £ Setting e = 0in (2.2) yields the slow subsystem

0= f(v.w)
b = g(v(w), w)

whichisvalid aslong as f (v, w) can be solved for v = v(w).

For neuronal models, the v-nullcline f = 0 describes athree-branched surface,
with adjacent branchesjoined by knees(or curvesof kneesforn > 1)andv = v; (w)
on theith branch. Then, the fast subsystem governs jumps between branches of this
surface, while the slow subsystem governs the flow on each branch, with v slaved
to w. A fast jJump occurs when a trajectory of the slow subsystem reaches a curve
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of knees. The generation of an action potential by a neuron, for example, corre-
spondsto afast jump from the low-v branch (the silent phase) to the high-v branch
(the active phase). We can thus construct a singular solution in the e = 0 limit,
consisting of solutions to the slow subsystem joined by jumps between branches
given by solutions to the fast subsystem; the analysisin this work deals with such
singular solutions, and we refer the reader to [9] for extensions to small positive €.

2.2. Coupling and architectures

We consider networkswith dynamic connectionsbetween oscillators. Thedynamics
of the connections are motivated by modelsfor synaptic coupling between neurons
[2], [5], [22]. Such connections affect the v-evolution of the cells receiving inputs.
We consider two different architectures, or arrangements of connections between
oscillators in a network.

Onerelatively simplearchitecture consistsof acollection of N mutually coupled
oscillators. In this arrangement, each oscillator is connected to all of the other
oscillatorsinthenetwork andtoitself. Thegoverning equationsfor thisnetwork are

1 N
U,{ = f(vi, w;) — 8syn (ﬁ Zj;]_sj) (vi — Usyn) i=1....N (23)
w; = €g(vi, w;)

for parameters gy, > 0 and v,y, and dynamic synaptic coupling variables s;.

Definition 2. Thecouplingtotheith oscillator isinhibitory if v; —vg,, > Oalways
holds over the range of v; values under consideration. This coupling is excitatory
if v; — v5y, < 0 always holds.

That is, inhibitory coupling decreases v;, making it harder for an oscillator to fire,
while excitatory coupling increases v;, making firing easier.

We consider two different models for the evolution of the s;. If an s; isdirect,
it satisfies afirst order equation of the form

s; =a(l—s;)H(@v; — Osyy) — €Ksj. (2.9)

Here, H isthe Heaviside step function and 6;,,, is a threshold. The positive con-
stants « and K are O (1) with respect to € and govern the rate of evolution of s;.
Note that the turn on of s; occurs on the fast time scale while the turn off occurson
the slow time scale. This choice of ratesis suggested by experimental observations
in thalamocortical networks [3], [5], [18]-

A second category of dynamics characterizesindirect synaptic coupling, which
features a delay between the crossing of the threshold 6y, and the onset of its
inhibitory or excitatory effect. This delay arises when secondary processes, such
as G-protein activation in neuronal synapses, are needed to transmit information
about the state of one oscillator to another oscillator to which it is coupled. Indi-
rect coupling is modeled by introducing an intermediate variable x; for each s;
[5].[13].[19]. The equationsfor (x;, s;) are

x; =e€ax(1—x;))H(j — Osyn) — €Kyx;
s} =a(l—s;))H(x; —6y) —€Ks;

for constants o, a,, K, K, 6, > 0.

(2.5)
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The other network architecture that we consider, on which much of this work
focuses, involves two distinct populations of oscillators. In this globally inhibitory
architecture, J oscillators inhibit E oscillators, which in turn excite the J. In the
rhythms of interest, the oscillatorswithin the J population are completely synchro-
nized with each other, in which case we can model the entire J population as a
single oscillator, which sends a“ global inhibition” to the E population. Under this
assumption, in the case of direct coupling, the system of equations corresponding
toeachE;,i=1,...,Nis

vl = f(vi, i) — ginhSJ (Vi — Vink)

w; = eg(vi, w;) (26)
s = a(1—s;)H i — Bexc) — Bsi

1

with g;., @, B > 0, while the system for J is

U/j = fr(vy, wy) — gexc (% ZlNzlsz’) (Vg — Vexe)
w, =€gy(vy, wy) 27
st =ay(L—s))HWy — Oinn) —€Kysy

with gexe, @y, Ky > 0. We assume that 8 = O(1) in (2.6); however, thereis no
problem extending the analysisif 8 = O(¢). If v; > ¢, thens; — s4 = ﬁ
on the fast time scale. Define

Si (28)

N
Stot =
=1

2|

1

and note that s;,; < sz sinceeachs; < s4.
We may also take the inhibitory coupling from the J oscillators to the E oscil-
lators asindirect. In that case, the model includes an indirect variable x; such that

the variables (x,, s;) evolve according to as system analogous to (2.5), namely

xy = eax(L—x))H vy — Oinp) — €Kxxy
S/] Zaj(l—SJ)H(XJ —9)() —EKJSJ.

Remark 2. We will see that, without loss of generality, inhibition can be taken as
direct for the consideration of the existence of clustered solutions. The distinction
of direct versusindirect coupling is quite important, however, in the consideration
of the stability of clustered solutions. In particular, indirect synapses are needed for
stable synchronization of oscillators within asingle cluster (see Section 3.5).

Remark 3. We analyze solutions of the model by constructing singular solutions.
If ginn isnot too large then {(v, w) : f(v, w) — ginnss (v — vipp) = 0} definesa
cubic shaped curvefor each s; € [0, 1]. We denote these curves as %, ; curves 6o
and %1 aredisplayed in Figure 2. Each E; will lie on thel€eft or right branch of one
of these curves during the silent or active phase. Jumps between these phases take
place when an E; reaches a left or right knee of its respective cubic. In a similar
manner, J lies on the cubic curve determined by itstotal synaptic input s;; .
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Fig. 2. Singular trajectories for both E clusters in one half-cycle of a 2-cluster solution.
The solid line represents the trajectory for cluster £, and the dashed line that for E,. The
trajectories are superimposed on the corresponding E nullclines, with € corresponding to
s; =0and %, tos; = 1asinthetext.

Remark 4. Theglobally inhibitory model ismotivated by thalamocortical networks.
These networksconsist of two coupled popul ations of cells, namely thalamocortical
relay cells, which play therole of E oscillators, and thalamic reticular cells, which
are the corresponding J oscillators. In these networks, spindle states, in which the
J population is synchronized while the E population forms clusters, exist during
drowsiness and shallow non-REM dleep.

3. Globally inhibitory networkswith fast decay of inhibition
3.1. Sngular orbits

In this subsection, we describe the singular trgjectory corresponding to a 2-cluster
solution. The number of E oscillatorsin the network may be arbitrary, but we as-
sume for ease of notation that the two clusters have equal numbers of oscillators.
The J oscillators are assumed to be synchronized; we may therefore consider the
J population as a single J oscillator and refer to its members as a single entity
J . We assume throughout that each cell, whether an E or J, is excitable for fixed
levels of synaptic coupling.

As we shall see, the construction of a 2-cluster solution easily generalizes to
an arbitrary number of clusters. The geometric construction will require certain
assumptions, however, and a precise theorem is stated and proved in the following
subsections. By considering a 2-cluster solution here, we can more easily motivate
the assumptions and the statement of the main theorem that follows.
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Fig. 3. Singular J trajectory for a 2-cluster solution, superimposed on corresponding
nullclines.

