Nonlinearity13 (2000) 77-112. Printed in the UK Pll: S0951-7715(00)01587-5

Existence and stability of standing hole solutions to complex
Ginzburg—Landau equations

Todd Kapitulat and Jonathan Rubin%

T Department of Mathematics and Statistics, University of New Mexico, Albuquerque,
NM 87131, USA
T Department of Mathematics, Ohio State University, Columbus, OH 43210, USA

E-mail: kapitula@math.unm.edu andjrubin@math.ohio-state.edu

Received 1 February 1999
Recommended by S Fauve

Abstract. We consider the existence and stability of the hole, or dark soliton, solution to a
Ginzburg—-Landau perturbation of the defocusing nonlineard&tthger equation (NLS), and to the
nearly real complex Ginzburg—Landau equation (CGL). By using dynamical systems techniques, it
is shown that the dark soliton can persist as either a regular perturbation or a singular perturbation
of that which exists for the NLS. When considering the stability of the soliton, a major difficulty
which must be overcome is that eigenvalues may bifurcate out of the continuous spectrum, i.e.
anedge bifurcatiormay occur. Since the continuous spectrum for the NLS covers the imaginary
axis, and since for the CGL it touches the origin, such a bifurcation may lead to an unstable wave.
An additional important consideration is that an edge bifurcation can happen even if there are no
eigenvalues embedded in the continuous spectrum. Building on and refining ideas first presented by
Kapitula and Sandstede (1998ysicaD 12458-103) and Kapitula (19981AM J. Math. Anal30
273-97), we use the Evans function to show that when the wave persists as a regular perturbation,
at most three eigenvalues will bifurcate out of the continuous spectrum. Furthermore, we precisely
track these bifurcating eigenvalues, and thus are able to give conditions for which the perturbed
wave will be stable. For the NLS the results are an improvement and refinement of previous work,
while the results for the CGL are new. The techniques presented are very general and are therefore
applicable to a much larger class of problems than those considered here.

AMS classification scheme numbers: 30B10, 30B40, 34A05, 34A26, 34A47, 34C35, 34C37,
34D15, 34E05, 35K57, 35P15, 35Q51, 35Q55, 78A60

1. Introduction

The standard model for the propagation of pulses in an ideal defocusing nonlinear fibre without
loss is the cubic nonlinear Sdidinger equation (NLS)

i — 300 — & +191° =0, (1.1)
for x € R. It supports the dark soliton solution, which is given by
@ (x) = tanh(x). (1.2)

If loss is present in the fibre, then the dark soliton will cease to exist. Thus, at a minimum
amplifiers must be used to compensate for the loss. The effects of linear loss in the fibre as
well as linear and nonlinear amplification of the wave along the fibre will be incorporated into
the model. The issues to be discussed in this paper are the persistence of the dark soliton
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under perturbation, and the stability of the persisting solution relative to the partial differential
equation (PDE). In this paper, we shall concentrate on these issues for a particular perturbation.
We emphasize, however, that the methods and ideas presented herein are general, and they are
applicable to a much larger class of problems. Here we will consider a perturbed NLS (PNLS)
which is given by

iy — 3¢er — & +101°p = ic(3d10bxx + dogp + d3|¢|°p + dalg|*), (1.3)

wheree > 0 is small and the other parameters are real and(@j @ ¢. The non-negative
parametetl; describes spectral filtering; describes the linear gaid{ > 0) or loss ¢ < 0)
due to the fibre, and; andd, describe the nonlinear gain or loss due to the fibre. The stability
of waves to the PNLS has recently been studied by Burtsev and Camassa [4], Chen and Chen
[5], Ikedaet al[22, 23] and Lega and Fauve [38].

A related equation is the nearly real complex Ginzburg—Landau equation (CGL)

O — 30 — @ +101°p = i€ (3digy + dogp + 3|12 + dalg| D). (1.4)

where agaire > 0 is small and the other parameters are real and(@f.Orhe CGL governs

the nonlinear evolution of perturbations of a simple solution of a basic system of PDEs at near-
critical conditions, provided that the basic system satisfies some generic conditions (Eckhaus
[14]). The CGL has been proven to be valid in an asymptotic sense for a large class of systems
(Collet and Eckmann [7], van Harten [20], Bollermanal [2], Mielke and Schneider [42],
Schneider [48, 49]). The CGL results from an asymptotic expansion, and equation (1.4) with
ds = 0 is only the Q1) part of a more extended equation. The inclusion ofdhéerm is

a means of modelling the effect of small, nonlinear higher order corrections (Doelman [10],
Poppet al [43], Stilleret al[51, 52]).

For the purpose of simplifying the subsequent calculations, we will focus solely on
standing wave solutions in this paper (in the appropriate rotating reference frame; see
remark 2.1). However, the techniques and ideas presented herein can be used to study the
stability of travelling solitons (for the existence of such waves, see Doelman [10]). Studying
the existence of steady-state solutions to equations (1.3) and (1.4) amounts to determining the
solution structure for the equation

—1¢" — ¢ +91%p = ie(3d1” + dogp + ds|$|°p + dalg|*9) (1.5)
(' = d/dx). To do this, one can set

¢(x) = r(X)eXD{i /X v(s) dS},
0

and then study trajectories in tlie »’, ¥) phase space. This task has been done in a series
of papers, of which Doelman [8-10], Doelman and Eckhaus [11], Duan and Holmes [13],
Holmes [21], Jonest al [26], Kapitula [30, 32], Kapitula and Maier-Paape [34], Matcpl
[40] and Van Saarloos and Hohenberg [46] are a sample. In section 2 we prove the following
theorem regarding the persistence of the wave given by (1.2). The result is not entirely new, as
it is alluded to by Doelman [10]. To determine the stability of the perturbed waves relative to
the PDEs, however, we need more detailed asymptotic information than that which is provided
in [10].
Theorem 1.1. Suppose that

dy +dz+dy = —€%0*(€) — o,
where

0*(0) = —2(d1 +da + 2da)*(dy + ds + 2dy).
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Suppose thate?o*(€) + o) (d1 + dz + 2ds) < 0. If ¢ = 0, then the wave persists as a regular
perturbation, with the asymptotic expansion

r(x) = ®(x) + O(?)
Y (x) = 3((d1+d3 +da)®(x) + 2ds3(x)) € + O(e®).
If o #£ 0, then the wave persists as a singular perturbation.
Remark 1.2. Wheno # 0, the radial profile of the wave will have a ‘shelf’ [4, 5, 22, 23].

Remark 1.3. The wave—®, which exists fore = 0, persists under the same conditions; our
analysis shows that it has the same stability characteristidsssswvell. For concreteness, we
will simply refer to @ throughout this paper.

It seems that all previous attempts to consider the stability of the wave, especially for the
PNLS, have ignored the fact that the wave persists as a singular perturbation except on the
regular perturbation manifold + ds +ds = —e?0*. If the parameters do not lie on the regular
perturbation manifold, then it may be the case that the ‘shelf’ can influence the stability of the
wave. One possible way of attacking this problem may be through the topological methods
first introduced by Jones [24] and Alexandral [1], and later used in a variety of contexts
by, for example, Bose and Jones [3], Doelnwral [12], Gardner [16], Gardner and Jones
[17, 18], Rubin [44] and Rubin and Jones [45]. This issue will not be addressed in this paper
and will be a topic of future study.

For stability analysis, we suppose here that the wave does persist as a regular perturbation.
Since the equations under consideration are posed on the unbounded real line, the spectrum
of the linearization about the wave contains a continuous spectrum corresponding to radiation
modes. Inaddition, the spectrum may contain several isolated eigenvalues of finite multiplicity.
Because of the translation and rotation invariance of the PNLS and CGL, zero is an eigenvalue.
It is not, however, an isolated eigenvalue. Whes: 0, the continuous spectrum for the NLS
covers the imaginary axis, while that for the CGL covers the negative real axis. Furthermore,
there are no point eigenvalues in the open right half-plane for either equatioa.A#0¢ the
origin is still contained in the continuous spectrum. By choosing the parameters appropriately,
one can bound the continuous spectrum in the closed left half-plane. To determine the stability
of the wave fore # 0, it is thus necessary to locate the point eigenvalues. There are standard
tools available which can be used to determine the fate of isolated eigenvalues (see, forexample,
Kapitula [33]). However, it is a difficult and non-standard problem to determine the conditions
under which eigenvalues can bifurcate out of the continuous spectrum, i.e. conditions under
which anedge bifurcatiorcan occur. The primary issue of this paper is the detection of such
eigenvalues. We emphasize that an edge bifurcation may occur even if the corresponding
eigenfunctions in the unperturbed problem are not localized.

We now turn to an outline of our approach for locating eigenvalues. In many respects it
follows the approach presented in Kapitula and Sandstede [36], where the stability of solitary
wave solutions for the focusing NLS is studied. The major tool that we use is the Evans
function, E(1). The Evans function is a complex-valued function depending enC with
the property tha (1) = 0 wheneven is an isolated eigenvalue. It is only definagbriori
away from the continuous spectrum, so it is not immediately clear that it can be used to
locate embedded eigenvalues and detect edge bifurcations. However, as an application of the
Gap lemma, discovered simultaneously and independently by Kapitula and Sandstede [36]
and Gardner and Zumbrun [19], the Evans function can be analytically extended across the
continuous spectrum. The analytic extension can then in theory be used to locate embedded
eigenvalues and to track them under perturbation.
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Inthe problems considered so far, it turns out that the continuous spectrum corresponds to a
branch cut for the Evans function. Furthermore, in these problems itis only at the branch point
that the Evans function has an embedded zero, so only from there can an eigenvalue bifurcate.
For the problems under consideration both in this paper and in Kapitula and Sandstede [36],
whene = 0 the edge of the continuous spectrum is a branch point of order one, i.e. near the
edge of the continuous spectrum we can Whte.) = f (/A — Ay), Where f(.) is analytic
andA, is the branch point. In [36] the stability of the solitary wave to the perturbed focusing
NLS was considered. It turned out that for a suitably scaled eigenvalue parameter that near
the branch point, = iw the Evans function could be written as

E(,€) =+A—iw+ Ae,

whereA € C depended upon the particular perturbation. Thus, for that problem at most one
eigenvalue could pop out of the continuous spectrum.

