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Abstract. We consider the existence and stability of the hole, or dark soliton, solution to a
Ginzburg–Landau perturbation of the defocusing nonlinear Schrödinger equation (NLS), and to the
nearly real complex Ginzburg–Landau equation (CGL). By using dynamical systems techniques, it
is shown that the dark soliton can persist as either a regular perturbation or a singular perturbation
of that which exists for the NLS. When considering the stability of the soliton, a major difficulty
which must be overcome is that eigenvalues may bifurcate out of the continuous spectrum, i.e.
anedge bifurcationmay occur. Since the continuous spectrum for the NLS covers the imaginary
axis, and since for the CGL it touches the origin, such a bifurcation may lead to an unstable wave.
An additional important consideration is that an edge bifurcation can happen even if there are no
eigenvalues embedded in the continuous spectrum. Building on and refining ideas first presented by
Kapitula and Sandstede (1998PhysicaD 12458–103) and Kapitula (1999SIAM J. Math. Anal.30
273–97), we use the Evans function to show that when the wave persists as a regular perturbation,
at most three eigenvalues will bifurcate out of the continuous spectrum. Furthermore, we precisely
track these bifurcating eigenvalues, and thus are able to give conditions for which the perturbed
wave will be stable. For the NLS the results are an improvement and refinement of previous work,
while the results for the CGL are new. The techniques presented are very general and are therefore
applicable to a much larger class of problems than those considered here.

AMS classification scheme numbers: 30B10, 30B40, 34A05, 34A26, 34A47, 34C35, 34C37,
34D15, 34E05, 35K57, 35P15, 35Q51, 35Q55, 78A60

1. Introduction

The standard model for the propagation of pulses in an ideal defocusing nonlinear fibre without
loss is the cubic nonlinear Schrödinger equation (NLS)

iφt − 1
2φxx − φ + |φ|2φ = 0, (1.1)

for x ∈ R. It supports the dark soliton solution, which is given by

8(x) = tanh(x). (1.2)

If loss is present in the fibre, then the dark soliton will cease to exist. Thus, at a minimum
amplifiers must be used to compensate for the loss. The effects of linear loss in the fibre as
well as linear and nonlinear amplification of the wave along the fibre will be incorporated into
the model. The issues to be discussed in this paper are the persistence of the dark soliton
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under perturbation, and the stability of the persisting solution relative to the partial differential
equation (PDE). In this paper, we shall concentrate on these issues for a particular perturbation.
We emphasize, however, that the methods and ideas presented herein are general, and they are
applicable to a much larger class of problems. Here we will consider a perturbed NLS (PNLS)
which is given by

iφt − 1
2φxx − φ + |φ|2φ = iε

(
1
2d1φxx + d2φ + d3|φ|2φ + d4|φ|4φ

)
, (1.3)

whereε > 0 is small and the other parameters are real and of O(1) in ε. The non-negative
parameterd1 describes spectral filtering,d2 describes the linear gain (d2 > 0) or loss (d2 < 0)
due to the fibre, andd3 andd4 describe the nonlinear gain or loss due to the fibre. The stability
of waves to the PNLS has recently been studied by Burtsev and Camassa [4], Chen and Chen
[5], Ikedaet al [22, 23] and Lega and Fauve [38].

A related equation is the nearly real complex Ginzburg–Landau equation (CGL)

φt − 1
2φxx − φ + |φ|2φ = iε

(
1
2d1φxx + d2φ + d3|φ|2φ + d4|φ|4φ

)
, (1.4)

where againε > 0 is small and the other parameters are real and of O(1). The CGL governs
the nonlinear evolution of perturbations of a simple solution of a basic system of PDEs at near-
critical conditions, provided that the basic system satisfies some generic conditions (Eckhaus
[14]). The CGL has been proven to be valid in an asymptotic sense for a large class of systems
(Collet and Eckmann [7], van Harten [20], Bollermanet al [2], Mielke and Schneider [42],
Schneider [48, 49]). The CGL results from an asymptotic expansion, and equation (1.4) with
d4 = 0 is only the O(1) part of a more extended equation. The inclusion of thed4 term is
a means of modelling the effect of small, nonlinear higher order corrections (Doelman [10],
Poppet al [43], Stiller et al [51, 52]).

For the purpose of simplifying the subsequent calculations, we will focus solely on
standing wave solutions in this paper (in the appropriate rotating reference frame; see
remark 2.1). However, the techniques and ideas presented herein can be used to study the
stability of travelling solitons (for the existence of such waves, see Doelman [10]). Studying
the existence of steady-state solutions to equations (1.3) and (1.4) amounts to determining the
solution structure for the equation

− 1
2φ
′′ − φ + |φ|2φ = iε

(
1
2d1φ

′′ + d2φ + d3|φ|2φ + d4|φ|4φ
)

(1.5)

(′ = d/dx). To do this, one can set

φ(x) = r(x) exp

{
i
∫ x

0
ψ(s) ds

}
,

and then study trajectories in the(r, r ′, ψ) phase space. This task has been done in a series
of papers, of which Doelman [8–10], Doelman and Eckhaus [11], Duan and Holmes [13],
Holmes [21], Joneset al [26], Kapitula [30, 32], Kapitula and Maier-Paape [34], Marcqet al
[40] and Van Saarloos and Hohenberg [46] are a sample. In section 2 we prove the following
theorem regarding the persistence of the wave given by (1.2). The result is not entirely new, as
it is alluded to by Doelman [10]. To determine the stability of the perturbed waves relative to
the PDEs, however, we need more detailed asymptotic information than that which is provided
in [10].