The singular trajectories corresponding to a 2-cluster solution areillustrated in
Figures 2 (E) and 3 (J). We assume that one cluster, call it £1, jumps up to the
activephaseat r = 0, where T istheslow timevariable, and theresulting excitation
causes J toalso jump up. Sincethejump up isinstantaneous on the slow time scale,
we can think of E1(0) aslying on the left or the right branch of thes; = 1 cubic,
but in any case, E; evolves on the right branch of the s; = 1 cubic for = > O.
Similarly, J evolveson theright branch of thes;,, = %sA cubicfor r > 0. Wedso
assume that the other cluster, cal it Eo, issilent at T = 0 and hence lies on the left
branch of thes; = 1 cubic.

For T > 0, each oscillator evolves along its respective branch until one oscilla-
tor reaches aknee. We will assume that the E oscillatorsin E1 have shorter active
phases than J, so E1 jumps down before J does, say at © = 11. The assumption
that J has alonger active phase than E1 impliesthat it lies above the right knee of
the s;,; = O cubic at thistime, so it continues along the right branch of the s;,; = 0
cubic until it reaches the right knee and then jumps down, say at t = 1. During
the time that J remains active, both E1 and E> move along the left branch of the
sy = 1 cubic %1.

After J jumps down, s;(t) decreases on the slow time scale. If E> isable to
reach the left knee of %, for some s, then it fires and this completes the first
half cycle of the singular solution. Suppose that thisis the case and that © = ¢
when this occurs. Let w; denote the w-value of all oscillators in cluster E;. If
wa(tp) = w1(0), wi(rp) = w2(0), and wy(rr) = wy(0), then the trgjectories
described represent one-half of a 2-cluster solution.

The analysisin Section 3.4 shows that a 2-cluster solution as described above
will exist, under certain assumptions on the nonlinear functions and parameters.
For example, wewill need to assumethat the active phase of J isnot too long or too
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short, compared with the active phase of the E;. If J'sactive phaseistoo long, then
the network exhibits synchronous behavior [13]. If J's active phase is too short,
then the system approaches the stable quiescent state.

The singular trajectory for an n-cluster oscillation represents a natural general-
ization of that for the 2-cluster oscillation. In the singular n-cluster solution, if we
start when J falls down, then inhibition to the E; decays until one E cluster fires
and causes J to fire; while these are active, the other (n — 1) E clustersevolvein
the silent phase. The active E cluster falls down before J, and the E clusters then
evolve in the silent phase such that each E oscillator reaches the initial position
of the oscillator ahead of it in the firing sequence at the moment that J falls down
again. Precise conditionsfor the existence and stability of such asolution are given
in the next subsection.

Remark 5. The preceding construction of the singular solutions helps to motivate
the assumptions and statement of the theorems in this section. For example, the
2-cluster solution can exist only if an E oscillator is able to reach the jump-up
curve once it is released from inhibition after the J oscillator jumps down. We
will see that this is possible only if the rate of decay of inhibition is sufficiently
fast and the E oscillator recovers sufficiently in its silent phase before J jumps
down.

The time an E oscillator has for recovery is related to the duration of the J
oscillator’s active phase. Hence, we will need to assume that K; is sufficiently
large and J's active phaseis sufficiently long. We will also need to assume that the
J oscillator recovers quickly inits silent phase. Thisis needed because once an E
oscillator reaches the jJump-up curve, the J oscillator must be ready to jump up in
response to the firing E oscillator.

Findly, the singular construction helps to determine the number of clusters
which emerge in a given network. In the construction of an »n clustered solution,
we have at most one cluster of E oscillators active at any particular time, with
the remaining n — 1 clusters silent. This implies that each cluster is silent for at
least n — 1 times as long as it is active. The number of clusters that can be
supported depends on severa factors including the duration of the J oscillator's
active phase and the time it takes for inhibition to wear off before an E
oscillator can reach the jump-up curve and fire. The theorems in this section
give precise conditions for when an n cluster solution exists in terms of these
various lengths of time.

3.2. Notation for slow phase space analysis

The following notation will be useful for the statement and proof of the theorems.
Someof itisillustrated in Figure 2. Much of it is based on the approach of consid-
ering separate phase spaces for the E and J oscillators, with the dynamicsin each
phase space influencing that of the other as indicated in (2.6)-(2.7) [13]. Let %,
be the cubic-shaped curve for the E oscillators defined in Remark 3 and assume
that the left and right branches of %, can be written as v; = &, (w;, s;) and
v; = Pr(w;, s7), respectively. Assume that the left knee of 4, isat w = wy (sy)
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for each s;. We assume that the w-nullcline {g(v, w) = 0} intersects each %,
along its left branch. From the first two equationsin (2.6), thisimplies that the E
oscillators are excitable for constant levels of synaptic input s;. Suppose that this
point of intersection of nullclinesoccursat w = wg(sy).

Remark 6. Notethat if 3f/d0w > Oand dg/dv < O near €, , then both wz,(s;) and
wr (sy) areincreasing functions of s;. Thisfollows, sinces; representsinhibitory
input, fromimplicit differentiation of theequations f(® (wy (sy), s7), wr(sy)) —
8inhSJ (@ (wr(sy), s7) — vinp) = 0and g(®r (wr(sy), s7), wr(sy)) = 0.

We can obtain reduced equations for the slow variables corresponding to
each E oscillator as follows. First suppose that the E oscillator is silent.
If the J oscillator is aso silent, then the slow variables corresponding
to the E oscillator are (w;,sy). This can be seen from (2.6)-(2.7) after
rescaling in terms of the slow time variable t = ¢r and then setting ¢ = 0.
While in the silent phase, the E oscillator lies on the left branch of %, ; that
is, v; = &7 (w;, sy). Hence, if we let Gr(w,sjy) = g(CDL(w,Sj), w), then the
slow variables satisfy

w; = Gr(w;, sy)

sy =—Kysy. 3D

Note that if the J oscillator is active then s; = 1. In this case, w; isthe only slow
variable and it satisfies

u'),- = GL(w,-, 1). (32)

In asimilar manner, we can derive a reduced eguation for the evolution of E
oscillatorswhilethey are active. Let Gg(w, s7) = g(®r(w, sy), w). Wewill only
consider solutions in which the J oscillator is active whenever an E oscillator is
active. Hence, s; = 1 and w; satisfiesthe reduced equation

w,‘ = GR(w, 1). (3.3)

We assumethat theright knee of €1 isat w = wgg. Thisiswherethe E oscillators
jump down from the active phase. In the clustered solutions that we will consider,
al E slow dynamics occur in the (w, s;) phase space bounded by the curves dis-
playedin Figure4. Weassumethat wgrx < wr (0) < wg(1), asshown, throughout
the paper.

Finaly, we consider the J oscillator. Let (gj[ ,, denote the cubic shaped curve
{(y,wy): frvy, wy) — gexcStor(Vy — Vexe) = 0}. Assume that the left and right
branches can bewritten asv; = @7 (wy, sio) and vy = S%(wy, S10r), respective-
ly, and theleft and right kneescan bewrittenasw; = wy (s;o) adw; = wi (s10r)-
We assume that the w ;-nullcline intersects each (65 ,, dongitsleft branch and this
point of intersection isat w; = w{,(s,o,). Note that each s;, and therefore s;,,
changes on the fast time scale. Hence, the only slow variable corresponding to the
J oscillator iswy. 1f Gl(wy, sior) = g1(PL (Wi, Stor), s10r) fOr € = L, R, then
wy satisfies the slow equation
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WRK w(0)  wi(0) w

Fig. 4. Theregionin (w, s,) phase space relevant for the E dynamics. The heavy solid line
shows an example tragjectory for large K ;, such that jump-up occurs. The dashed line shows
an example for small K, such that jump-up does not occur. Asindicated in Section 3.3, it
takestime 7., for asolution of (3.2) with initial condition w = wgg to reach w,,..

wy = Glwy, Sior)- (3.4)

Remark 7. The reduced systems are very useful in analyzing the behavior of the E
oscillators while they are silent. For example, one important issue will be whether
each E oscillator is able to reach the jump-up curve after the J oscillator jumps
down and releases the E oscillators from inhibition. When the J oscillator jumps
down, s; = 1. Hence, we need to determine for which values of wg the solution
of (3.1) beginning at (w;, sy) = (wo, 1) reaches the jump-up curve. Note that so-
Iutions reach the curve for large K ; and wo > wy (0); that is, if K issufficiently
large, then the solution of (3.1) is nearly vertical as shown in Figure 4. Thus, for
any K ; sufficiently large, there exists a corresponding w.;c < wr (1) such that the
solution of (3.1) beginning at (wo, 1) will reach the jump-up curve for precisely
those wg > w,y.. Notethat if K; istoo small, then “escape’ is never possible for
any wo. Thisis because the solution of (3.1) beginning at (wg, 1) will track close
tothecurve w = wr(sy), asshownin Figure 4.