To determine the location of the zerosifr) near,, for those problems in which more
than one eigenvalue can pop out of the continuous spectrum, one would like to write the Evans
function as the series

oo
E(y)=Y_any". y?=1—
n=0

and then locate its zeros. This task can be accomplished if one can derive asymptotic
expressions for the coefficients of the series. Fortunately, by suitably modifying the ideas
and methods of Kapitula [33], which were developed for doing Taylor expansions around
isolated eigenvalues, we are able to derive such expressions. Once the zeros of the expansion
have been located, we take those zeros that lie on the correct sheet of the appropriate Riemann
surface and invert to find the eigenvalues for the system. The interested reader should consult
section 3 for more details.

It turns out, for both the PNLS and the CGL, that wher= 0 the Evans function has
a branch point ai. = 0 and is non-zero everywhere else in the closed right half-plane.
Furthermore, whea = 0 the Evans function has the expansion

E(y) = Ay3+0(%,

whereA € R andy is a suitably defined function affor A near zero (see section 3 for details).

Thus, for the regularly perturbed problem, there will be three zeros of the Evans function near

y = 0, and hence there will be at most three eigenvalues in this region. By computing the
lower-order terms in the series, we are able to locate these eigenvalues and assess the stability
of the hole solution. As the following theorem illustrates, for the PNLS there are at most two
eigenvalues which bifurcate out of the branch pairt 0 and leave the continuous spectrum.
Furthermore, thd, term must be non-zero (specifically, negative) for the wave to be linearly
stable.

Theorem 1.4.Suppose thaf, +dz + ds = —e%0*(¢), whereo* is given in theorem 1.1. Also,
assume thatz + 2d, < O.

(a) Suppose thaf; > 0, and setP;y = d; /d;. If
P3 < —éP41 -1

then the linearization of (1.3) about the perturbed wave yields a posiike real
eigenvalue given to leading order by

4 (1+ P31+ 4Ps/5)?
M =—(d3+2d 1+— —1])e.
1 ( 3 4)(\/ 9 (P31+2P41)2 €
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Figure 1. Positive zeros o (1, €) for the NLS ¢; > 0). The size of the zero is given in the
legend on the upper right-hand corner. For further information, see the statement of theorem 1.4.

Furthermore, if
Psi>—2Pu—1, P31 > —2Py — 3,

then there is a positive(e®) real eigenvalue which is given to leading order by

)4 3
A= ——""—€",
2(P31+ 2P41)
where
. 2
7 = 3d3(1+ Pay+ £ Pay)"(3 + Par + 2Psy).

Otherwise, the wave is linearly stable, as no other eigenvalues bifurcate from the

continuous spectrum (see figure 1).
(b) Ifdy = 0, then the wave is linearly stable as a solution of (1.3)fif+4d, > 0; otherwise,
there is anO(¢) eigenvalue which is given to leading order by

2
A= —(d3+2d4)<\/1+f—(d3+4d4/5) - 1) €

9 (dz+2ds)?

Remark 1.5. The condition that/; > 0 andds+2d, < 0 ensures that the continuous spectrum
is contained in the closed left half-plane for- 0 and small.

Remark 1.6. If d4 = 0the wave is linearly unstable, with an&) eigenvalue ifP3; < —1 and
an Q%) eigenvalue if-1 < P3; < 0. Furthermore, the wave is linearly unstablé,f> 0.
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Remark 1.7. If the wave is linearly stable, and if
(d1+ds+ 2dy) (dy +ds + 2ds) < O,

then by applying the results presented in Kapitula [29] one can conclude that the wave is
nonlinearly stable. The details will be left to the interested reader.

Before we discuss the stability of the wave for the CGL, a few comments are in order.
There have been many recent efforts to determine the stability of the dark soliton for the
perturbed NLS by using an adiabatic approach [4, 5, 22, 23, 38]. We show in section 5.5 that
with the adiabatic approach, the wave is predicted to be stable if &oth2d, < 0 and
di +d3 +6d4/5 > 0 hold. Ifdy = 0, then this approach is consistent with the result of
theorem 1.4 in that it correctly determines the stability of the wave up(&.However, it
does not predict the existence of thé<€) instability; this is not surprising, as the adiabatic
approach is only meant to understand the dynamics on a time scalél6f)O If dy # O,
then the adiabatic analysis contradicts the rigorous results presented in this paper, even at
the Q(¢) level. This contradiction implies that the original adiabatic ansatz for the slow-time
variation displayed by the wave must somehow be incorrect (see section 5.5 for more details).
In some way the parametdj has the same effect on the stability analysis for the perturbed
wave as it has on the solution structure for the steady-state problem, i.e. it breaks some kind of
‘hidden symmetry’ (see Doelman [10]). This topic would be an interesting avenue for further
research.

When considering the stability of the wave to the CGL, the primary difficulty is that the
resulting Evans function is not as easy to factor as that associated with the PNLS. As such,
for general parameter values the location of bifurcating eigenvalues cannot be put into an
easily readable form. However, one can determine for which ranges in the parameter space
there will be eigenvalues with a positive real part; as with the PNLS, it turns out that at most
two eigenvalues bifurcate from the continuous spectrum. As can be seen from the following
theorem, a primary difference between the PNLS and the CGL when considering the stability
of the hole solution is the order of the eigenvalues. In general, the instability will grow much
more slowly for the CGL than for the PNLS.

Theorem 1.8. Suppose that, + ds + ds = —e?0*(¢€), wheres* is given in theorem 1.1. Set

. 3da-—3 , V125+11
Mo = 5 ) o = ————
"2 1¥a 2

(u! =—1.716 u, = —1.385).
(a) Suppose that; # 0, and setP;y = d;/d1. If
(3 + Pa1+2Pa1) (1 + Py + £ Pa1) > O,
then the wave is linearly stable; furthermore, if
di(1+ P+ §P41) > 0, di(—uy, + Pa1+2P4) > 0
or
di(1+P3 + gP41) <0, di(—u, + Pa1+2Py) <0,
then there is a complex pair (%) eigenvalues with a negative real part. If

(3 + Pay+ 2Pay) (1 + Pay+ £ Pag) < O,
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B

P,+2P, =-3/2

Figure 2. Zeros of E(A, ¢) for the CGL @1 > 0). The configuration of the zeros matches that
shown in the legend in the upper right-hand corner.

then there is one positive re@(e*) eigenvalue for the linearized problem, and the wave
is linearly unstable. Finally, no other eigenvalues bifurcate from the continuous spectrum
than those described above (see figure 2).

(b) Suppose that; = 0 and set

a = (d3 + 2d4) (d3 + gd4)
If a > 0, then the zeros of the Evans function inside the céhage given by
A23 = (—0.595+ 0.255i) a?e*,

and the wave is linearly stable as a solution of (1.4): K 0, then the zero of the Evans
function insideX is given by

2 = 1.191a%,

and the wave is linearly unstable.

Remark 1.9. The continuous spectrum remains in the closed left half-plane for all values of
di, ...,dsaslong ag > 0 is sufficiently small.

Remark 1.10. The sign of the parametarcorresponds to the manner in which the wave is
constructed in thér, r’, ) phase space. The interested reader should consult section 2 for
more details.
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Remark 1.11. If the wave is linearly stable, and if
(d]_ +d3+ gd4) (d]_ +d3+ 2d4) <0,

then by applying the results presented in Kapitula [29] one can conclude that the wave is
nonlinearly stable. The details will be left to the interested reader.

The remainder of this paper is organized in the following manner. In section 2 the
conditions for the persistence of the wave are derived through the use of dynamical systems
technigues. Insection 3we derive the expressions which allow us to compute Taylor expansions
at the branch point of the Evans function. This section is relatively self-contained and can be
skipped on a first reading. In sections 4 and 5 we calculate the Taylor expansion for the Evans
function for the CGL and the PNLS, respectively. Theorem 1.8 follows from lemmas 4.6
and 4.8. Theorem 1.4 follows from lemma 5.6. Section 5 concludes with a brief discussion
comparing the approach of this paper with the previous adiabatic approaches.

Remark 1.12. Recently, Li and Promislow [39] independently and simultaneously used some
of the ideas present in this paper to study the stability of waves to the equations describing
pulse propagation in linearly birefringent, lossless fibres.