Theorem 1.1.Suppose that

d2 + d3 + d4 = −ε2σ ∗(ε)− σ,
where

σ ∗(0) = − 2
9

(
d1 + d3 + 8

5d4
)2(
d1 + d3 + 2d4

)
.
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Suppose that(ε2σ ∗(ε) + σ)(d1 + d3 + 2d4) < 0. If σ = 0, then the wave persists as a regular
perturbation, with the asymptotic expansion

r(x) = 8(x) + O(ε2)

ψ(x) = 2
3

(
(d1 + d3 + d4)8(x) + 3

5d48
3(x)

)
ε + O(ε3).

If σ 6= 0, then the wave persists as a singular perturbation.

Remark 1.2. Whenσ 6= 0, the radial profile of the wave will have a ‘shelf’ [4, 5, 22, 23].

Remark 1.3. The wave−8, which exists forε = 0, persists under the same conditions; our
analysis shows that it has the same stability characteristics as8 as well. For concreteness, we
will simply refer to8 throughout this paper.

It seems that all previous attempts to consider the stability of the wave, especially for the
PNLS, have ignored the fact that the wave persists as a singular perturbation except on the
regular perturbation manifoldd2 +d3 +d4 = −ε2σ ∗. If the parameters do not lie on the regular
perturbation manifold, then it may be the case that the ‘shelf’ can influence the stability of the
wave. One possible way of attacking this problem may be through the topological methods
first introduced by Jones [24] and Alexanderet al [1], and later used in a variety of contexts
by, for example, Bose and Jones [3], Doelmanet al [12], Gardner [16], Gardner and Jones
[17, 18], Rubin [44] and Rubin and Jones [45]. This issue will not be addressed in this paper
and will be a topic of future study.

For stability analysis, we suppose here that the wave does persist as a regular perturbation.
Since the equations under consideration are posed on the unbounded real line, the spectrum
of the linearization about the wave contains a continuous spectrum corresponding to radiation
modes. In addition, the spectrum may contain several isolated eigenvalues of finite multiplicity.
Because of the translation and rotation invariance of the PNLS and CGL, zero is an eigenvalue.
It is not, however, an isolated eigenvalue. Whenε = 0, the continuous spectrum for the NLS
covers the imaginary axis, while that for the CGL covers the negative real axis. Furthermore,
there are no point eigenvalues in the open right half-plane for either equation. Forε 6= 0, the
origin is still contained in the continuous spectrum. By choosing the parameters appropriately,
one can bound the continuous spectrum in the closed left half-plane. To determine the stability
of the wave forε 6= 0, it is thus necessary to locate the point eigenvalues. There are standard
tools available which can be used to determine the fate of isolated eigenvalues (see, for example,
Kapitula [33]). However, it is a difficult and non-standard problem to determine the conditions
under which eigenvalues can bifurcate out of the continuous spectrum, i.e. conditions under
which anedge bifurcationcan occur. The primary issue of this paper is the detection of such
eigenvalues. We emphasize that an edge bifurcation may occur even if the corresponding
eigenfunctions in the unperturbed problem are not localized.

We now turn to an outline of our approach for locating eigenvalues. In many respects it
follows the approach presented in Kapitula and Sandstede [36], where the stability of solitary
wave solutions for the focusing NLS is studied. The major tool that we use is the Evans
function,E(λ). The Evans function is a complex-valued function depending onλ ∈ C with
the property thatE(λ) = 0 wheneverλ is an isolated eigenvalue. It is only defineda priori
away from the continuous spectrum, so it is not immediately clear that it can be used to
locate embedded eigenvalues and detect edge bifurcations. However, as an application of the
Gap lemma, discovered simultaneously and independently by Kapitula and Sandstede [36]
and Gardner and Zumbrun [19], the Evans function can be analytically extended across the
continuous spectrum. The analytic extension can then in theory be used to locate embedded
eigenvalues and to track them under perturbation.
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In the problems considered so far, it turns out that the continuous spectrum corresponds to a
branch cut for the Evans function. Furthermore, in these problems it is only at the branch point
that the Evans function has an embedded zero, so only from there can an eigenvalue bifurcate.
For the problems under consideration both in this paper and in Kapitula and Sandstede [36],
whenε = 0 the edge of the continuous spectrum is a branch point of order one, i.e. near the
edge of the continuous spectrum we can writeE(λ) = f (

√
λ− λb), wheref (·) is analytic

andλb is the branch point. In [36] the stability of the solitary wave to the perturbed focusing
NLS was considered. It turned out that for a suitably scaled eigenvalue parameter that near
the branch pointλb = iω the Evans function could be written as

E(λ, ε) = √λ− iω +Aε,

whereA ∈ C depended upon the particular perturbation. Thus, for that problem at most one
eigenvalue could pop out of the continuous spectrum.