Numerical examplesof clustered solutionsin aglobally inhibitory network with
indirect inhibition, with two and three clustersin a population of 12 E oscillators,
are shown in Figures 5-6. For these figures, each E and J oscillator was modeled
with Hodgkin-Huxley type equations, with a leak current and a T-type calcium
current; interested readers should see[5], [11], [13] for details. To switch between
two and three clusters, we decreased 6;,,;,, increased ¢, and decreased K ; (with a
netincreaseineK ) in (2.7).
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Fig. 5. Numerical example of a2-cluster solution in aglobally inhibitory network with 12 E
oscillators. Each subplot shows the evolution of v versus for adifferent cluster as the two
clusters alternate firing. This and other numerical figures were generated using XPPAUT,
developed by G.B. Ermentrout.

Figure 7 shows anumerical example of a segment of an E oscillator trgjectory
in (w, sy) space during the 2-cluster oscillation of Figure 5. The segment shown
startswiths; ~ 1ands; beginningto decay; the slow variable w beginsto decrease
when the trgjectory crosses the fixed point curve wr (s;). The oscillator fireswhen
it hitsthe jump-up curve wy, (s ;); thiscorrespondsto one of the sharp increasesin v
seenin Figure5, but theincreasein v does not show up in the projectionto (w, sy)
space. After this, the oscillator isin the active phase, and hence on the right branch
of €,, where w continues to decrease. Thisis why the trajectory in Figure 7 ap-
pearsto cross through the jump-up curve. Soon after the firing, inhibition resumes,
and s; jumps up to near 1 while w continues to decrease since the E oscillator
is active. When the oscillator reaches the right knee wgg, it falls back down to
the silent phase and evolves with s; = 1 and increasing w until J falls down (not
shown).

Figure 8 shows anumerical example with trajectories from two different £ os-
cillator clustersin the 3-cluster oscillation of Figure 6, one of which (dashed line)
fires during the time shown and one of which (dash-dotted line) does not. Along the
parts labeled ‘1', inhibition decays, while along ‘2’, inhibition resumes. After the
period shown, the oscillators evolve, one in the active phase and one in the silent
phase, with s; ~ 1, such that the projections of their trgjectoriesto (w, s;) space
cross (not shown).
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Fig. 6. Numerical example of a 3-cluster solution in a globally inhibitory network with 12
E oscillators.

3.3. Satement of the main result

In this subsection, we state our main result concerning the existence and stability of
clustered solutionsin aglobally inhibitory network with apopulation of N excitable
E oscillators. To clarify the presentation and notation, we make some simplifying
assumptions. A more general analysis, with less restrictive assumptions, is given
in Section 3.6. We begin by introducing some additional notation; these denote
the durations of various stages of the oscillation, namely silent and active phase
lengths for the different oscillator popul ations and the length of time during which
inhibition decays. Theorem 1 will give precise conditions for when a particular
clustered solution exists in terms of these times. We note that these times can in
turn be directly related to parameters in a particular model. This is discussed in
more detail in Remark 9, in the discussion following Corollary 1, and in Section 4.

Let g and t; denote the durations of the E and J active phases, respectively.
These actually depend on severa factors including where the jJumps up and down
take place and which right branch an oscillator lies on; however, we assume here
that both 7 and t; are constant. In Section 3.6, we demonstrate that one can easily
obtain bounds on the sizes of tx and t;; these bounds allow us to generalize the
theorem which follows.

Let w,,. beasdefinedin Remark 7 and shownin Figure 4. That is, the solution
of (3.1) beginning at (wo, 1) will reach the jump-up curveif and only if wg > wegc.
We denote by tg thetimeit takesfor this solution to reach the jump-up curve (e.g.,
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Fig. 7. A single E trgjectory in a2-cluster solution, projected to the phase space of the slow
variable (w) and inhibition (s;). The oscillator evolves from the point labeled START as
itsinhibition gradually decays; arrowheads show direction of evolution. Once it crosses the
jump-up curve, it isin the active phase.

the duration of the solid linein Figure 4 for large K ;). Note that s depends on the
initial position wo; however, we ignore this dependence in this section. Otherwise,
we could state our resultsin terms of minimum and maximumtimes 7y and 7 g; this
isdonein Section 3.6 below. Note that w.; — wr(0) and g — 0as K; — oo.
Let 7.5, be the time for the solution of (3.2) with initial condition w = wgg to
reach w,..

We next need an assumption that implies that the J oscillator jumps up if it
receives excitation from a sufficiently large number of E oscillators. It is possible
that just afew E oscillators is not enough to excite the J oscillator to fire. The J
oscillator will be able to jump up upon receiving excitation of strength S only if
the left knee of the cubic (éé lies below the point w; = w{p(O). From (2.8),if m E
oscillators are active, then s,,; = %rs4. Therefore, we assume that there exists M
such that if m > M, then

wi(%sA) < w{p(O) (3.5
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Fig. 8. Projection of E trajectories from two different E clusters in a 3-cluster solution.
Arrowheads show directions of evolution. After a decay of inhibition (‘1’), one oscillator
shown (dashed trgjectory) hits the jump-up curve and fires while the other one (dash-dotted
trajectory) does not jump up before inhibition resumes (‘2').

Finally, we define atimelength that isrelated to thetimethe J oscillator spends
recovering in the silent phase. Since we are assuming that the J oscillator is active
for longer than the E cluster, the J oscillator jJumps down at the right knee of the
stor = Ocubic; thatis, at w; = wi(0). After this, w, satisfies(3.4) withx = L and
s:or = 0 aslong asthe J oscillator issilent. Let 7g(M) be thetime for the solution
of (3.4) withx = L and s, = O, starting at w(0), to reach wy (4 s,4). Together
with the discussion in the previous paragraph, it then followsthat if the J oscillator
spends more than time zx in the silent phase, and if at least M E oscillators then
jump up, then the J oscillator will also jump up in responseto the E cluster firing.

Recall that in Section 3.2, weassumed that wrx < wr (0) < wr(1) . Thefirst
inequality implies that when an E oscillator jumps down, it does so below the left
knee of Cp. The second inequality is motivated by the discussion in Remark 7; it
is needed to guarantee that E oscillators are able to reach the jump up curve once
they are released from inhibition. Under this structural assumption, the following
theorem holds.
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Theorem 1. Fix N. Assume there exists M such that (3.5) holds for all m > M
and assumethat 7z < t;. Let n bethe unique positive integer such that both of the
following hold:

Dnty—tg+m—1) t5 > Tese
iYy(m—Dty—1t+ (M —2) T5 < Tese

Ifn <& tr(M) < 15, and K is sufficiently large, then there exists an n-cluster
periodic solution of (2.6), (2.7) suchthat each E cluster containsat least M oscilla-
tors. Thissolution isstable, for K ; sufficiently large, if |G (w, sy)| < |Ggr(w, 1)|
for wy, (0) < w < wr(d).