2. Existence and persistence

The steady-state problem for both the PNLS and the CGL is given by

—3¢" — ¢ +191°¢ = ie(3d19" + dotp + d3|d|*¢ + dalp|"9) (2.1)
(' = d/dx). For the existence of the hole solution, which is given by

®(x) = tanhx (2.2)

whene = 0, we will want to consider the problem in polar coordinates. Set

o(x) =r(x) exp{i /x ¥ (s) ds} (2.3)
0

to obtain (after dropping higher-order terms that do not affect subsequent calculations) the
three-dimensional system of ODEs

r=s
s' = =2r(L—r?) +ry® — 26°dir (do — dy + (dy + d3)r? + dar™) 2.4)
W = —224 — 2e(dy — dy + (dy + dz)r? + dar®).

r

For the system (2.4) there exist two critical manifoldt®, which whene = 0 are given
by

Mat:{(r,s,W):r::t\/m, W2<%}§ (2.5)

we restrict toy? < % in (2.5) so that the manifolds1= are normally hyperbolic. Each critical
manifold of (2.4) has a two-dimensional unstable maniféifd (M=), and a two-dimensional
stable manifoldW* (M%), which are smooth perturbations of the centre-stable and centre-
unstable manifolds which exist when= 0 [15, 25]. As will be seen, it can be shown that
WH(MI)NWS(M?) # B, and, by the symmetry, s, ¥, x) — (r, —s, —¢, —x), W*(MHN

WS (MZ) # @, both for 0< € < ¢ for someeg > 0. These relationships are clearly satisfied
whene = 0, as demonstrated by the existence of the waw®s Assuming that the relevant
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manifolds intersect, the wawe will persist as long as the parameters are chosen so that critical
points exist onM= (also see Doelman [8, 9]). Depending on how the parameters are chosen,
there will be zero, two or four critical points ok(= (counting multiplicities). The condition
Y2 < % implies that the critical points om= correspond to stable periodic solutions to (2.1)
[28, 31].

To prove the existence of multiple orbits bifurcating from the original heteroclinic cycle
with the constraint that the orbits remain within a small tube of the original cycle, it will be
useful to set

dy+ds+ds = —(e?0* +0), (2.6)
whereo *(¢) is such that
0*(0) = —3(dy +ds+ 2da)* (dr + d3 + 21ly), 2.7)

as in the statement of theorem 1.1. It will henceforth be assumed that the parameteie
small, is independent ef

Remark 2.1. Equation (2.6) is not a parameter restriction for the CGL, as it can always be
achieved by going into an appropriate rotating reference frame, i.e. by letting¢€”’ in
equation (1.4) for a suitable value @before seeking a steady state. However, itis a restriction

for the PNLS, and determines a balance between the linear loss and nonlinear loss and gain
terms.

Substituting relation (2.6) into the ODE (2.4) yields
r=s
s' = =2r(L—r?) +ry® + 26%dyr[(dy + d3) (1 — r?) +dy(1 — r*) + €%0™ + 0] (2.8)
W' = =224 + 2e[(dy + da) (1 — r2) + da(1 — 1) + 20" + o).

r

Since the lowest order at whiehappears in (2.8) is at @) in the yr-equation, the effect of
o on perturbation calculations will only be felt at(©+ )¢, except in terms of the location
of critical points onM,, which is discussed below. Hence, for many of the perturbation
calculations that follow, the role ef can be ignored.

The following two propositions detail the relevant behaviourdif. The proofs can be
found in Kapitula [32] and hence are omitted.

Proposition 2.2. Suppose thaf, + ds + d4 = —(e?0* + ) and that
(620* + 0)(d1 +ds + 2d4) < 0.
Then a pair of critical points ooV} [M_] are given by(r}, 0, £y *) [(r*, 0, £¢*)], where

T 1+1 0¥ +o
ry = -
+ 2dy+ds+2d,

b= |2 €20* +o
- dy+dz+2d, ’
Proposition 2.3. When0 < € < 1, the manifoldsMZ intersect the--axis. Further, there

existss, with 1 > § > 0, such that for—(y* +8) < ¥ < y* +§ the flow onMZ is given by
V' = €((dy +dz + 2da) 2 + 2%0* + 20).
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Proposition 2.2 gives a condition for the existence of critical pointd¢h It remains to
show thatW* (M) N W* (M) # @ for smalle # 0. Let=) = {(r, s, ¥) : r =¥ = 0}. The
hole solution belongs t&) atx = 0, with s(0) # 0. Whene = 0, the manifoldW* (M?)
intersects the curv&) transversely in(r, s, ¥)-space, sincév*(Mg) is transverse to the
invariant{y = 0} plane. Thus, the intersection will persist fot£ 0 sufficiently small. Due
to invariance undetr, s, ¥, x) — (—r, s, —y, —x) and the fact thai(0) £ 0 along thes = 0
solution, it can then be concluded that not only dB&g.M_) also intersecE/ transversely,
but W*(M7) N WS(M?) # @ as well. Hence, the hole solution will persist for£ 0 and
small. The result is not new (for example, see Doelman [8]). To determine the stability of
the wave, however, more information about the wave must be known than has previously been
given.

In the remainder of this section, we finish the proof of theorem 1.1 by showing that for
o = 0 the perturbed wave arises as a regular perturbation, and then compute its asymptotics.
We conclude with a discussion of how the nature of the intersection that yields the wave differs
in various parameter regimes; this is where proposition 2.3 is useful.

Let an underlying hole solution be denoted(®;, S, ). When evaluated at= o = 0,
the variational equations associated with (2.8) are given by

8r' = 8s
8s' = —2(1— 3R? — W?/2) 6r + 2RW 81
Sy’ = (2R/\IJ/R2) 8r — (2¥/R) 8s — (2R'/R) v

+2[(dy + d3)(1 — R?) +ds(1 — RY)] 8¢ (29)
8¢’ =0
so’ =0.
Since the solution belongs ®) atx = 0 even fore # 0, it is of interest to determine the
location of the curvez) as the flow carries it up to the slow manifold?. Specifically, we
wish to determine the¢ -coordinates of the points &l as they approach;. Using the fact
that they -coordinate ofx/ is identically zero whem = 0, by performing a Taylor expansion

we can write thaty = v.€ + O(e?). From evaluation of the variational equations over the
€ = 0 hole solution®, we find thaty, satisfies the initial-value problem

(@%Ye) = 2[(d1 +ds) (1 — D?) +da(1— dH]D?
(@%Y)(0) = 0.

Upon integrating, it is seen that
Yex) = §((d1+d3 +dg) D(x) + 2dg®°(x)). (2.11)

Let 0 < v « 1 be given, and leT, > 0 be such that + ®(7,) = v. Thatis,T, denotes
a time when the curv&/ is within O(v) of the slow manifoldM?. Upon evaluating the
expression fory, atT,, it is seen that

Ve(T,) = §(dy +d3 + 2ds) + O(v). (2.12)
The following proposition has now been proved.

Proposition 2.4. At the timeT, such thatl — ®(7T,) = v, the image of the curvE’ under
the flow is within arO(v) distance of the slow manifolgi;, and they -coordinates of points
on the image ok} are given by

v = [%(dl tdz+ §d4) + O(U)]G + O(e +0)e,
where0 < ¢, v « 1.

(2.10)
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First suppose that = 0. As a consequence of the manner in whicthas been chosen
(see equation (2.7)), an application of propositions 2.2 and 2.4 yields that the wave will persist
as a regular perturbation. This is due to the fact that the critical point&1rmatch the
expression given in proposition 2.4. The following lemma gives the necessary asymptotics for
the perturbed wave. The proof is a standard application of perturbation theory, and hence will
be left to the interested reader.

Lemma 2.5. Suppose that = 0. The perturbed wave then arises as a regular perturbation
and satisfies

r=®+r.e?/2+ 0@
¥ = e + O,
where
Ye(x) = §((d1+d3 +da) D(x) + 2da®>(v))
and
Fee(¥) = 552[~5(10(d1 + da)” + 40(ds + d3)da + 3%Z) D (x)
+8d,(5(dy + d3) + 8ds) @3 (x) + 3d5D°(x) + 12d4(5(dy + d3) + 8ds)x D' (x)]
+2d1[2d4® (x) — 3(dy + d3 + 2da) x D' (x)] D' (x).
Remark 2.6. Note that
Nim @ree £y5H @) =0.
This fact will be important in later calculations which deal with improper integrals.

For the rest of this paper, set
vl = lim (). (2.13)

Note that by symmetry, liny, _o ¥ (x) = —y. Upon doing a linear stability analysis of the
critical points onMZ, one notices the following facts. If

(d1+ds+ 8dy)(dy +ds + 2ds) <O, (2.14)

then the wave will be realized as the intersection of a two-dimensional unstable manifold with
a two-dimensional stable manifold in the three-dimensional phase space. Alternately, if

(d1+ds+ 2dy) (dy + ds + 2d4) > 0, (2.15)

then the wave is realized as the intersection of a one-dimensional unstable manifold with
a one-dimensional stable manifold in the three-dimensional phase space. In other words,
if equation (2.14) holds, then the trajectory out of the cuB/eintersects the strong stable
manifold of the pointr}, 0, ey)); furthermore, the critical point is an attractor on the manifold
M. This is indicated by proposition 2.3, which gives the flow.ofi for || « 1, and by
proposition 2.4. If the parameters satisfy equation (2.15), then the critical point is a repellor
on the manifoldM? (see figure 3). As we show in sections 4 and 5, this structure plays a role
when discussing the stability of the wave.

Now suppose that = 0. In this case, the wave arises as a result of a singular perturbation,
sincey (T,) # +y* at leading order i (i.e. £y * are no longer @) close to 0). Formally,
this means that the wave must then be constructed through a matched asymptotic expansion
using multiple spatial scales. #o* > 0, then the resulting wave can be thought of as a
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M g r a< O
W
4>—. <
|\
Me
M g r a> O
<« . >
~
, v

Figure 3. Projected flow ontds = 0} (a = (d1 + d3 + 2d4)(d1 + d3 + 8d4/5)). The dotted curve
represents the solution whose stability is studied in this paper.

concatenation of the solutish with solutions tracking along close to the slow manifales .