To determine the location of the zeros ofE(λ) nearλb for those problems in which more
than one eigenvalue can pop out of the continuous spectrum, one would like to write the Evans
function as the series

E(γ ) =
∞∑
n=0

anγ
n, γ 2 = λ− λb,

and then locate its zeros. This task can be accomplished if one can derive asymptotic
expressions for the coefficients of the series. Fortunately, by suitably modifying the ideas
and methods of Kapitula [33], which were developed for doing Taylor expansions around
isolated eigenvalues, we are able to derive such expressions. Once the zeros of the expansion
have been located, we take those zeros that lie on the correct sheet of the appropriate Riemann
surface and invert to find the eigenvalues for the system. The interested reader should consult
section 3 for more details.

It turns out, for both the PNLS and the CGL, that whenε = 0 the Evans function has
a branch point atλ = 0 and is non-zero everywhere else in the closed right half-plane.
Furthermore, whenε = 0 the Evans function has the expansion

E(γ ) = Aγ 3 + O(γ 4),

whereA ∈ R andγ is a suitably defined function ofλ for λ near zero (see section 3 for details).
Thus, for the regularly perturbed problem, there will be three zeros of the Evans function near
γ = 0, and hence there will be at most three eigenvalues in this region. By computing the
lower-order terms in the series, we are able to locate these eigenvalues and assess the stability
of the hole solution. As the following theorem illustrates, for the PNLS there are at most two
eigenvalues which bifurcate out of the branch pointλ = 0 and leave the continuous spectrum.
Furthermore, thed4 term must be non-zero (specifically, negative) for the wave to be linearly
stable.

Theorem 1.4.Suppose thatd2 +d3 +d4 = −ε2σ ∗(ε), whereσ ∗ is given in theorem 1.1. Also,
assume thatd3 + 2d4 < 0.

(a) Suppose thatd1 > 0, and setPj1 = dj/d1. If

P31 < − 4
5P41− 1,

then the linearization of (1.3) about the perturbed wave yields a positiveO(ε) real
eigenvalue given to leading order by

λ1 = −(d3 + 2d4)

(√
1 +

4

9

(1 +P31 + 4P41/5)2

(P31 + 2P41)2
− 1

)
ε.
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Figure 1. Positive zeros ofE(λ, ε) for the NLS (d1 > 0). The size of the zero is given in the
legend on the upper right-hand corner. For further information, see the statement of theorem 1.4.

Furthermore, if

P31 > − 8
5P41− 1, P31 > −2P41− 5

4,

then there is a positiveO(ε3) real eigenvalue which is given to leading order by

λ2 = − γ̃

2(P31 + 2P41)
ε3,

where

γ̃ = 4
9d

3
1

(
1 +P31 + 8

5P41
)2( 5

4 + P31 + 2P41
)
.

Otherwise, the wave is linearly stable, as no other eigenvalues bifurcate from the
continuous spectrum (see figure 1).

(b) If d1 = 0, then the wave is linearly stable as a solution of (1.3) if5d3+4d4 > 0; otherwise,
there is anO(ε) eigenvalue which is given to leading order by

λ1 = −(d3 + 2d4)

(√
1 +

4

9

(d3 + 4d4/5)2

(d3 + 2d4)2
− 1

)
ε.

Remark 1.5. The condition thatd1 > 0 andd3+2d4 < 0 ensures that the continuous spectrum
is contained in the closed left half-plane forε > 0 and small.

Remark 1.6. If d4 = 0 the wave is linearly unstable, with an O(ε) eigenvalue ifP31 < −1 and
an O(ε3) eigenvalue if−1< P31 < 0. Furthermore, the wave is linearly unstable ifd4 > 0.
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Remark 1.7. If the wave is linearly stable, and if(
d1 + d3 + 8

5d4
)(
d1 + d3 + 2d4

)
< 0,

then by applying the results presented in Kapitula [29] one can conclude that the wave is
nonlinearly stable. The details will be left to the interested reader.

Before we discuss the stability of the wave for the CGL, a few comments are in order.
There have been many recent efforts to determine the stability of the dark soliton for the
perturbed NLS by using an adiabatic approach [4, 5, 22, 23, 38]. We show in section 5.5 that
with the adiabatic approach, the wave is predicted to be stable if bothd3 + 2d4 < 0 and
d1 + d3 + 6d4/5 > 0 hold. If d4 = 0, then this approach is consistent with the result of
theorem 1.4 in that it correctly determines the stability of the wave up to O(ε). However, it
does not predict the existence of the O(ε3) instability; this is not surprising, as the adiabatic
approach is only meant to understand the dynamics on a time scale of O(1/ε). If d4 6= 0,
then the adiabatic analysis contradicts the rigorous results presented in this paper, even at
the O(ε) level. This contradiction implies that the original adiabatic ansatz for the slow-time
variation displayed by the wave must somehow be incorrect (see section 5.5 for more details).
In some way the parameterd4 has the same effect on the stability analysis for the perturbed
wave as it has on the solution structure for the steady-state problem, i.e. it breaks some kind of
‘hidden symmetry’ (see Doelman [10]). This topic would be an interesting avenue for further
research.