Remark 8. Theassumption tz < 77 wasdiscussed earlier in Section 3.1. Itisneed-
ed so that E oscillators are able to recover sufficiently in their silent phase before
the J oscillator jJumps down and rel eases them from inhibition. Asdiscussed in Re-
mark 7, we need to assumethat K ; is sufficiently large so that when E oscillators
are released from inhibition, they are capable of reaching the jump-up curve. The
assumption Tz < 15 isneeded so that the J oscillator is ableto recover sufficiently
inits silent phase before a cluster of E oscillators jump up.

Remark 9. Parameters appearing in specific globally inhibitory networks of the
form (2.6)-(2.7) affect the times 7, t;, g, ts in clearly traceable ways. For ex-
ample, the main effect of strengthening the low-threshold calcium conductance of
thalamocortical relay cells, whose burst behavior can be described by (2.6), is a
lowering of theright kneefor E. Thislengthenstherelay active phase and increases
7. Other examples of such effects, specifically related to the period of oscillations,
are explored following Corollary 1 in the next subsection.

Remark 10. The stability condition |G 1 (w, s;)| < |G g (w, 1)| impliesthat therate
at which the slow variable w; evolvesjust beforean E oscillator jumpsupisslower
than therate w; evolvesjust afterwards. This condition isvery similar to that need-
ed in [15] in their discussion of Fast Threshold Modulation (FTM); see Remark
13 in Section 3.5. One expects this condition to be satisfied in general, because
E; jump up when they reach the curve wy (sy), typically close to wr(s;), where
Gr(wr(sy),sy) =0.

Remark 11. Condition (i) maintains the oscillation, while condition (ii) prevents
each cluster from catching up to the one ahead of it.

Remark 12. If n = 1, then condition (i) becomes t; > tg + Te5c. Thisis exactly
the condition derived in [13] for the existence of a synchronous solution. Here,
condition (ii) is not relevant. For the 2-cluster case, conditions (i), (ii) reduce to
T) — T < Tese < 2Ty — T + Ts. Inthelimit of fast inhibitory decay, s — 0and
the condition becomes %(rE + Tese) < T < TE + Tese, Which was also derived in
[13].



Clustered firing patterns 529

3.4. Existence of the clustered solution

Here we prove that the globally inhibitory network exhibits an n-cluster solution if
the hypotheses of Theorem 1 are satisfied. We consider n > 3; thecaseof n = 2
is analogous but simpler and hence we omit details. We first assume that » divides
N and seek a solution for which each of the clusters consists of exactly N/n mem-
bers. In this case the analysis is identical to the consideration of a population of
n E oscillators with each oscillator representing its own cluster.

Suppose the network starts with J active and with each E cluster in the silent
phase, ontheleft branch of thes; = 1nullcline%1. Label the E clustersasl, ..., n
with w; < w;y1 fori = 1,...,n — 1. Further, assume that cluster 1 is initialy
at (wgg, 1), the position it would have if it had just jumped down from the active
phase. In this configuration, cluster n will bethe next to fire; achangein the cluster
ordering cannot occur for K ; large relative to the rate of change of w in the silent
phase.

We measure distance between adjacent clusters along the left branch of %1 in
terms of atime metric (e.g. [8], [15], [21]). In this metric, the statement that two
clusterslieadistance T apart at time T meansthat thetrailing cluster will reach the
current position of the lead cluster after time 7. This measurement is meaningful
if we measure at times when al E clusters are in the silent phase but J is active,
such that s; = 1. Then all E clusters lie on the same tragjectory in (w, s;) phase
space, given by (3.2). Hence, for large K ;, such that each w; changeslittle during
the interludes of inhibitory decay, the distance between clusters remains invariant
to leading order as long asthey are in the silent phase.

Let ;. = Tesc — (r; — T£), Whichis positive by condition (ii). We then define
a=r1,./(n—1) andb = t,;./(n — 2). To prove the existence part of Theorem
1, we assume that the distance between each pair of adjacent clusters is initially
within the interval (a, b). We then prove that this assumption is still satisfied at
the moment of each subsequent E cluster fall-down. Moreover, the clusters take
turnsfiring, along with the J oscillator (since tg (M) < t5), in such away that no
two clusters are ever simultaneously active. This yields a fixed point which is the
desired n-cluster periodic solution.

Assume that when t = 0, the clusters are lined up on the left branch of ¢ as
described above; in particular, the distance between adjacent clustersis within the
interval (a, b). Onething we need to prove, which is shown below, isthat cluster n
will then be able to reach the jump up curve and fire. If thisisthe case, then choose
T to be the time when cluster n jumps down again. We must also prove that no
other cluster fired in the interval © € [0, T]; moreover, when r = T, the distance
between each pair of adjacent clusterslieswithin (a, b).

Suppose, for the moment, that cluster n doesindeed jump up and it is the only
cluster to do sofor t € [0, T']. The distance between the other clustersremainsin-
variant, so it isobviousthat when r = T, the distance between cluster i and cluster
i+1,fori=12,.,n— 2lieswithin (a, b). We must still show that the distance
between cluster n and cluster 1 lieswithin (a, b). Since w1(0) = w,(T) = wgk,
thisis equivalent to showing that T € (a, b). From the definitions, cluster n fires
after time 7; — tg + tg and the time it spends in the active phase is 7. Hence,
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T =15+ 1ts. ThenT € (a, b) follows from the definitions and conditions (i) and
(ii).

We next show that cluster n must, infact, reach thejump up curveandfire. Since
the time between each adjacent cluster isinitially greater thana = t_;./(n — 1),
it follows that the time between wgx = w1(0) and w, is initialy greater than
(n—VDa = t,;, = Tese — (tj — tE). Now, J jumps down when t = t; — 7f.
Hence, when J jumpsdown, thetimefrom wgx to w,, isgreater than 7., S0, from
the definitions, w,, > w,,.. Thisisexactly what is needed to guarantee that cluster
n isableto reach the jump-up curve. A similar argument showsthat when J jumps
down, E cluster n — 1 has w,_1 < wesc, SO cluster n — 1 cannot jump up during
thiscycle.

In the preceding proof, we assumed that n divides N; however, the proof
also holds if this last condition is not sdtisfied. Since n < N/M we may
assume that each of the n clusters has at least M oscillators. We then proceed
as before. The primary difference in the analysis is that the input that the J
oscillator receives depends on which cluster is active. Hence, the J oscillator
will lie on different right branches in its active phase, depending on which
cluster of E oscillators it receives input from. However, we are currently
assuming that the time the J oscillator spends in its active phase is constant; in
particular, t; does not depend on the level of input the J oscillator receives.
For this reason, no change in the proof of the theorem is needed. In Section
3.6, we will discuss what modifications to Theorem 1 are needed if z; is no
longer assumed to be constant. This will clarify how changing the number of
oscillators per cluster affects the analysis.

Corollary 1. When an n-cluster solution exists, it has period 7, givenby 7, =
n(ty + ts)

Thisfollowsimmediately from the construction of the n-cluster solution. Each os-
cillation can be decomposed into a part of duration t; when J is active and a part
of duration s when inhibition decays. Thus, the influence of parameters on period
follows directly from their influence on these durations.