The radial profile of the solution will have a ‘shelf’ at the point at which it approachés

(see [4,5, 22, 23] for a discussion of the shelf in the context of the NLS and nonlinear optics).
Furthermore, the perturbed wave will stay within a@{tube of the original{ = 0) waved.

Now suppose thato* < 0. If equation (2.14) holds, then the wave will stay within aeD

tube of®. If (2.15) holds, however, then the wave will travel alofg to a critical point (if

it exists) outside this tube.

3. Derivatives at branch points

Consider the linear operator

L = B>+ P(x)d, + N(x), (3.1)
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whereB is an invertiblen x n matrix whose eigenvalues have a non-negative real part, and
P(x) andN (x) are smooth: x n matrices satisfying

lim P(x) = Py, lim N(x) = Ny,
x—+00 x—+00

with the approach being exponentially fast. Upon setife= [u, u']”, where’ = d/dx, the
eigenvalue equatiohu = Au can be rewritten as the first-order system

Y = MG, x)Y, (3.2)

with

MG _ 0 id
(. %) = —BYN@)—rid) —BlP(x) |

In this section, we define an Evans function for the operdtor We do this under
assumptions which imply that at least one of the matrides)) := lim,_, .o, M (A, x) has
a pair of eigenvalues that produces a branch point for the Evans function at a fixed value of
A. In this context, we develop a technique for differentiating the Evans function at this branch
point. This method then allows us, in sections 4 and 5, to derive perturbation expansions on a
Riemann surface for particular Evans functions around branch points. These expansions are
crucial in locating eigenvalues for the corresponding linear operators.

3.1. General assumptions and definition of the Evans function

Consider the linear eigenvalue problem (3.2) whif@., x) € C¥**2" is smooth inx for each
fixed A and analytic irk for each fixedc. The following assumptions will be made afi(x, x).

Assumption 3.1. The matrixM (1, x) satisfies:

o lim, 1o M(A, x) = My+()), with an exponentially fast approach.

e If Rer > 0, thenM_ (1) hasn eigenvalues with a positive real part amdeigenvalues
with a negative real part.

o A pair of eigenvalues fol. (1) are +4/b(1), whereb()) is analytic atA = 0 with
b(0) = 0andbd’(0) # 0, while the othe2n — 2 eigenvalues are analytic at = 0 with
non-zero real parts.

e When put into Jordan canonical formy.(0) has the blocl{g é]

The second of these assumptions is not necessary, but it holds for the applications of
interest and we make it to simplify the notation. The third and fourth assumptions imply that
a pair of eigenvalues a¥f. (1) forms a branch point of the Evans functiomat 0. Later in
this section we will slightly relax the third and fourth assumptions such that this holds for only
one of the matrices?.. (1) (see remark 3.6). Taken together, the statements in assumption 3.1
imply that if M (1, x) is derived from the first-order system representation of a linear operator
L, then{0} € o.(L) and is on theedgeof the continuous spectrum (see also [35, 36]). Finally,
we note that while it will not be done here, it may be possible to extend the theory to the case
whereM_..(0) have several Jordan blocks of the type given above. This could be useful when
discussing the stability of waves satisfying viscous conservation laws [19].

We now construct the Evans function following the ideas presented in [1]islfhot in
the continuous spectrum, then the matriges(i) have no eigenvalues with a zero real part.

If each has: eigenvalues with a positive real part amdvith a negative real part, then it is
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possible to define solutiong; (A, x) to equation (3.2) which are analytic insuch that for
i=1...,n

lim 1Y;(, x)| =0, YiA, 0 A AY,(A,0) #£0,
andfori=n+1...,2n

Following Alexanderet al [1], the Evans function is independent ofand is given up to
constant multiplication by

EQ) = Yi(h, 00 A--- A Yo (2, 0).

If E(Lg) = 0, then there exists a solution to (3.2) which decays exponentially fast as oo,
and hence,q is an eigenvalue fok.

If A isinthe continuous spectrum, then at least one of the mat¥ig€s) has an eigenvalue
with zero real part, and the above construction breaks down. Recently, Kapitula and Sandstede
[36] and Gardner and Zumbrun [19] concurrently and independently establish&glafhe
lemma which shows that the Evans function can be analytically extended into the essential
spectrum. The analyticity of the extension fails precisely when assumption 3.1 holds, as in
this case the Evans function has a branch point.

In many applications, one of which was considered in [36], the branch point is located
on the imaginary axis. Thus, under a perturbation of the wave, it is possible for eigenvalues
to move out of the branch point and into the right-half of the complex plane, leading to an
instability. In other words, aadge bifurcationmay occur [35]. To locate any such bifurcating
eigenvalues, our strategy is to do a Taylor expansion for the Evans function in the vicinity of the
branch point and then to locate the zeros of the resulting polynomial; to expand appropriately,
we must account for the presence of the branch point [41]. In particular, if a pgista
branch point of ordet — 1 for the Evans function, then by settipg= (A — 10)*/* one obtains
an expansion around the branch point of the form

E(y)=)_any". (3-3)
n=0

One can then find the zeros f@i(y) and use the inversion relation= Ao + y* to find the
zeros forE (A). The inversion must be done very carefully, however, as the zeros of the series
(3.3) do not necessarily all correspond to eigenvalues for the linearized problem (3.2).

Let K c C be a simple closed curve which encircles the branch pginsuch that no
zeros of the Evans function belong koitself. Furthermore, leK be such that it encloses all
the possible zeros df (1) which are contained in the right half-plane. The existence of such
a curve is guaranteed by a result in Alexaneleal [1]. To be able to write the Evans function
as the infinite series given in equation (3.3), one must be able to define the Evans function
on ak-sheeted Riemann surfa®y . The surfacékx is constructed in the following manner
[41,50]. LetKo, K1, ..., Ki_1 be copies ofK cut along the non-positive real axis. L&?t
denote the upper and lower edges of the non-positive real axis regarded as the boukgary of
and let

(v = 20)Y* = |1 = rolY* expli(argr — ro + 2j7) /]

onK;. Now pasteS, tos;, 8; t0s3,...,8,_,t08;_,, and finallys, , tos;. The resultis a
k-sheeted Riemann surfad¥, with the sheets coming together at the branch poiat Ao.
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The Gap lemma [19, 36] implies that the functiBii\) extends analytically to the surfag,
and hence the series is valid. For the zeros of the series (3.3) to correspond to eigenvalues,
they must lie on the correct sheet of the Riemann surface. In particular, they must satisfy

—% <argy < %, (3.4)

so that they are located on the sh&gt Zeros of the series on other sheets correspond to the
existence of solutions of (3.2) that are not eigenfunctions.
Under assumption 3.1, the Evans function will be defined on a 2-sheeted Riemann surface.

To take into account the fact that a pair of eigenvalueXefi) has a branch point at= 0,
set

y2=b0). (3.5)

By the assumptions on the matrickfs (1), for Rex > 0 there exist squtioanil A, x),i=
1,...,n—1, such thaﬂ (/\ x)| — 0 exponentially fast as — +oo. From the third
assumptlon and equat|on (3 5), there also exist solulighg/, x) which satisfy

Nim YE (.0 e = vi (). (3.6)

The vectora=(y) are analytic iny and satisfy

ML(P)vE(y) = Fyvi@). 3.7)

Using the definition ofy from equation (3.5), the Evans function on the Riemann surface is
given by

E(y)= (Y, AY; AY]AY])(7,0), (3.8)
where

Vi, = (Yi A A Y ), 0),

We make a further assumption to allow the possibility of bounded and/or exponentially
decaying solutions to equation (3.2)at= 0; this is not a restriction, since we allow= 0,
but simply sets up the notation to handle such solutions.

Assumption 3.2. The slow solutions satist,” (0, x) = Y,*(0, x). Furthermore, there exists
ak, with0 < k <n — 1, such thaty; (0, x) = ffi(O,x) fori =0,....,k

Remark 3.3. If {0} ¢ o.(L), thenk would be the geometric multiplicity of the eigenvalue
A=0.

The functlonszi (y, x) are analytic in. atA = 0; hence, their derivatives with respect to
y are related to derivatives with respecttoy the chain rule, and when evaluated at y = 0
satisfy

2m~y, (Zm)l my,t
m! 3"Y -(0,x) = b/(O)m 0y Yf,i(O,x). (3.9

The solutionsY,*(y, x) are not analytic ik at > = 0; however, by the assumptions on the
eigenvalues of\/, (1) they are analytic iy [41]. SinceY, (0,x) = Y,"(0, x), we have
E(0) = 0 from (3.8). As a consequence of assumption 3.2 and equation (3.9), we expect that
92*1E(0) # 0 with 9y E(0) = 0 for 0 < j < 2k. Proving this conjecture will be the focus of
the next two subsections.
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3.2. Derivatives of the slow components

The definition of the Evans function in (3.8) is based onsblutions of equation (3.2).

We can specify a related set of Ainearly independent solution@:y, ..., uy,} to (3.2) at
A = 0, which are useful for differentiating components of the Evans function, as follows.
Setu; (x) = ij,.(o,x) fori = 1,...,k. The existence ot independent solutions which
grow exponentially fast als| — oo is guaranteed by a result in Gardner and Jones [17]; let
u;(x), i =k+1,..., 2k be these solutions. Now set

ug+i () = Y3, (0, x), i=1...,n—k—-1

Up+k—1+i (X) :Y;kﬂ(o,x), i=1...,n—k—1.