When considering the stability of the wave to the CGL, the primary difficulty is that the
resulting Evans function is not as easy to factor as that associated with the PNLS. As such,
for general parameter values the location of bifurcating eigenvalues cannot be put into an
easily readable form. However, one can determine for which ranges in the parameter space
there will be eigenvalues with a positive real part; as with the PNLS, it turns out that at most
two eigenvalues bifurcate from the continuous spectrum. As can be seen from the following
theorem, a primary difference between the PNLS and the CGL when considering the stability
of the hole solution is the order of the eigenvalues. In general, the instability will grow much
more slowly for the CGL than for the PNLS.

Theorem 1.8.Suppose thatd2 + d3 + d4 = −ε2σ ∗(ε), whereσ ∗ is given in theorem 1.1. Set

µ±sn =
3

2

±α − 2
3

1∓ α , α2 =
√

125 + 11

2

(µ+
sn = −1.716, µ−sn = −1.385).

(a) Suppose thatd1 6= 0, and setPj1 = dj/d1. If(
3
2 + P31 + 2P41

)(
1 +P31 + 8

5P41
)
> 0,

then the wave is linearly stable; furthermore, if

d1
(
1 +P31 + 8

5P41
)
> 0, d1

(−µ−sn + P31 + 2P41
)
> 0

or

d1
(
1 +P31 + 8

5P41
)
< 0, d1

(−µ+
sn + P31 + 2P41

)
< 0,

then there is a complex pair ofO(ε4) eigenvalues with a negative real part. If(
3
2 + P31 + 2P41

)(
1 +P31 + 8

5P41
)
< 0,
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Figure 2. Zeros ofE(λ, ε) for the CGL (d1 > 0). The configuration of the zeros matches that
shown in the legend in the upper right-hand corner.

then there is one positive realO(ε4) eigenvalue for the linearized problem, and the wave
is linearly unstable. Finally, no other eigenvalues bifurcate from the continuous spectrum
than those described above (see figure 2).

(b) Suppose thatd1 = 0 and set

a = (d3 + 2d4
)(
d3 + 8

5d4
)
.

If a > 0, then the zeros of the Evans function inside the curveK are given by

λ2,3 = (−0.595± 0.255i) a2ε4,

and the wave is linearly stable as a solution of (1.4). Ifa < 0, then the zero of the Evans
function insideK is given by

λ1 = 1.191a2ε4,

and the wave is linearly unstable.

Remark 1.9. The continuous spectrum remains in the closed left half-plane for all values of
d1, . . . , d4 as long asε > 0 is sufficiently small.

Remark 1.10. The sign of the parametera corresponds to the manner in which the wave is
constructed in the(r, r ′, ψ) phase space. The interested reader should consult section 2 for
more details.
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Remark 1.11. If the wave is linearly stable, and if(
d1 + d3 + 8

5d4
)(
d1 + d3 + 2d4

)
< 0,

then by applying the results presented in Kapitula [29] one can conclude that the wave is
nonlinearly stable. The details will be left to the interested reader.

The remainder of this paper is organized in the following manner. In section 2 the
conditions for the persistence of the wave are derived through the use of dynamical systems
techniques. In section 3 we derive the expressions which allow us to compute Taylor expansions
at the branch point of the Evans function. This section is relatively self-contained and can be
skipped on a first reading. In sections 4 and 5 we calculate the Taylor expansion for the Evans
function for the CGL and the PNLS, respectively. Theorem 1.8 follows from lemmas 4.6
and 4.8. Theorem 1.4 follows from lemma 5.6. Section 5 concludes with a brief discussion
comparing the approach of this paper with the previous adiabatic approaches.

Remark 1.12. Recently, Li and Promislow [39] independently and simultaneously used some
of the ideas present in this paper to study the stability of waves to the equations describing
pulse propagation in linearly birefringent, lossless fibres.

2. Existence and persistence

The steady-state problem for both the PNLS and the CGL is given by

− 1
2φ
′′ − φ + |φ|2φ = iε

(
1
2d1φ

′′ + d2φ + d3|φ|2φ + d4|φ|4φ
)

(2.1)

(′ = d/dx). For the existence of the hole solution, which is given by

8(x) = tanhx (2.2)

whenε = 0, we will want to consider the problem in polar coordinates. Set

φ(x) = r(x) exp

{
i
∫ x

0
ψ(s) ds

}
(2.3)

to obtain (after dropping higher-order terms that do not affect subsequent calculations) the
three-dimensional system of ODEs

r ′ = s
s ′ = −2r(1− r2) + rψ2 − 2ε2d1r(d2 − d1 + (d1 + d3)r

2 + d4r
4)

ψ ′ = −2
s

r
ψ − 2ε(d2 − d1 + (d1 + d3)r

2 + d4r
4).