Figures 9-10 show several examples of the effects of parameters on period in
the 3-cluster oscillation of Figure 6. The most obvious of these in Figure 9 is the
dashed curve, which shows the decrease in period with increasein K, the inhib-
itory decay rate, in (2.7); this clearly decreases tg. In our simulations, we take
gi, w;) = ¢ (weo(v;) —w;)/T(v;) IN(2.6). Thesolid curvein Figure 9 represents
the effect of varying ¢. This variation affects tg, which haslittle effect on period;
however, increasing this rate influences period dightly by moving the E; farther
along in the silent phase with s; = 1, such that they can fire with less decay of s,
and thussmaller tg. The other two curves show the effects of increasing parameters
in (2.6) that raise the curve of kneesin the silent phase, thereby dlightly increasing
tg and thus dlightly increasing the period. One of these parametersis g;,.;,, which
corresponds to the strength of inhibitory coupling to the E (the other is the leak
current conductance for the E). Thus, we see the surprising effect, also seen in
the context of synchronous solutions in [5], [13], that increasing the strength of
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Fig. 9. Relative changein period of aclustered solution as parameters relevant to dynamics
of the E oscillators vary. Parameters were started at fixed initial values and period was mea-
sured. Relative refersto the ratio of the size of changeto theinitial value. Dashed curve: K,
in (2.7) was varied. Solid curve: the time constant of g(v;, w;) in (2.6) was varied. Solid-
dotted curve: g;,;, in (2.6) was varied. Dash-dotted curve: a parameter in f (v;, w;) in (2.6)
was varied, raising the left knee of f = 0.

inhibition has little effect on period, and the effect that it does have isto lengthen
the period of the oscillations.

Figure 10 shows some anal ogous results for parameters that affect, or might be
expected to affect, timesassociated with J. Therelatively steep curves show the ef-
fectsof increasing the parameter ¢; intheequationw’, = ¢; (w;,, (v)—wy)/7;(v)
in (2.7) and of raising the cubicsfor J (by increasing itsleak current conductance),
which both decrease 7; and hence the period. The solid curve displays the addi-
tional surprising fact that changesin the strength of excitation to J, namely gex. in
(2.7), havelittle effect on period. Thisfollowsfrom adifferent mechanism than the
invariance of period with respect to changesin inhibitory strength, since t;, unlike
g, strongly influences period. Theinsensitivity of period to g, occurs primarily
because the J active phase is longer than the E active phase, such that J aways
returns to the s, = O cubic in the active phase before jumping down, no matter
how excited J iswhile the E are active.

The role of parameters in determining the period of clustered oscillations can
also be seen directly viathe approach of Section 4. Thisapproach leadsto the period
formulafor a 2-cluster solution in Corollary 2, the utility of which is explored in
the discussion which follows its statement in Section 4.1 below.
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Fig. 10. Relative change in period of a clustered solution as parameters relevant to J dy-
namicsvary. Dashed curve: thetime constant of g, (v, w,) in (2.7) wasvaried. Solid curve:
Zexe 1N (2.7) was varied. Dash-dotted curve: a parameter in f; (v, w,) in (2.7) was varied.

3.5. Sability of clustered solutions

There are two issues related to the stability of the clustered solutions. The analysis
in the proof of existence in the previous subsection shows that oscillators within
different clusters remain separated from each other; in particular, they can never
lie in the active phase at the same time. We must also prove that if the oscillators
within a cluster are perturbed dightly from their trajectories in phase space, then
they are compressed back towards each other under the subsequent flow.

We now consider initial conditions in which the positions of the oscillators
within each cluster are close, but not necessarily equal, to each other. We also take
the inhibition to be indirect, since the solution cannot be stable if the synapses are
direct (see[12], [13]). Theinstability with direct synapsesfollows becauseif two E
oscillators E1, E» start from dightly different positionsin the silent phase and E;
jumps up, then J may immediately jump up. Direct inhibition will then instantly
(with respect to the slow time scale) make s; = 1. Thus, E, will instantly jump
back to the left branch of %1 away from its firing threshold, breaking up the clus-
ter and hence destabilizing the clustered solution. Indirect synapses, on the other
hand, induce alag between thefiring of one E oscillator and the onset of inhibition,
providing awindow of opportunity for other E oscillatorsto fire.

To establish stability within clusters with indirect inhibition requires showing
that oscillatorsthat start closetogether in phase space are brought closer together as
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they evolve. This can be understood by again measuring distance in atime metric,
or more specifically atime metric corresponding to the w-coordinate, call it p,,. We
can define the distance between two oscillators in the silent phase in the metric p,,
asafunction of inhibition s ;. Thisisdone, for fixed s 7, by letting the time measure-
ment between the oscillators equal the time for the oscillator with smaller w value
to evolve to the position of the other oscillator under the first equation of (3.1). In
a similar manner, we define the metric p,, while the oscillators are in the active
phase. With this definition, under the hypothesis that |G (w, s;)| < |Ggr(w, 1)|
forwr (0) < w < wr(1) (givenin Theorem 1), it iseasy to show that p,, decreases
when oscillators in the same cluster jump up. That is, after the oscillators jump
up, the faster flow that they experience causes the same difference between their w
coordinates to correspond to a shorter time lag between them. There is no change
in p,, over thejump down since, for asmall perturbation from the state of complete
synchrony within the cluster, all oscillatorsin a cluster jump down from the right
knee wg g . Thus, the time by which one oscillator lags another in the active phase
remains the time by which it lags the other just after they reach the silent phase.

Themetric p,, isinvariant for most of thetimethat the oscillatorsare actually in
the silent and active phases, since they evolve under thefirst equation of (3.1) with
the sames; inmost of the silent phase and under (3.3) in the active phase. The only
exception occurs during the interludes in the silent phase when s; decreases from
1; for K large, these affect p,, only negligibly. Thus, the hypotheses of Theorem
1 yield stability within clusters.

Remark 13. The compression mechanisms responsible for the stability of the syn-
chronous solution [13] and the stability of oscillatorswithin acluster for aclustered
solution are very similar. In fact, this compression mechanismisaso similar to the
compression mechanism in Fast Threshold Modulation [8], [15], [21]. In each of
these scenarios, the oscillators undergo fast jumps between slow phase spaces and
the dow variable, w, evolves dower before the jump up than after. This produces
compression in atime metric. What distinguishes these situationsis the mechanism
that allows them to jump up. In FTM, one oscillator reaches the jump-up point at
aknee, so that it can escape from the silent phase. This, in turn, lowers the other
oscillators' nullclines so that they are forced to jump up. For the synchronous so-
[ution in globally inhibitory networks, all the E oscillators jump up after J fals
down and releases them from inhibition. In a clustered solution, the oscillatorsin
the silent phase cannot fire until another cluster jumps down. The J must then still
jump down before anew E cluster is released from inhibition.

Remark 14. In terms of Euclidean distance, there is exponential compression of
trajectories near wr(1); if 7; is sufficiently long, such that E oscillators spend a
long time in the silent phase, then this easily dominates any possible expansion
over the remainder of the oscillators' trajectories. Of course, if t; were extremely
long, then synchrony of the E oscillators would result [13].

3.6. Lessredtrictive assumptions; 2-cluster case

In the preceding subsections, we simplified the analysis by assuming that the time
durationstg, 7, and tg areconstant. Thisamountsto assuming that each E cluster
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active phase has the same duration, each J active phase has the same duration, and
thetimefrom J jump-down to the next E firing isconstant; that is, werestricted the
class of clustered solutions under consideration. Here we demonstrate how one can
generalize Theorem 1 if these assumptions are no longer satisfied. We first obtain
upper and lower bounds for each of the time durations and then derive conditions
similar to those in Theorem 1 for when a particular clustered solution exists. Here,
we only consider the case of a solution consisting of two equal sized clusters of
E oscillatorsin detail.