Finally, setuy,_1(x) = Y,7(0, x), and letuy, (x) be chosen so that
u1(0) A -+ Aup,(0) = 1. (3.10)

Now, the(2n — 1)-form exp(— fox tr M(0, s) ds)ui(x) A- - - Aug,—_1(x) induces a solution
uj, (x) to the adjoint equation associated with equation (3.2); furthernadréy) - uz, (x) = 1
[1,33,47]. In all of the examples having the branch point structure under consideration of
which the authors are aware, this particular adjoint solution is bounded above and bounded
from zero agx| — oo; hence, this will be an assumption. The theory can be appropriately
modified if this does not hold true.

Assumption 3.4. There exist positive constartts andC such that the adjoint solutiom, (x)
satisfiesC; < |uj, (x)| < Cpforall x € R.

To differentiate the Evans function at= 0, it is necessary to derive an expression for
9, (Y, —Y;")(0, x) at some value af. Set

Z (0 =Y (y, x) €77,
and note that for fixed,
3,Y*(0,x) = 9,Z(0, x).
Following Kapitula and Sandstede [36], write
ZE(y,x) = vy () + Y5 (0.x) = v (0) + w (, %), (3.11)

wherew*(y, x) is assumed to decay exponentially fast as 4-oo and to satisfyv® (0, x) =
0. This ansatz is valid due to equation (3.6).

The assumption that(0) # 0implies thatwe can write locally = 5~1(y?), which yields
thatdv/dy = Oaty = 0. SinceM (4, x) is analytic ink, we then observe thag M (0, x) = 0.
Therefore, it can be readily seen that

3 (3, w* (0, x)) = M(0, x) 3, w* (0, x) + M(0, x) 3, v (0) = Y;*(0, x). (3.12)

The nonhomogeneous term in the above equation decays exponentially fast-ag-co.
This can be seen by noting that as a consequence of equation B.Tp) 9, v:(0) =
Fu;7(0).

Set

G*(x) = M(0, x) 3,vE(0) £ Y.5(0, x).
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Solving equation (3.12) with variation of parameters (see [33]) yields

n—1 2k 0
3w*(0,0) =Y " FY/(0,0)+ci Y 0,00+ > wi(0) [ GF(x)-uf(x)dx
i=1 i=k+1 Foo
0
+u2, (0) / G*(x) - uj, (x) dx. (3.13)
+o0

Here u{ (x) are solutions to the adjoint equation associated with equation (3.2) satisfying
ul(x) - u;(x) = §;, andc are some constants. As a consequence of the manner in
which the solutionau; (x) were defined;u;‘(x) decays exponentially fast as| — oo for
i=k+1,...,2k; hence, the improper integrals are valid. The observation that

M(0, x) 3,v=(0) - uf(x) = —3,vF(0) - %u;‘(x)

together with the exponential decay of the adjoint solutiohé:) simplify the solution formula
in equation (3.13) to

n—1 2k
3,w*(0,0) =Y ¢ Y}(0,0) +cFY;5(0.0) — Y [3,0(0) - uf (0)] ui (0)

i=1 i=k+1

+[8, v;7(0) - (uj, (£00) — uj,(0))] Uz, (0). (3.14)
Here we note that sinc¥*(0, x) = wugp,_1(x), Y;*(0, x) - uj‘(x) =0forj # 2n — 1.
Therefore, upon an appropriate renaming of the constants one sees that

n—1 2k

3y (w™ —w"(0,0) =Y &Y(0,0)+&Y, (0,00 + Y [3,(v] = v;)(0) - u (0] u; (0)
i=1 i=k+1
[0, @) = v)(0) - u3, (0] uz, (0)
+[3, v, (0) - uj, (—00) — 3, v; (0) - up, (+00) | uz,(0). (3.15)

The following lemma has now almost been proved.

Lemma 3.5. Suppose that assumptions 3.1, 3.2 and 3.4 hold. The solutigitg, x) then
satisfy

n—1
3, (Y, —Y.1)(0,0) =) ¢Y5(0,0) +¢,Y,; (0. 0)
i=1

+[3, v, (0) - uh, (—00) — 3, (0) - up, (+00) | uz, (0)

for some constants®, c,.

Proof. As a consequence of equation (3.11), it follows that
0, (Y, = ,)(0.0) = 9, (v = v})(© + 3, (w™ —w*)(©,0),
whered, (w~ — w*)(0, 0) is given in equation (3.15). Plugging in the fact that

2n

3, (v; — v =Y [9,(v; — v})(0) - u(0)] u; (0)

i=1
therefore yields the result. |
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Remark 3.6. If only one of the matriced/. (1), sayM_ (1), satisfies assumption 3.1, i.e. the
other matrix, sayM. (L), is such that all of its eigenvalues are analytic.iat . = 0, then

it is only necessary to compute the relevant texyi,~ (0, 0). One can then drop the term
3,07 (0) - uj (+00) in the above lemma.

3.3. Derivatives of the Evans function

We are now ready to derive expressions for certain derivatives of the Evans function with
respecttg aty = 0. Recall assumption 3.2, which states that there éxéstutions ak. = 0

to equation (3.2) which decay exponentially|as— oo. By the construction of the system
(3.2) it must then be true thatfor=1, ..., k

T
Y50, x) = [V v1,]
whereLy1; = 0. We assume that although= 0 is not an isolated eigenvalue of finite
multiplicity, we can nonetheless find ‘generalized eigenfunctionsifer 0.

Assumption 3.7. There exist numbers and functionsy;;, i = 1,....k, j =1,...,4;,
such that

L =1, Yo, =0.

Furthermore, ifj > 2, then|y; ; (x)| decays exponentially fast &g — oo.

Remark 3.8. If » = Owere an isolated eigenvalue with finite multiplicity, then the exponential
decay assumption would hold automatically. Otherwise, it is possible for the generalized
eigenfunctions to either be bounded away from zero or even grow like some poyuerasf

|x| — oo (see section 3.5).

Setp = Zle a;, and let
W) = [V vl ] (3.16)

fori =1,..., k. Following Kapitula [33] it can be shown thaf (Y, ; — Yf;)(o, x) = 0 for
positive integers < «a;, and

n—1
0 (Yy; = Y7)(O0x) = Y diY;5(0,x) +ds Y, (0, x)
j=1

2k
oyt (x) + @il Y (M0, X)Wy 5 (x), uf () w;j(x), (3.17)
Jj=k+1

for constantslj.[, d, andds,. In the above,

(G(x), Hx)) = / ¥ G0 - Ho dx.

The integrals are valid due to the fact that the adjoint solutions decay exponentially fast as
|x| = oo.
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Recall the definition of the Evans function given in equation (3.8). As a consequence of
the above discussion and equation (3®)£(0) = 0 for any positive integem < 2p + 1.
Upon using relation (3.9), differentiation yields

2p+ 1!
[Ty (2a)!

2p+ 1! _ " _ .
=— 0, (Y - Y )AolY, Y. )AD,
b’(O)I’ Hf;lai! J/( s K ) )“( f .f)

§2rIE(0) = 0 (Yo —Y) Ao, (Y, —Y)) Ao

where

0, (Y7 —Y[) =07 (Y = Yia) Ave A0S (Y = Yy,
and

WYy =Y =0 (Vi = Yi) A A0 (Y, — Y7y,
and

D) = (YA AY gAY AY g A A Y], )0, x).

Substituting the result of lemma 3.5 and equation (3.17) into this expression, one obtains the
following theorem.

Theorem 3.9.Suppose that the assumptions leading to lemma 3.5 hold, and that
assumption 3.7 holds. Then derivatives of the Evans function defined from the linear operator
L satisfy

35p+lE(O) __ (Zbl/?(z)‘)i.)! w
where
a = 3,0, (0) - uj, (—00) — 3,07 (0) - ujp, (+00)
and
(BMTy 1, ul) o (MTy 1, ud)
D= . .
(MW, ugyy) oo (aM¥y i, ud))

Remark 3.10. A similar theorem was proved in Kapitula [33] in the case that 0 is an
isolated eigenvalue with finite multiplicity.

Remark 3.11. Another case that may arise is th&0) = »'(0) = 0. Sinceb(1) is analytic,
similar expressions for the derivatives Bty ) aty = 0 can be derived via the chain rule; the
more zero derivatives(1) has, the more complicated the results. Such an example arises in
section 3.5.
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3.4. Example: CGL

Consider the linearized problem for the CGL (1.4), given in section 4 in equation (4.2). Upon
settinge = 0, the matrixMy (4, x) is given by

0 0 10
0 0 01

Mok =1 o5 14302 0 00 (3.18)
0 2.—1+d%) 0 O

Itis easy to check here thatr) = 2).. Following the procedure leading up to equation (3.10),
choose the solutions 5’ = My(0, x)Y to be

up = [®',0,d”, 0], up = [u3, 0, u3, 0]

3.19
uz = [0, @, 0, &']7, ug = [0, uﬁ, 0, uﬁ]T ( )

@3(x) = x®(x) — 1, uz(x) = ®(x) + x®’'(x)). The solutionu,, which grows exponentially
fast asx — +o0, is chosen so that

O ul
q>// ué = _l’
henceu, ..., us satisfies (3.10). While it is possible to find an explicit expressionfgiit

is not necessary, and hence will not be done. The adjoint solutions satiat»yimg = §;; are
then given by

uf = [—u3, 0,u, 0], ud =[®",0, -9, 0]"
uf =[0,u%, 0, —u2]” uf =[0, -9, 0, d]7 (3.20)
3 — s Wgs M 4. k) 4 — 9 P s .
Under the normalizatiol’;* (0, x) = us(x), a simple calculation reveals that
v (y) =[0,+1,0,—y]" (3.21)

(recall thaty? = 24 in this case). The result of theorem 3.9, with= 1 and¥; ; = w4, then
implies that

a = 3,v; (0) - uf (—00) — 3, v} (0) - uj (+00) = 2,
and hence

0SE(0) = / OO(CD’)Z(x) dx

o0

- 16. (3.22)

The linearized eigenvalue problem wheg= 0 can be written as
Lip = Ap, L_qg=AM\q,

where L. are defined in equation (4.4). As such, we can actually say much more about
the Evans function. First, both operatdrs are self-adjoint, so their spectra must be real.
Furthermore, sincé.®’ = 0 and®’ has no zeros, an application ofi@nh—Liouville theory
implies thath = 0 is the largest eigenvalue far.. Similarly, there are no positive eigenvalues
for L_. Therefore, the following lemma holds for the Evans function.
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Lemma 3.12. Suppose that = 0. Sety? = 2i. For y near zero the Evans function has the
expansion

E(y) = 5y°+0(".
Furthermore, the Evans function is non-zero Rey > 0.