(2.4)

For the system (2.4) there exist two critical manifoldsM±ε , which whenε = 0 are given
by

M±0 =
{
(r, s, ψ) : r = ±

√
1− ψ2/2, ψ2 < 2

3

}; (2.5)

we restrict toψ2 < 2
3 in (2.5) so that the manifoldsM±ε are normally hyperbolic. Each critical

manifold of (2.4) has a two-dimensional unstable manifold,Wu(M±ε ), and a two-dimensional
stable manifold,Ws(M±ε ), which are smooth perturbations of the centre-stable and centre-
unstable manifolds which exist whenε = 0 [15, 25]. As will be seen, it can be shown that
Wu(M−ε )∩Ws(M+

ε ) 6= ∅, and, by the symmetry(r, s, ψ, x)→ (r,−s,−ψ,−x), Wu(M+
ε )∩

Ws(M−ε ) 6= ∅, both for 06 ε < ε0 for someε0 > 0. These relationships are clearly satisfied
whenε = 0, as demonstrated by the existence of the waves±8. Assuming that the relevant
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manifolds intersect, the wave8will persist as long as the parameters are chosen so that critical
points exist onM±ε (also see Doelman [8, 9]). Depending on how the parameters are chosen,
there will be zero, two or four critical points onM±ε (counting multiplicities). The condition
ψ2 < 2

3 implies that the critical points onM±ε correspond to stable periodic solutions to (2.1)
[28, 31].

To prove the existence of multiple orbits bifurcating from the original heteroclinic cycle
with the constraint that the orbits remain within a small tube of the original cycle, it will be
useful to set

d2 + d3 + d4 = −(ε2σ ∗ + σ), (2.6)

whereσ ∗(ε) is such that

σ ∗(0) = − 2
9

(
d1 + d3 + 8

5d4
)2(
d1 + d3 + 2d4

)
, (2.7)

as in the statement of theorem 1.1. It will henceforth be assumed that the parameterσ , while
small, is independent ofε.

Remark 2.1. Equation (2.6) is not a parameter restriction for the CGL, as it can always be
achieved by going into an appropriate rotating reference frame, i.e. by lettingφ → φeiρt in
equation (1.4) for a suitable value ofρ before seeking a steady state. However, it is a restriction
for the PNLS, and determines a balance between the linear loss and nonlinear loss and gain
terms.

Substituting relation (2.6) into the ODE (2.4) yields

r ′ = s
s ′ = −2r(1− r2) + rψ2 + 2ε2d1r[(d1 + d3)(1− r2) + d4(1− r4) + ε2σ ∗ + σ ]

ψ ′ = −2
s

r
ψ + 2ε[(d1 + d3)(1− r2) + d4(1− r4) + ε2σ ∗ + σ ].

(2.8)

Since the lowest order at whichσ appears in (2.8) is at O(ε) in theψ-equation, the effect of
σ on perturbation calculations will only be felt at O(ε + σ)ε, except in terms of the location
of critical points onMε , which is discussed below. Hence, for many of the perturbation
calculations that follow, the role ofσ can be ignored.

The following two propositions detail the relevant behaviour onM±ε . The proofs can be
found in Kapitula [32] and hence are omitted.

Proposition 2.2. Suppose thatd2 + d3 + d4 = −(ε2σ ∗ + σ) and that(
ε2σ ∗ + σ

)(
d1 + d3 + 2d4

)
< 0.

Then a pair of critical points onM+
ε [M−ε ] are given by(r∗+, 0,±ψ∗) [(r∗−, 0,±ψ∗)], where

r∗± = ±
(

1 +
1

2

ε2σ ∗ + σ

d1 + d3 + 2d4

)

ψ∗ =
√
−2

ε2σ ∗ + σ

d1 + d3 + 2d4
.

Proposition 2.3. When0 6 ε � 1, the manifoldsM±ε intersect ther-axis. Further, there
existsδ, with 1� δ > 0, such that for−(ψ∗ + δ) < ψ < ψ∗ + δ the flow onM±ε is given by

ψ ′ = ε((d1 + d3 + 2d4
)
ψ2 + 2ε2σ ∗ + 2σ

)
.
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Proposition 2.2 gives a condition for the existence of critical points onM+
ε . It remains to

show thatWu(M−ε )∩Ws(M+
ε ) 6= ∅ for smallε 6= 0. Let6p

o = {(r, s, ψ) : r = ψ = 0}. The
hole solution belongs to6p

o at x = 0, with s(0) 6= 0. Whenε = 0, the manifoldWs(M+
ε )

intersects the curve6p
o transversely in(r, s, ψ)-space, sinceWs(M+

0) is transverse to the
invariant{ψ = 0} plane. Thus, the intersection will persist forε 6= 0 sufficiently small. Due
to invariance under(r, s, ψ, x)→ (−r, s,−ψ,−x) and the fact thats(0) 6= 0 along theε = 0
solution, it can then be concluded that not only doesWu(M−ε ) also intersect6p

o transversely,
butWu(M−ε ) ∩ Ws(M+

ε ) 6= ∅ as well. Hence, the hole solution will persist forε 6= 0 and
small. The result is not new (for example, see Doelman [8]). To determine the stability of
the wave, however, more information about the wave must be known than has previously been
given.

In the remainder of this section, we finish the proof of theorem 1.1 by showing that for
σ = 0 the perturbed wave arises as a regular perturbation, and then compute its asymptotics.
We conclude with a discussion of how the nature of the intersection that yields the wave differs
in various parameter regimes; this is where proposition 2.3 is useful.