We obtain bounds on the active phase of each E oscillator as follows. Each
E oscillator jumps up at some value of w that satisfiesw; (0) < w < wg(1) and
jumpsdown at w = wgg. Let T be the time for the solution of (3.3) beginning
at wy (0) toreach wrx and let 7 be the timefor the solution of (3.3) beginning at
wr (1) toreach wgg . Thenthelength of each E oscillator’s active phaseisbounded
from below by z ;, and bounded from above by 7.

In a similar way we obtain a bound for the J oscillator’s active phase. The
J oscillator jumps up at some w, that satisfies wy (%) < wy < wy.(0) and jumps
down at w; = w(0). Let 7, be the time for the solution of (3.4), beginning at
wy (%4) with 5,0, = s4/2 and switching to s,,, = 0 after time 7z, to reach w(0)
and let 7; bethetimefor the solution of (3.4), beginning at w{,(O) With s, = 54/2
and switching to s,,; = O after time z, to reach w{Q(O). Then the length of the
J oscillator’s active phase is bounded by 7 ; and 7;.

Wenext obtainaboundfor tg; thisisthetimerequired for the synapseto recover
sufficiently after the J oscillator jumps down before an E oscillator can reach the
jump up curve and fire. Let w,,. and 7.5 be as before. Recall that an E oscillator
can fire if and only if its w coordinate lies in the interval [wes., wr (1)) when the
J oscillator jumps down. Let 75 be the time for the solution of (3.1) beginning
at (wege, 1) to reach the jump up curve and let z ¢ be the time for the solution of
(3.1) beginning at (wr (1), 1) to reach the jJump up curve. Since weye < wr(l), it
followsthat r5 < 75 < Ts.

Asin the preceding section we assumethat wgx < wr(0) < wr(1). We need
to also assume that if one cluster of E cellsfire, then the J oscillator also fires. If
there are just two clusters, the total input the J oscillator receivesis s;,; = sa/2.
Therefore, weassumethat wy (sa/2) < w(0). Using the notation of the preceding
section, thisimpliesthat we cantake M = N /2. We let T be the recovery time of
J inthe silent phase, as in the preceding section with this choice of M.

We can now state the following theorem. Thisgives precise conditionsfor when
there exists a 2-clustered solution.

Theorem 2. If K is sufficiently large then a 2-cluster singular periodic solution
exists, if each of the following three conditions are satisfied:

(CY e < 14

C2 — T < Tesc < 1y

(C3) wr < x4
This solution is stable, for K ; sufficiently large, if |G (w, s;)| < |Ggr(w, 1)| for
wr(0) < w < wr().
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This theorem is proved just as the previous one so we do not give the details.
The condition (C1) is needed to ensure that the E active phase is shorter than the
J active phase. Thefirst inequality in (C2) ensuresthat thetrailing E cluster flows
to have its w > w,z While J is active. The trailing cluster will then be able to
reach the jJump-up curve and fire once inhibition decays sufficiently. The second
inequality in (C2) ensures that after the leading E cluster jumps down, its w value
does not reach w,,. while J is till active. Hence, this leading cluster will not be
able to reach the jump-up curve and fire together with the trailing cluster. Finally,
(C3) isneeded for the same reason as in Theorem 1; it ensuresthat the J oscillator
issufficiently recovered when each E cluster jumps up. Hence, the J oscillator can
jump up in response to the firing E cluster, as needed to sustain the oscillation.

4. A moreexplicit map approach

In Section 3, wederived sufficient conditionsfor existence and stability of clustered
solutions, stated in terms of timesfor various phasesin an oscillatory cycle. Inthis
section, as earlier, we consider clustered states as fixed points of maps; however,
we now make certain simplifications which allow us to write down the maps more
explicitly. Thisleads to fixed point equations for which we can show the existence
of solutions, together with precise stability conditions and a period formula. These
aregivenintermsof parametersin the equations and positions of certain key struc-
turesin phase space, such as the positions of left and right knees. These conditions
are particularly useful in that they explicitly reveal the roles of these parameters
and structures in forming clustered solutions. We begin with consideration of a
mutually coupled network, since the conditions can be stated most cleanly in that
setting. Globally inhibitory networks are considered in Section 4.2.

4.1. 2-cluster solutionsin a mutually coupled network

To begin, we consider the case of a population of 2 mutually coupled oscillators
with direct inhibitory coupling. We focus on a periodic solution in which the os-
cillators fire alternately, with a relative phase shift given by half the period of the
oscillation, as shown in Figure 11. This was generated using a model with Hodg-
kin-Huxley type equations, with aleak and T-type calcium current for each cell,
as used in the globally inhibitory figures[5], [11], [13].

We refer to this solution as an antisynchronous state. Set s;,, = s1 + s2 where
each s; satisfies (2.4). Note that s,,, = 1/2 while one of the oscillators is active.
The active oscillator will jJump down at wrk, the position of the right knee of the
stor = 1/2 cubic. Asbefore (e.g. Figure4), let wr (s;,;) denote the curve of critical
pointsand let wy (ss,;) denote the jump-up curvein slow (w, s;,;) phase space. We
let w* = wr(1/2).

Weassumethat g (v, w) = ¢s(w*—w) inthesilent phaseand g (v, w) = —paw
in the active phase. Here, ¢5 and ¢4 are constants. The form of g in the silent
phase derives from the fact that v is approximately constant on the left branch of
the s;,; = 1/2 cubic in the models of interest, which typicaly have g(v, w) =
(weo (v) — w) /T (v) for asigmoid, monotone decreasing function w, (v). Further,
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Fig. 11. Numerical example of an antisynchronous 2-cluster solution for amutually coupled
network.

inan excitableregime, theintersection of w (v) with each cubic v-nullclineyields
wr (s10r). The form of g in the active phase is also based on these models, since
Weo(v) &~ 0and 7 (v) & 14, aconstant, in the active phase.

Under these assumptions, plus the assumption that K is sufficiently large, we
next derive a map which has the antisynchronous solution as afixed point. The as-
sumption of sufficiently large K allows usto approximate g (v, w) by ¢s(w* — w)
even for s;,; < 1/2 in the silent phase and to ignore the fact that trajectories must
cross the curve w g (s;0) to reach wy (ssor).

Consider the situation in which oscillator 1 hasjust fallen down from the active
phase, so that s;,; = 1/2 and wy = wgg, and oscillator 2 hasinitial coordinates
(wo, 1/2) in the silent phase for some fixed constant wg. Due to the nature of the
coupling, s1, s2 subsequently decay vias = —Ks. Let 1, denote the time from
stor = 1/2 until oscillator 2 reaches the curve of knees, say at s,y = sx < 1/2;

then
1 In 1
Ty = — — ).
4 K 25y,

Let 7, denote the amount of time that oscillator 2 is active after it jumps up. This
is determined by the evolution of w = —¢ 4w with w(0) = wg (sx) such that
w(ty) = wrg < wr(sg), O

Ta = ;E‘In <12£££&2> .
b4 WRK
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A 1-dimensional map IT can be defined by inputing the initial w-value of os-
cillator 2, namely wo, and outputting the w-value of oscillator 1 when oscillator
2 fals down. Then for sufficiently large K, IT(wo) is approximately given by the
evolution of w = ¢g(w* — w), w(0) = wrg for atime t; + 7,; that is,

M(wo) = w* + (Wwrk — w*)e—¢s(tc+l’a)

= "+ (wrk — w*) @509/ (ks

wr, (sk)

)¢s/¢A . 4.1

Note that s is defined implicitly as follows. The evolution of oscillator 2 in the
silent phase for sufficiently large K is approximated by the initial value problem

w = ¢S(w* - w)v U)(O) = wo,
s = —Ks, s(0)=1/2 (42)
until T = t,, a whichtimes = s;. The time t, is distinguished as the first time
such that w(t) = wy (s(t)). From (4.2) we thus obtain

1 \¥%s/K
w* + (wo — w*) (—) = wr (sk), (4.3
25k

which defines sy.