Remark 3.13. As a consequence of this lemma, for a perturbed problem it suffices to locate
the zeros of the Evans function neae= 0 to determine the stability of the wave.

3.5. Example: NLS

Consider the linearized problem for the PNLS (1.3), given in section 5 in equation (5.1). Upon
settinge = 0, the matrixMy (X, x) is given by

0 0 10
0 0 01

Mo =15 14302 -2 0 of (3.23)
2 2(-1+%%) 0 O

Choose the solutiors’ = My(0, x)Y to be those given in equation (3.19), and let the adjoint
solutions be those given in equation (3.20). Definigy

y2=2(1—v1-12), (3.24)
so that upon taking the principal square root,

h=1y/a—y2
Note that

h=y+0?
for y sufficiently small, so that

I 9
Ay

at(x, y) = (0,0). Under the normalizatio,;* (0, x) = wu3(x), a simple calculation reveals
that

T
%Wy)=—%PHa¢J4—V?V{VJ4—Vﬂ . (3.25)
Thus, the result of lemma 3.5 implies that
By (Y;7 — Y;+) (0, 0) = 2u4(0) + c1u1(0) + c3us(0). (326)

In this exampleb(A) is given in (3.24), s&(0) = 0, butd’(0) = 0 as well. As noted in
remark 3.10, this does notinitself rule out use of a modified form of theorem 3.9. Unfortunately,
the result of theorem 3.9 truly cannot be applied here. Since the generalized eigenfunctions
are given by

0 Y @
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the assumption that the generalized eigenfunctions decay exponentially ffelstago does
not hold. Thus, we must construct the desired solutions directly. Using the fact that

(0.Y}) = Mod, Y} + 9, MY},
and thafY;" (0, x) = uy(x), it is not hard to verify that

0, Y7 (0, x) = —u4(0) F ua(x). (3.27)
Thus, upon solving the equation

(07Y") = Mod?Y [ + 20, Mod, Y
by variation of parameters, one finds that

02 (Y; —Y/)(0,0) = 4uz(0) + c1ug (0).
Combining this result with equation (3.26) implies that wlaer 0,

SE0) =30, (Y, — V) A dZ(Y; —Y))AYAYS

=24 (3.28)

The following lemma is now almost proved.

Lemma 3.14. Suppose that = 0. Sety? = 2(1 — +/1— 12). For y near zero the Evans
function has the expansion

E(y) = -4y +0(y".
Furthermore, the Evans function is non-zero ey > 0 except aty = 0.
Proof. It is shown in Cheret al [6] that the squared Jost solutions of the Zakharov—Shabat
eigenequation, i.e. the squared eigenfunctions, form a complete set. In other words, bounded
eigenfunctions for the linearized problem exist if and only i€ iR (or y € iR). Thus, the
Evans function is non-zero for Re> 0, and to complete the proof we must show that it is
non-zero on the seRi\{0}.

To this end, we will rewrite the eigenvalue problem in such a way as to fully exploit the
results presented in [6]. Letting = ¢*, the NLS can be rewritten as the system

i — 36 —p+9*y =0
—iY = 3V — ¥ + oY =0.
Linearizing about the wavé yields the system
¢ — 3 — @ +20%) + D%y =0
—iY = 3V — Y + D% + 202y =0,
which, upon setting
@) = (@, ¥) €,
induces the eigenvalue problem
39"+ (1-20%)¢ — D*y = —p¢
U+ (1= 200y — 0% = py
( = d/dx).
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Sincey € iR if and only if p € R, we will now explicitly construct the Evans function
for realp. In the usual way, the eigenvalue system

Y =M(p,x)Y
can be constructed. Set
E=p+y1+p?

where the principal square root is taken. Note that R implies thaté € R*, and that
p = 0 implies thatt = 1. The eigenvalues for the asymptotic mathifg(£) are given by
tup(§), £us(§), where

=222 ©=i"2

12 = > Ms =l

TR VE

and the principal square root is being taken. The corresponding eigenvectors are given by
v;‘f:[l,é‘,:l:uf,:tgﬂf]T, U;t:[lv_l/é:’i/'LSs:FMs/%_]T'

Now, when Res > 0, Im p < 0, so that for In < 0 we need to define the solutios"
andei comprising the Evans function so that

lim (Y5 A YD), x) €007 = oF AvF.

x—+o0

This is done so that the definition of the Evans function is consistent with that given in
equation (3.8). Using the information presented in [6], it can readily be checked that

lim (Y,” AY[)(E x) e ®0% = a(€) b(E) vy Avj,

xX—>+00

where

—i —1\?
Ll b(s)=<“g ).

VE+I VE+1

Thus, we get that
EG) = lim (¥, AY] AV AY)G0)

=a)bE)v, A vj? A v: A v;.

Since
1+ 2y\2 1— 2
v;/\v;/\v:/\v;’cz—m—( 5 )’3; § ),
we see that (§) # 0 for & € R* except wherf = 1. Asé = 1 corresponds tp = 0, the
proof is complete. O

Remark 3.15. The functionsz(¢) andb (&) are related to the transmission coefficient for the
Zakharov—Shabat inverse scattering problem.

Remark 3.16. As a consequence of proposition 2.17 in [36], the Evans function will remain
non-zero for > 0 and|y| sufficiently large. Therefore, for a perturbed problem it suffices to
locate the zeros of the Evans function ngas 0 to determine the stability of the wave.
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4. Perturbation calculations at the branch point: CGL

In the next two sections we will be using the Evans function to locate the eigenvalues that
bifurcate out of the branch point. To accomplish this task, we will need to perform perturbation
calculations for the various coefficients of terms in the series expansions for the Evans function.
Fortunately, the techniques have been developed that will enable us to do so. In Kapitula [33],
a procedure was described which allows one to perform these calculations for expansions
about an eigenvalue that is isolated with finite multiplicity. This assumption is not valid for
the systems considered in this paper, as we wish to do perturbation calculations around a
branch point; however, all is not lost. Kapitula and Sandstede [36] showed that it is possible
to perform perturbation calculations around a branch point if a transformation is done on
the eigenvalue parameter so that the branch point does not move under the perturbation. By
combining and appropriately modifying the approaches of these two works, together with the
results in section 3, we are able to perform an expansion around the branch point in terms
of the transformed eigenvalue parameter. Recall the manner in whigh is defined in
equation (3.8). To compute the coefficients in the Taylor expansiof fpj, we will need to
be able to compute terms such%$Yf‘ — Yf+)(0, 0) for an appropriate value @ The first
three subsections are devoted to this task.
Henceforth, set
' =di +dz+ 2d,, a = F'(//+ 4.1

€

wherey [ is specified by (2.13) and (2.11). Note thais exactly the parameter that appears
on the left-hand side of conditions (2.14) and (2.15); that is, the sigrioflirectly related to
the structure of the manifolds whose intersection forms the hole solution.

4.1. Preliminaries
After setting¢ = u + iv in equation (1.4), let the perturbation of the wave be written in the
form

utiv=(r+(p+iq) eXD{i /X W(S)dS}
0

(this follows the scheme used in Kapitula [27]). Herandv, are given in lemma 2.5. For
e # 0, the linearized eigenvalue problem derived from equation (1.4), is given, upeto,O

by

232
g DT
where
Loz[ﬁ; LO} (4.3)
with
Lo=?+1-30% L =102+1- 0% (4.
and

@’ 0 1 0O O
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and
L 6Pr. + Wez 0
“ 0 2Br, + 2
@’ 10 1 0
+2d1<1/f53x — Ews) |:0 1:| + 4d1q>2(d1 + d3 + 2d4q)2) |:0 0] . (46)
Note that

L:® =0, L_®=0.

In the above® is again given by equation (2.2).

In the standard way, the expansion for the linear opetatgiven in equations (4.2)—(4.6)
yields an expansion for the matrid (1, x), i.e. M = Mgy + M.e + M..€?/2. Itis clear that
M, x) > My ()) asx — Foo. The branch point for the Evans function, is thei value
such that the matriced . (1) have an eigenvalug, which has a geometric multiplicity of one
and an algebraic multiplicity of two. A routine calculation yields the following proposition.

Proposition 4.1. For a given by (4.1), the branch point of the Evans function is given by
Ap = —%a264.
Set

¥ =200 ).