Let an underlying hole solution be denoted by(R, S,9). When evaluated atε = σ = 0,
the variational equations associated with (2.8) are given by

δr ′ = δs
δs ′ = −2(1− 3R2 −92/2) δr + 2R9 δψ

δψ ′ = (2R′9/R2) δr − (29/R) δs − (2R′/R) δψ
+2[(d1 + d3)(1− R2) + d4(1− R4)] δε

δε′ = 0

δσ ′ = 0.

(2.9)

Since the solution belongs to6p
o at x = 0 even forε 6= 0, it is of interest to determine the

location of the curve6p
o as the flow carries it up to the slow manifoldM+

ε . Specifically, we
wish to determine theψ-coordinates of the points of6p

o as they approachM+
ε . Using the fact

that theψ-coordinate of6p
o is identically zero whenε = 0, by performing a Taylor expansion

we can write thatψ = ψεε + O(ε2). From evaluation of the variational equations over the
ε = 0 hole solution8, we find thatψε satisfies the initial-value problem

(82ψε)
′ = 2[(d1 + d3)(1−82) + d4(1−84)]82

(82ψε)(0) = 0.
(2.10)

Upon integrating, it is seen that

ψε(x) = 2
3

(
(d1 + d3 + d4)8(x) + 3

5d48
3(x)

)
. (2.11)

Let 0< ν � 1 be given, and letTν > 0 be such that 1−8(Tν) = ν. That is,Tν denotes
a time when the curve6p

o is within O(ν) of the slow manifoldM+
ε . Upon evaluating the

expression forψε atTν , it is seen that

ψε(Tν) = 2
3

(
d1 + d3 + 8

5d4
)

+ O(ν). (2.12)

The following proposition has now been proved.

Proposition 2.4. At the timeTν such that1− 8(Tν) = ν, the image of the curve6p
o under

the flow is within anO(ν) distance of the slow manifoldM+
ε , and theψ-coordinates of points

on the image of6p
o are given by

ψ = [ 2
3

(
d1 + d3 + 8

5d4
)

+ O(ν)
]
ε + O(ε + σ)ε,

where0< ε, ν � 1.
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First suppose thatσ = 0. As a consequence of the manner in whichσ ∗ has been chosen
(see equation (2.7)), an application of propositions 2.2 and 2.4 yields that the wave will persist
as a regular perturbation. This is due to the fact that the critical points onM+

ε match the
expression given in proposition 2.4. The following lemma gives the necessary asymptotics for
the perturbed wave. The proof is a standard application of perturbation theory, and hence will
be left to the interested reader.

Lemma 2.5. Suppose thatσ = 0. The perturbed wave then arises as a regular perturbation
and satisfies

r = 8 + rεεε
2/2 + O(ε3)

ψ = ψεε + O(ε3),

where

ψε(x) = 2
3

((
d1 + d3 + d4

)
8(x) + 3

5d48
3(x)

)
and

rεε(x) = 1
225

[−5
(
10
(
d1 + d3

)2
+ 40

(
d1 + d3

)
d4 + 39d2

4

)
8(x)

+8d4
(
5
(
d1 + d3

)
+ 8d4

)
83(x) + 3d2

48
5(x) + 12d4

(
5
(
d1 + d3

)
+ 8d4

)
x8′(x)

]
+1

3d1
[
2d48(x)− 3

(
d1 + d3 + 2d4

)
x8′(x)

]
8′(x).

Remark 2.6. Note that

lim
x→±∞(2rεε ± ψ

2
ε )(x) = 0.

This fact will be important in later calculations which deal with improper integrals.

For the rest of this paper, set

ψ+
ε = lim

x→+∞ψε(x). (2.13)

Note that by symmetry, limx→−∞ ψε(x) = −ψ+
ε . Upon doing a linear stability analysis of the

critical points onM±ε , one notices the following facts. If(
d1 + d3 + 8

5d4
)(
d1 + d3 + 2d4

)
< 0, (2.14)

then the wave will be realized as the intersection of a two-dimensional unstable manifold with
a two-dimensional stable manifold in the three-dimensional phase space. Alternately, if(

d1 + d3 + 8
5d4
)(
d1 + d3 + 2d4

)
> 0, (2.15)

then the wave is realized as the intersection of a one-dimensional unstable manifold with
a one-dimensional stable manifold in the three-dimensional phase space. In other words,
if equation (2.14) holds, then the trajectory out of the curve6

p
o intersects the strong stable

manifold of the point(r∗+, 0, εψ
+
ε ); furthermore, the critical point is an attractor on the manifold

M+
ε . This is indicated by proposition 2.3, which gives the flow onM+

ε for |ψ | � 1, and by
proposition 2.4. If the parameters satisfy equation (2.15), then the critical point is a repellor
on the manifoldM+

ε (see figure 3). As we show in sections 4 and 5, this structure plays a role
when discussing the stability of the wave.