With thisdefinition, we can conclude the existence of afixed point of IT, namely
the desired symmetric antisynchronous solution, by using the fact that (4.1) yields
the fixed point equation

#s/Pa
w* + (wrg — w*)(2s;) /K <ﬂ> = wo (4.9
wr (sk)

or
(2Sk)¢S/K (ﬂ)d)smm — Lw*

, (4.5)
wr (k) WRK — w*

where s = s;(wg) from (4.3). At wo = wgg, clearly w";eok_iwut* =1> (25;)%s/K

WeK ds/ba .
,since sy < 1/2 and wrg < wr(sg). Thus, (4.5) surely holds for

wr (sk) _
some wj € (wrg, w*) if

(st (w*))#s/K (L)Wm -~ 0. (4.6)
wr, (sk(w*))

Since sx(w*) = 1/2 and wy (1/2) = w*, the left hand side of (4.6) is exactly
(wrg /w*)?s/?A apositive number. This gives us the existence of afixed point.

Remark 15. In the above existence proof, we implicitly assumed a trgjectory of
(4.2) with wg = wrg would reach wy (s). The same type of argument works oth-
erwise as well. In that case, there exists some minimal wg vaue, w,,., for which
jump-up can occur, and at wg = wes., the right hand side of (4.5) exceeds the left
hand side.
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Proposition 1. For fixed parameter values, with the simplified w-dynamics de-
scribed above, the singular antisynchronous solution that forms a fixed point of IT
isstableif and only if

250)?5/% < wi (sp) + 2(w* — wo)< bs ) (2s)?s/K 4.7)

where (wy, (s), sx) isthe point on wy, (s;,;) from which each oscillator jumps up.

Remark 16. Inapplication, onemight know thevaluesof e K, e¢g ratherthan K, ¢s.
Since K and ¢g always appear as aratio in 4.7, they can be replaced by ¢ K and
€ps, respectively.

Proof. A necessary and sufficient condition for the stability of afixed point wg is
ITT"(w§)| < 1. A smple differentiation of (4.1) yields

' (wo) =
bs/da i ; (4.8)
* v ) os wrGsK) | as
(wrk — w)@s)?5/K (s )™ [ g b0 ] o
where implicit differentiation of (4.3) yields
26, )¢s/K
Osk _ (Zs) , (49)

wo  wj (se) + (w* — wo) (2s)#s/K £

apositive quantity.
L et w(; denoteafixed point of IT which constitutes an antisynchronous sol ution.
Observe that

' (wg) =

-1 -1 4.10
—A+B+C> +C > -1, (4.10)

where A = (wf — w*)(,?s Y(2s)?5'K <0, B = wy (sx) > 0,and C = (w* —

wo)(¢5)($§8§;)a‘r’—;’; > 0. Given the equation (4.9), we can also rewrite (4.10) as

A+ D

m(w) = 2~ 2
o) = —3 5

for A, B asabove and D = (2s,)?s/K. Thus, if (4.7) holds, then IT'(w}) < 1, 0
the fixed point w is stable. This completes the proof of Proposition 1.

Remark 17. Equation (4.8) matches the geometry of the silent phase slow dynam-
ics: when wq increases, the jump-up curve wy (s;,) IS reached sooner, at a larger
value of s;. Thus geometricaly, (4.8) encodes the competition between the fact
that an increase in wg shortens ,, tending to diminish IT(wg), but also increases
sk, henceincreasing the amount of time oscillator 2 spends in the active phase and
tending to increase I (wo).

Remark 18. In the limit of large K, condition (4.7) reduces to the inequality 1 <
w (5%)-
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Remark 19. Given that IT' (wg) > —1 from (4.10), we can refer to (4.8) to observe

that I1'(wg) € (~1,0) if the simple condition K's; < “4%4 holds. Thisis of
7 (s

interest because it is analogous to the stability condition for Case Il in [19]. If it

holdsfor all s, then IT is monotone decreasing and has aunique fixed point, which
isstable. Given that K islarge, however, this condition may be difficult to satisfy.

Remark 20. Wecan obtain adifferent global stability condition by deriving acriteri-
onfor IT to beuniformly contracting on (wzx, w*). Thisentailsfinding acondition
under which [TT(wg) — IT(wg)| < |wo — wp| for any two initial conditions wo, wy
on {s;or = 1/2}; see[1], [15]. Thisyields the more complicated condition that

[ (sx) — w*)(s)?/K — (wr(sp) — w*)(sp) /K] <

_ ¢s/ga [ _?S/K___(sp?sE
’(wRK w*)(wrg)?S/94 (wL(Sk)¢S/¢A wi (s])?S 7%
for al st, s, € (0, 1/2).

Corallary 2. The period .7 of an antisynchronous solution is

i 2/K 2/$a
T — 1 wi (sK)
7= (%) ()™

—1In (wL(i'k)—W*)z/d)S (WL(Sk))2/¢A]

wo—w* WRK

where sy = si(wg)

This follows from the definition of IT(wg), which implies that the period is
given by 2(z; + t,), with the equalities coming from (4.3) and (4.5). It provides
more explicit information about the influence of parameters on period than the
expression given in Corollary 1 in Section 3.4. In Figure 12, we demonstrate this
result by comparing the results of the first formulagiven for period .7 in Corollary
2 (solid line) with periods derived from numerical simulations (dashed line) of a
mutually coupled network of the form (2.3) with direct inhibition (2.4). To employ
the formula, we substituted the approximation

sx(wo) ~ 1/2 — M(wr(1/2) — wo), (4.11)

where A denotesthe slope of the approximately linear jump-up curve wy (syo), into
the fixed point equation (4.4) and solved numerically for wg as a function of K
with ¢g, ¢4 fixed. Then we used the resulting values wo(K) to solve for s; from
(4.11), which we plugged in to compute .7 as afunction of K from the formulg;
wealso set wy (sx) = wo intheformula. Thislatter substitution can be expected to
hold for K large since w should not change much as inhibition decays. Asit turns
out, this substitution is quite accurate for more moderate K, sincetheincreasein w
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Fig. 12. Simulated (dashed) and approximate predicted (solid) period of antisynchronous
oscillation, plotted versus decay rate of inhibition.

before w g (s10¢) is crossed roughly cancelsthe decreasein w after the crossing. The
error inthe formulaactually increaseswith K dueto driftin w just before wy (s;or)
is reached; this occurs because as s; shrinks, so does K sy, slowing the decay of
inhibition relative to the rate of change of w.

Thisanalysisimmediately generalizesto networks of arbitrary size: if thereare
N oscillators, then (4.7) gives a condition for stability between clustersfor an anti-
synchronous solution of 2 clusters of N /2 oscillators each. Conditionsfor stability
within clustersfor alarger network follow from the analysis of fully synchronized
oscillatorsin[19] and in Appendix B of [13], taking into account that in amutually
coupled network, oscillators receive less inhibition in a clustered solution than in
asynchronized one, since fewer oscillators fire in each oscillation.

4.2. Globally inhibitory networks and other extensions

The next issue to address is how the map IT changes relative to the above for
a solution with antisynchronous E clusters, and a synchronized J population, in
aglobally inhibitory network. Under afew basic assumptions, we find that such a
solution exists and is stable.