For A close tor, the eigenvalues a7 (1) that have a geometric multiplicity of one and an
algebraic multiplicity of two when = A, are given by

Fy +af,
where
ol = +ae®.
Wheni = A, the associated eigenvectors are given by
0% = Fua(0) + ae’uz(0).
Remark 4.2. It should be noted that the location of the branch point does not depend on which
of M. ()) is being discussed.
4.2. Calculations fo’;*

Sinceri(A, x) are analytic in an @) neighbourhood of the origin, for fixedthese functions
have Taylor expansions. Together with proposition 4.1, this implies that

(Y, —Y/)0s,0) = (Y; —Y/)(©0,0)+8,(Y; —Y;)(©0,0)%, + O(e®). 4.7)

The behaviour of these solutionsiat= 0 is fairly well understood. As a consequence of the
derivative formula (3.17),

% (Y; — Y)(0,0) = (3, M(0, x)ua(x), u5 (x)) u2(0) + cus (0) + O(e)
= —8u(0) + cus(0) + O(e). (4.8)
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for some constant. In addition, since

r (%) 0
v = | T ] TG0 (4.9
(r) () r'ex)

where

Yo = lim ¥ (),
it is seen that

0
(Y; - Y})0,0 =2y r((;)) (4.10)
r'(0)

Sincer(0) = 0 for alle > 0, it is necessarily true than? - Yf*)(O, 0) will be a multiple

of ug(0) for all ¢ > 0, and hence it will not make a contribution in the resulting perturbation
calculations for the Evans function. Singg| = O(e%), the following lemma has now been
proved.

Lemma 4.3. The difference in the fast solutions satisfies, to leading order,
0 (Y7 = Y[) 0, 0) = 32a%u(0) + c14u1 (0) + c34u3(0),

for some constants 4 andcszs. Furthermore,
0/ (Y; — Y[ ), 0) = c1jua(0) + c35u3(0), j=0,...,3

for some constanis;; andcs;.

4.3. Calculations foi;*
In this subsection all of the calculations will be performeg at 0, where
¥ =200 — 1p). (4.11)
As such, they dependence of solutions will be suppressed. Set
ZE(x,€) = YE(x,e) e,
The rescaled variable then satisfies the ODE
(ZF(x, €)= (M(x) — o id)Z(x, e, (4.12)
and the asymptotic matrices are now such that they have the Jordar‘{g)lé(}dxt y = 0 for
all e > 0. Again following the procedure outlined in Kapitula and Sandstede [36], set
ZF(x, €) = nl(e) + Y (x, 0) — 1.(0) + w(x, ), (4.13)

wherew™ (x, €) is assumed to decay exponentially fastas +oco and satisfyw* (x, 0) = 0.
Furthermorew®(x, €) should not be a scalar multiple af (x). The vectorsy’ (¢) are given
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in proposition 4.1. Sincé.n% (0) = 3.« = 0, upon recalling tha¥d = Mo+ M e+ M..€2/2,
it follows that

3, (. w*(x, 0)) = Mo(x) dw™(x, 0) + M. (x) Y;*(x, 0), (4.14)
and
3 (92w™ (x, 0)) = Mo(x) 92w (x, 0) + Mo(x) 321 + 2M. (x)d.w* (x, 0)

+H(Mee(x) — 92ay id) Y (x, 0). (4.15)
Proposition 4.4. Given the ansatz in equation (4.13), the relevant solution to (4.14) satisfies

d.wr(x,0) =0.

Proof. This follows immediately from the fact that. (x) Y;*(x, 0) = 0. O

Upon solving equation (4.15) with the variation of parameters formulation, and using the
facts that

Mo(x) 0Zn, - u = =020 - ,u,
and
M (x) Y5 (x, 0) = D (2Prec + ) uz(0),
one obtains
2w~ — w")(0,0) = [82n" - uj (—00) — 821L - uf (+00)] ua(0)
+ / = D2(x) (20 (x) ree (x) + Y2(x)) dx ua(0) + cu1(0)

oo

for some constant. A tedious calculation reveals that

/ ) D2(x) (2 (x) ree (x) + Y2 (x)) dx = —2d1y;

o]

combined with proposition 4.1, this yields the following lemma.
Lemma 4.5. The difference in the slow solutions satisfies

0e(Y, —¥;)(0,0) =0,
and

02(Y,” — Y;")(0,0) = —4(3d1 + T) ) ua(0) + cous (0)

for some constants, andcs.

Proof. Following the discussion leading up to the lemma, it is seen that
32w~ —w*)(0,0) = —4(3dy + )Y ua(0) + cug(0).

The conclusion now follows from the ansatz given in equation (4.13) and the results of
propositions 4.1 and 4.4. |
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4.4, Calculations for the Evans function

Set
['=(3d1+T), a=Try;,
whereT is specified by (4.1). In the following, all of the evaluations will be performed at

(v, x,¢) = (0,0, 0), and the constants will be unknown (but irrelevant).
Sinceaf = 0,, as a consequence of equation (4.8),
85 (Yf_ — Y;) = —% up + cru,
with
dy (Yfi - Y;) =0.
Furthermore, as a consequence of lemma 3.5,
3, (Y, —Y,") = 2us + couq + caus.
From lemmas 4.3 and 4.5 one has, respectively, that
Bf(Yf_ — Y;) = 32a2u2 + cqu1 + csug,
and
BEZ(YF — Y:) = —dauy + cgu;.

We are now in a position to write down a perturbation expansion for the Evans function.
In the following, thee dependence of the Evans function is being implicitly assumed. First,

IPE(0) = iaZ(Y— Y )AdHY; —Y))AY AYS
€ - s s € f f s f

2141 ¢
= 86!a%a,
and
079, E(0) =0, (Y, =Y ) A 02 (Y, — Y[ ) AY AYS
=-3414°,
and
2q2 2 - 2 -
IZTEWO) = 0X(Y, =Y ) A (Y, =Y )AY] AYS
= %a.
In addition, recall equation (3.22), which states that
O3E(0) = 16,

Note that all lower derivatives of are zero. Based on the above expansions, the Evans
function can be written as

E(y,e) = 8(y® +ae’y® — a’e’y +a®aed). (4.16)
While the zeros of the Evans function can be found analytically, it is difficult to analyse
the resulting expressions. Wheén= 0, so thatz = a, however, the roots are given by
y1 = —1.839%a¢?, 2.3 = (0.420=+ 0.606i) ae?. (4.17)

Recall thaty? = 2(A — A,), Wherea, is given in proposition 4.1. The roots &f(y, €) are
valid as eigenvalues if and only if Re> 0. This is due to the fact that the shdés of R
corresponds to the principal part 92(1» — 1,). Thus, ifa > 0, theny, 3 represent the valid
zeros of the Evans function, whiledf< 0, theny, is the valid zero. Upon using the inversion
formulax = y?/2 + A,, one has the following lemma.
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Lemma 4.6. Suppose thad; = 0. If a > 0, then the zeros of the Evans function inside the
curveK are given by

A23 = (—0.595+ 0.255i) a?e*.
If a < 0, then the zero of the Evans function insikiés given by
A = 1.191a%*
Remark 4.7. As a consequence, the linearized operator has an unstable eigenvaki®if

Now suppose thaf; # 0, and setP;; = d;/d1. To find the zeros, it is most illustrative
to do a standard bifurcation analysis. From the definitioé,df follows that there is at least
one positive real zero @ + P31+ 2P41)(1 + P31 + 8P41/5) < 0O; otherwise, there is at least
one negative real zero. In addition, a saddle-node bifurcation occurs on the lines

P31+ 2Ps = i,

where
3ta—2 V125 +11
=23, @l = = (4.18)
: 2 15« 2

(u;, = —1.716, n,,, = —1.385). By checking the sign of whend, E(y,¢) = O, itis
seen that the zeros created by the saddle-node bifurcation have the opposite sign from those
described above.

If ¥ = 0, thena = @ = 0, so that the branch point does not move and the zeros of
the Evans function remain gt = 0. For the rest of the discussion, assume that~ 0. If
' = 0, then the zeros of the Evans function are giveryby 0 andy = +ae2. Upon using
the inversion formula. = y2/2 + ,, it is seen that there is an eigenvalue.at 0, and no
eigenvalues with a positive real part. Thus, it is expected that the planed will serve as
the critical plane for which an edge bifurcation may take place.

Now assume for the rest of the discussion that 0. Set

y =Tyle?y.

Solving E (y, €) = 0 is then equivalent to solving

T 2
Yy H+y?—py+u=0, MZ(F) :
For this equation, a saddle-node bifurcation occurs whea «?. For 0 < u < «?, there
is one real negative zero, and the other two zeros are complex with positive real parts. For
w > «?, all of the zeros are real, and two are positive while one is negative (see figure 4).
Using the definition of the variableand the inversion formula, itis seen that forRe- 0,

=302 — w(Tyh)2e

2
Yot = 2
= 3T P
y
First suppose thaty” < 0. To achieve a positive zero for, one must then have < 0.
Sincey?+u > 0, this then implies that there is a real positive eigenvals® that the wave is
unstable. Now suppose tha{” > 0. One must then look at those roots withRe 0. If y
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P, +2P,=-3/2

Figure 4. Zeros of E(y, €) for the CGL(d; > 0). The configuration of the zeros matches that
shown in the legend in the upper right-hand corner.

is real, then it is clear that the resulting eigenvalu@se negative. Ify = y1 +iy, is complex
with y; > 0, then by checking that

2
yotu Y1 2, .2
= yity;+p) >0,
y o ¥y} ( )
it is seen that the resulting complex pair of eigenvalues has a negative real part. The picture is
summarized in figure 2. Thus, the following lemma holds; theorem 1.8 follows from lemma 4.6
and this result.