Now suppose thatσ 6= 0. In this case, the wave arises as a result of a singular perturbation,
sinceψε(Tν) 6= ±ψ∗ at leading order inν (i.e.±ψ∗ are no longer O(ε) close to 0). Formally,
this means that the wave must then be constructed through a matched asymptotic expansion
using multiple spatial scales. Ifσσ ∗ > 0, then the resulting wave can be thought of as a



88 T Kapitula and J Rubin

Figure 3. Projected flow onto{s = 0} (a = (d1 + d3 + 2d4)(d1 + d3 + 8d4/5)). The dotted curve
represents the solution whose stability is studied in this paper.

concatenation of the solution8with solutions tracking along close to the slow manifoldsM±ε .
The radial profile of the solution will have a ‘shelf’ at the point at which it approachesM±ε
(see [4, 5, 22, 23] for a discussion of the shelf in the context of the NLS and nonlinear optics).
Furthermore, the perturbed wave will stay within an O(ε) tube of the original (ε = 0) wave8.
Now suppose thatσσ ∗ < 0. If equation (2.14) holds, then the wave will stay within an O(ε)
tube of8. If (2.15) holds, however, then the wave will travel alongM±ε to a critical point (if
it exists) outside this tube.

3. Derivatives at branch points

Consider the linear operator

L = B∂2
x + P(x)∂x +N(x), (3.1)
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whereB is an invertiblen × n matrix whose eigenvalues have a non-negative real part, and
P(x) andN(x) are smoothn× n matrices satisfying

lim
x→±∞P(x) = P±, lim

x→±∞N(x) = N±,

with the approach being exponentially fast. Upon settingY = [u, u′]T , where′ = d/dx, the
eigenvalue equationLu = λu can be rewritten as the first-order system

Y ′ = M(λ, x)Y , (3.2)

with

M(λ, x) =
[

0 id

−B−1(N(x)− λ id) −B−1P(x)

]
.

In this section, we define an Evans function for the operatorL. We do this under
assumptions which imply that at least one of the matricesM±(λ) := limx→±∞M(λ, x) has
a pair of eigenvalues that produces a branch point for the Evans function at a fixed value of
λ. In this context, we develop a technique for differentiating the Evans function at this branch
point. This method then allows us, in sections 4 and 5, to derive perturbation expansions on a
Riemann surface for particular Evans functions around branch points. These expansions are
crucial in locating eigenvalues for the corresponding linear operators.

3.1. General assumptions and definition of the Evans function

Consider the linear eigenvalue problem (3.2) whereM(λ, x) ∈ C2n×2n is smooth inx for each
fixedλ and analytic inλ for each fixedx. The following assumptions will be made onM(λ, x).

Assumption 3.1.The matrixM(λ, x) satisfies:

• limx→±∞M(λ, x) = M±(λ), with an exponentially fast approach.
• If Reλ > 0, thenM±(λ) hasn eigenvalues with a positive real part andn eigenvalues

with a negative real part.
• A pair of eigenvalues forM±(λ) are ±√b(λ), whereb(λ) is analytic atλ = 0 with
b(0) = 0 andb′(0) 6= 0, while the other2n − 2 eigenvalues are analytic atλ = 0 with
non-zero real parts.

• When put into Jordan canonical form,M±(0) has the block
[

0 1

0 0

]
.

The second of these assumptions is not necessary, but it holds for the applications of
interest and we make it to simplify the notation. The third and fourth assumptions imply that
a pair of eigenvalues ofM±(λ) forms a branch point of the Evans function atλ = 0. Later in
this section we will slightly relax the third and fourth assumptions such that this holds for only
one of the matricesM±(λ) (see remark 3.6). Taken together, the statements in assumption 3.1
imply that ifM(λ, x) is derived from the first-order system representation of a linear operator
L, then{0} ∈ σc(L) and is on theedgeof the continuous spectrum (see also [35, 36]). Finally,
we note that while it will not be done here, it may be possible to extend the theory to the case
whereM±(0) have several Jordan blocks of the type given above. This could be useful when
discussing the stability of waves satisfying viscous conservation laws [19].

We now construct the Evans function following the ideas presented in [1]. Ifλ is not in
the continuous spectrum, then the matricesM±(λ) have no eigenvalues with a zero real part.
If each hasn eigenvalues with a positive real part andn with a negative real part, then it is
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possible to define solutionsYi (λ, x) to equation (3.2) which are analytic inλ such that for
i = 1, . . . , n

lim
x→−∞ |Yi (λ, x)| = 0, Y1(λ, 0) ∧ · · · ∧ Yn(λ, 0) 6= 0,

and fori = n + 1, . . . ,2n

lim
x→+∞ |Yi (λ, x)| = 0, Yn+1(λ, 0) ∧ · · · ∧ Y2n(λ, 0) 6= 0.

Following Alexanderet al [1], the Evans function is independent ofx and is given up to
constant multiplication by

E(λ) = Y1(λ, 0) ∧ · · · ∧ Y2n(λ, 0).

If E(λ0) = 0, then there exists a solution to (3.2) which decays exponentially fast as|x| → ∞,
and henceλ0 is an eigenvalue forL.