We can arrange the dynamics of the J oscillators such that they fire and jump
down following the firing and the falling down, respectively, of the active E clus-
ter. The J then jump up to an excited level and jump down after the excitation has
disappeared. Assume that both E clusters spend the same length of time, z,, in



Clustered firing patterns 541

the active phase after firing. If there are the same number of E oscillatorsin each
cluster or the J dynamics in the active phase does not depend on the number of E
oscillators exciting the J, then all J active phases will have a constant duration, as
we assumed for much of Section 3. In this casg, the total time from the activation
of an E cluster to the moment when the resultant (indirect) inhibition felt by all of
the E oscillators beginsto diminish (vias; = —Ks;) will be constant, call it z,;.
Suppose that a solution consisting of two antisynchronous E clusters existsfor
large K and that one of the clusters, say E1, jumps up to the active phase from the
point (wp (sx), sx). Thetime ¢, that E1 subsequently spends in the active phase
may be computed from the evolution of w = —¢4w with the boundary values
w(0) = wy (sx) and w(t,) = wrg, which yields
_1 I (wL(Sk))
A WRK
The additional time until s; = —Ksy kicksinisthen t;,;, = T, — 2. With the
same definitions as earlier (but w* = wr (1)), IT(wo) is given by the evolution of
w = ¢s(w* — w), with w(0) = wgg, for time tj,;, + t5 + Tw = Taer + 7. ThiS
yields
M(wo) = w* + (wrg — w*)e 57 (254)?5/K.

Here, s; is defined by
wr (sg) = w* + (wg — w¥)e P5Tink (25,)Ps/K (4.12)
This gives afixed point equation which can be written as

WRK )¢s/¢A

4.12
w (sk) (412

(wo — w*)? = (wrk — w*) (WL (s%) — w*) (
As in the previous subsection, we can see that this has a solution by observing that
at wo = w*, the left hand side of (4.12) is less than the right hand side, while at
wo = wgrg (Or wg = wese asin Remark 15) the opposite holds. This last fact

follows since
wrg — w* ( WRK >¢S/¢A
wr(sk) — w wr (s1) '
Likewise,
d
T (wo) = (wrg — w*)e 9T (2sk)¢’5/K ﬂ ISk
Ksi ) dwo

where -4 3 depends on wo and can be obtained from (4.12). In fact, using the nota-
tionin (4. 10), IT'(wg) = A/(—A + B) at an arbitrary fixed point wg, so all fixed
points are stable.

Remark 21. Above, we have assumed a constant length of active phasefor each fir-
ing E cluster and acorresponding fixed length of active phase for the J population.
The analysis becomes more complicated if we allow the duration of the E and J
active phases to depend on s, wo, and the number of E oscillators per cluster.
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Remark 22. We have also extended the computation of the map IM(wp) and its
derivative to a mutually coupled network with indirect coupling and to networks
having an additional variable that evolves on the slow time scale in the silent phase
(and on the fast time scale in the silent phase). Although these changes require ad-
ditional notation and cal culations, there is no technical obstacle to these or similar
extensions. We |leave the details to the interested reader.

5. Discussion

In this paper, we prove that certain conditions imply the existence and stability
of clustered solutions for mutually coupled and globally inhibitory networks of
oscillators with synaptic coupling. The models that we analyze and the assump-
tions that we make about them are motivated by biological experiments on certain
synaptically coupled neuronal networks, exemplified by thoseinvolved in thalamic
sleep rhythms. In the context of sleep rhythms, clustered solutions correspond to
what are known as spindling states, in which clusters of excitatory thalamocortical
relay cellstake turns firing along with a population of inhibitory thalamic reticular
cells[6], [16], [17]. Since thalamic reticular cells are known to have longer active
statesthan relay cells[4], weassumethat the J oscillatorsin our globally inhibitory
networks are active longer than the E. There are also many examples of mutual
inhibitory connectionsin the nervous system; in fact, since thalamic reticular cells
inhibit each ather, our mutually inhibitory network can betaken asareduced model
for reticular interactions during periods of quiescence of relay cells[5].

The results given in Section 3 provide existence and stability conditions that
are stated in terms of a balance of time lengths. These times are associated with
intrinsic properties of the oscillators and their coupling and arise naturally in our
geometric analysis. Many model parameters have clear relationsto the timelengths
of interest. For example, changesin theinhibitory decay ratedirectly effect changes
in the decay time zg, while parameters that alter the speed with which oscillators
evolve in the active phase directly influence the active phase durations tz and 7;.
Many of the results that we present were based on simplifying assumptions made
for ease of notation and clarity. Thereisno technical obstacle to removing these as
desired, as demonstrated in Section 3.6.

In Section 4, we derive amap with afixed point that is an antisynchronous solu-
tion, state a stability condition for any such solution, and provide aformulafor the
period of antisynchronous oscillations. This requires additional assumptionson the
models, but in return we obtain results given directly in terms of model parameters
and phase space structuresthat are directly linked to model parameters. The results
in both sections can be used to generate clustered states numerically, to compute
information about these states, or to predict how changes in parameters will affect
the stable states of a system. The explicit results in Section 4 may be especialy
useful in that they offer insight into the effects of relatively subtle changesin pa-
rameters, such as changesin parametersin f (v, w) that affect the position or shape
of the cubic v-nullclines.

Our results show that the combination of ashort J active phase (relative to that
needed for a stable synchronous solution) and a relatively fast decay of inhibition
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promotes stable clustered solutionsin globally inhibitory networks. To sustain any
oscillation involving asynchronized J population in such networks, it is necessary
to have a sufficiently fast J recovery so that the J are ready to fire in response to
the excitation they receive from E firing; thisis especially true when the decay of
inhibition that releases the E is fast. While the rate of evolution of the E in the
silent phase also affects the number of clusters that can coexigt, this rate does not
affect the period of a clustered solution of afixed type; a period consists entirely
of alternating J active phases and phases of decay of inhibition.

In some sleep states, it may be that a slowly decaying form of inhibition is
the dominant form of coupling to the relevant E population (the relay cells) [17],
[18]. If we gradually decrease the size of K ; to model this slower decay, then the
E oscillators can experience larger and larger changes in their w-values as inhibi-
tion decays. Such effects may result in suppression of particular clusters or other
more exotic solutions. Alternately, a global synchronization mechanism may arise
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Fig. 13. A global synchronization mechanism. Top: voltage versustime for two different £
clustersin a network that begins in the 3-cluster state. The label START marks the start of
thetimeinterval on which the curvesin the bottom figure are defined. Bottom: projection of
thetrgjectories of these clustersto (w, s;) space. After the dashed cluster fires (not shown),
it catches up to the solid cluster.
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in which non-firing oscillators experience great declinesin w asinhibition decays,
such that their w values are still near wzx When afiring group jumps down.

Figure 13 displays a related phenomenon, in which a non-firing cluster (solid
line) experiences a sizeable decrease in w during a period of inhibitory decay, such
that another cluster (dashed line) catches up to it; thiswas generated with the same
equations and parameters as Figures 6 and 8-10 but with smaller K ;. In the con-
text of the n-cluster solutions considered in this paper, a comparison of the flow
of (3.1) to that of (3.2) provesthat slow decay of inhibition enhances compression
within clustersin the silent phase. At the same time, slow decay of inhibition may
pull separate clusters closer together, asin Figure 13, having an overall effect of
destabilizing a clustered state in favor of a synchronous state or a state with fewer
clusters. The full treatment of these effects would require combining the analysis
in this paper with that in [13] and [19].
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