Re

Lemma 4.8. Suppose thaf;, # 0, and setP;; = d;/d;. If
(3 + Pay+ 2Pa1) (1 + Par+ §Pa) <O,

then there is one positive re@l(¢*) eigenvalue for the linearized problem, and the wave is
linearly unstable. If

dl(l + P3; + gP41) > 0, dl(l“s_n + P31 + 2P41) >0
or
dl(l + P3; + §P41) <0, dl(/,L:n + P31 + 2P41) <0,

then there is a complex pair @i(e*) eigenvalues with a negative real payt are defined in
equation (4.18)). Otherwise, no eigenvalues bifurcate from the continuous spectrum.
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5. Perturbation calculations at the branch point: NLS

5.1. Preliminaries

As in the previous section, let the perturbation of the wave be written in the form
u+iv=_F+(p+ig)) exp{i / P(s) ds}.
0

Fore # 0, the linearized eigenvalue problem derived from (1.3) is given up(¢8)®y

€dy —(1-e2dy) 1.2

=LoteL,+5€“L,, 5.1
|:1 . szf edy 0 ety €€ ( )
where the operatorky, L. andL.. are specified in equations (4.3)—(4.6). As previously, the
expansion for the linear operatbrgiven in equations (4.2)—(4.6) yields an expansion for the
matrix M (1, x) with M(1, x) — M1(A) asx — Foo. Asin (4.1), we sel’ =d; +d3 + 2d,
anda =Ty,
Proposition 5.1. The branch point of the Evans function is given by
Cl2 3

Ap = ——€°.
P 2T —dy©

For A close ta, the eigenvalues dff-. (1) which have geometric multiplicity one and algebraic
multiplicity two when. = A, are given by

o FYIA(y)eFy.

where

ai = :I:aez,
and

Y = VA2 = 2¢(T — dy)r +a2e4,
and

My) = (T = dy)e +/y? + (T — d1)2e? — a2e*,
Wheni = A, the associated eigenvectors are given by
nl. = Fua(0) + ac®us(0).
Remark 5.2. To ensure that, < 0, it is necessary that
I' —dy=ds+2d, <O.
This condition is consistent with [4, 5, 22, 23], and it will henceforth be assumed.

Remark 5.3. Since we are taking the principal square root, note that up to leading order
A(0) = A, foralle > 0.
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5.2. Calculations foiY}?E

As in section 4.2, we use the Taylor expansionﬁf}ﬁ(/\, x), centred ak = 0, for x fixed at
the origin. From (4.9),

0 Y[ (0, x) = (Ye(x) F 9 )ua(x) + ()Y, (x)us(0),
so that

9:Mo(0, )3 Y (0, x) = 20 (x) (Ve (x) F ¥ )u2(0).
The expression given in equation (3.27) implies that

M (x)0,Y;5(0, x) = 2%we(x>uz(0).
Solving the equation

ZY}) = ModZ Y7 + M3, Y7 + 0, Mod Y-
by variation of parameters thus gives

+00 &/ 0
BEZA(Yf_ — Y;')(O, 0 = 2(/ wlﬂe(x) dx + Zw:/ D (x)D'(x) dx)uz(O) + c1uq(0),
‘ o P(x) —00
which upon integrating yields
92,(Y; —Y})(0,0) = 4(dy +ds + Eda)uz(0) + cruy (0). (5.2)

Evaluating the Taylor expansions for bdﬂj]‘ — Y; andax(Yff‘ — Yf"), centred atk. = 0, and
using the fact that, = O(e®) from proposition 5.1 yields the following lemma (to leading
order).

Lemma 5.4. The difference in the fast solutions satisfies

0M(Y; — Y[)(hp, 0) = 16Tb(Y.)?u2(0) + ca4u1(0) + ca4uz(0),
where

b= dy+d3+ gda,
for some constants 4 andczs. Furthermore,

o[ (Y; — Y[ ), 0) = c1jua(0) + c35u3(0), i=0...,3
for some constanis;; andcs;. In addition,

05 (Y; =Y ), 0) = 5buz(0) + c1ua(0).

5.3. Calculations foy,*

The only difference in the results of propositions 5.1 and 4.1 arises in the expression for the
branch point,. Furthermore, sincg.,| < O(e®) in both cases, the fact that it changes does
not affect the calculations up to(€%). Hence, the proof of lemma 4.5 applies here to give the
following result.

Lemma 5.5. The difference in the slow solutionsjat= 0 satisfies

0 (Y, —Y.)(0.0) =0,
and

32(Y,” —Y;")(0,0) = —4(3d1 + T') ¢ ua(0) + cou1(0)
for some constants, andcs.
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5.4. Calculations for the Evans function
Set
ﬁ = %dl +T.

In the following, all of the evaluations will be performed @t, x, ¢) = (0,0, 0), and the
constants; will be unknown (but irrelevant). Recall thaj = 9,; using this fact, along with
equation (3.26) and lemmas 5.4 and 5.5, we can differentiate to obtain a perturbation expansion
for the Evans function. As in the previous section, ¢hdependence of the Evans function is
being assumed implicitly. First, we find

6! _ _
38E(0) = ﬂaf(ys — Y)Y —Y))AYAYS

= 36! TTh ()’

and
3 3! 2 — + 2 — + + +
070, E(0) = EBG(YS —YO) AL, (Y, — Y )ANY] AY,
= 83ITby,
and

2!
2 — 2 —_
B0 EO) = 70, (Y = Y) A 02 (Y = Y)) AY AY]
8
=821,

In addition, recall equation (3.28), which states that
BE0) = —24.

All lower derivatives ofE are zero, so based on the above expansions, the Evans function can
be written as

E(y,€) = —4(y>+ 3bey® — 5Tby %y — ITTh(y))%)

= —4(y + 2be) (v? — Tyl ety — irT(y))’e). (5.3)
To leading order, the roots for the Evans function are thus
y1 = —2be, ys = Tyle?, ys = —30 (W%, (5.4)

These can correspond to true eigenvalues only i Re 0. First suppose thdt < 0, so that
y1 > 0. From the transformation given in proposition 5.1, i.e.

AMy) = (T — di)e +/y2+ (T — d1)?€? — a?e4,

we find, to leading order, the positive eigenvalue

42

Now suppose thaty* > 0, so thaty, > 0, and sey? — a%e* = je*, where

V= dl(lﬂ:)z(%dl +dz + 2dy).
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One obtains, to leading order, the second eigenvalue

___ 7 3
Ao = 2T = dl)E , (5.6)

which is only positive ify > 0. Finally, independent of its sigey; is of too high an order to
correspond to a positive eigenvalughence, it can be ignored. The following lemma has now
been proved; this also yields theorem 1.4.

Lemma 5.6. Letds + 2d4 < 0. Suppose that; > 0, and setP;j; = d;/d;. If
Py < —2Py—1,

then there is a positiv®(¢) real eigenvalue given, to leading order, by equation (5.5).
Furthermore, if

Py > —8Py—1, Py > —2Py — 3,

then there is a positiv@(e®) real eigenvalue which is given, to leading order, by equation (5.6).
Otherwise, the wave is linearly stable, as no other eigenvalues bifurcate from the continuous
spectrum (see figure 1). i = 0, then the wave is linearly stable5fl; + 4d, > 0; otherwise,

there is anO(¢) eigenvalue which is given by equation (5.5).

5.5. Comparison with the adiabatic approach

There have been many recent efforts to determine the stability of the dark soliton for the
perturbed NLS by using an adiabatic approach [4, 5, 22, 23, 38]. Applying the method used by
Lega and Fauve [38] for the, = 0 case, we write the solution to the perturbed NLS as

¢ = (KRD(KE) +epy + %o + - - )

K&
X eX[:{i(qx — Qt +qxo+ 90)] exp[ief Ve (s) ds],
0
where
& =x —ct+xp, q = kk —c, Q:—%qz—(/cR)z, R?> =1+k2.

Following the procedure outlined in appendix C of [38], and using the requirement that
d» +dz +d, = O(€?) for the dark soliton to persist as a regular perturbation, one finds that for
the time scald’ = «t,

kr = §ic[dic — (dv + da)kic — Edakic®(1 + 3k%) ] (1 +42)

k
kr = [da(k® — 1) + da(kc® — 1) + (d3 + 2da)k?k? + dak*kc* — Ld1g?]xc — T

A linear stability analysis of the critical poitik, «, ¢) = (0, 1, 0) yields the eigenvalues
A = 2(ds + 2d4), Ao = —3(d1+ds+ 2ds),

which, as noted in the introduction, is inconsistent with the rigorous analygisAf0. Thus, it
must be concluded that the ansatz for the slow-time variation displayed by the wave is incorrect
if dy # 0. It is beyond the scope of this paper to determine the exact cause of the difficulty;
however, it may be a consequence of the fact thalfg¢ 0 the angular component of the wave
is written as the sum of two different functions (see lemma 2.5), which is perhaps fundamentally
different from the form of the solution used by Lega and Fauve [38]. Specifically, itis possible
that the addition of the termd3®3(x)/5 to v (x) somehow introduces a correction into the
variational equations that was not taken into account above. Alternatively, the answer may be
as subtle as that found by Kaup and Newell [37] for the evolution of the soliton for a perturbed
KdV equation.

I(kT.
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