If λ is in the continuous spectrum, then at least one of the matricesM±(λ)has an eigenvalue
with zero real part, and the above construction breaks down. Recently, Kapitula and Sandstede
[36] and Gardner and Zumbrun [19] concurrently and independently established theGap
lemma, which shows that the Evans function can be analytically extended into the essential
spectrum. The analyticity of the extension fails precisely when assumption 3.1 holds, as in
this case the Evans function has a branch point.

In many applications, one of which was considered in [36], the branch point is located
on the imaginary axis. Thus, under a perturbation of the wave, it is possible for eigenvalues
to move out of the branch point and into the right-half of the complex plane, leading to an
instability. In other words, anedge bifurcationmay occur [35]. To locate any such bifurcating
eigenvalues, our strategy is to do a Taylor expansion for the Evans function in the vicinity of the
branch point and then to locate the zeros of the resulting polynomial; to expand appropriately,
we must account for the presence of the branch point [41]. In particular, if a pointλ0 is a
branch point of orderk−1 for the Evans function, then by settingγ = (λ−λ0)

1/k one obtains
an expansion around the branch point of the form

E(γ ) =
∞∑
n=0

anγ
n. (3.3)

One can then find the zeros forE(γ ) and use the inversion relationλ = λ0 + γ k to find the
zeros forE(λ). The inversion must be done very carefully, however, as the zeros of the series
(3.3) do not necessarily all correspond to eigenvalues for the linearized problem (3.2).

Let K ⊂ C be a simple closed curve which encircles the branch pointλ0, such that no
zeros of the Evans function belong toK itself. Furthermore, letK be such that it encloses all
the possible zeros ofE(λ) which are contained in the right half-plane. The existence of such
a curve is guaranteed by a result in Alexanderet al [1]. To be able to write the Evans function
as the infinite series given in equation (3.3), one must be able to define the Evans function
on ak-sheeted Riemann surfaceRK . The surfaceRK is constructed in the following manner
[41, 50]. LetK0,K1, . . . , Kk−1 be copies ofK cut along the non-positive real axis. Letδ±j
denote the upper and lower edges of the non-positive real axis regarded as the boundary ofKj ,
and let

(λ− λ0)
1/k = |λ− λ0|1/k exp[i(argλ− λ0 + 2jπ)/k]

onKj . Now pasteδ−0 to δ+
1, δ−1 to δ+

2, . . . , δ
−
k−2 to δ+

k−1, and finallyδ−k−1 to δ+
0. The result is a

k-sheeted Riemann surfaceRK , with the sheets coming together at the branch pointλ = λ0.
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The Gap lemma [19, 36] implies that the functionE(λ) extends analytically to the surfaceRK ,
and hence the series is valid. For the zeros of the series (3.3) to correspond to eigenvalues,
they must lie on the correct sheet of the Riemann surface. In particular, they must satisfy

−π
k
< argγ <

π

k
, (3.4)

so that they are located on the sheetK0. Zeros of the series on other sheets correspond to the
existence of solutions of (3.2) that are not eigenfunctions.

Under assumption 3.1, the Evans function will be defined on a 2-sheeted Riemann surface.
To take into account the fact that a pair of eigenvalues ofM±(λ) has a branch point atλ = 0,
set

γ 2 = b(λ). (3.5)

By the assumptions on the matricesM±(λ), for Reλ > 0 there exist solutionsY ±f,i(λ, x), i =
1, . . . , n − 1, such that|Y ±f,i(λ, x)| → 0 exponentially fast asx → ±∞. From the third
assumption and equation (3.5), there also exist solutionsY ±s (γ, x) which satisfy

lim
x→±∞Y

±
s (γ, x)e±γ x = v±s (γ ). (3.6)

The vectorsv±s (γ ) are analytic inγ and satisfy

M±(γ )v±s (γ ) = ∓γ v±s (γ ). (3.7)

Using the definition ofγ from equation (3.5), the Evans function on the Riemann surface is
given by

E(γ ) = (Y −s ∧ Y −f ∧ Y +
s ∧ Y +

f

)
(γ, 0), (3.8)

where

Y ±f (γ, x) =
(
Y ±f,1 ∧ · · · ∧ Y ±f,n−1

)
(γ, x).

We make a further assumption to allow the possibility of bounded and/or exponentially
decaying solutions to equation (3.2) atλ = 0; this is not a restriction, since we allowk = 0,
but simply sets up the notation to handle such solutions.

Assumption 3.2.The slow solutions satisfyY −s (0, x) = Y +
s (0, x). Furthermore, there exists

a k, with 06 k 6 n− 1, such thatY −f,i(0, x) = Y +
f,i(0, x) for i = 0, . . . , k.

Remark 3.3. If {0} /∈ σc(L), thenk would be the geometric multiplicity of the eigenvalue
λ = 0.

The functionsY ±f,i(γ, x) are analytic inλ atλ = 0; hence, their derivatives with respect to
γ are related to derivatives with respect toλ by the chain rule, and when evaluated atλ = γ = 0
satisfy

m! ∂2m
γ Y

±
f,i(0, x) =

(2m)!

b′(0)m
∂mλ Y

±
f,i(0, x). (3.9)

The solutionsY ±s (γ, x) are not analytic inλ at λ = 0; however, by the assumptions on the
eigenvalues ofM±(λ) they are analytic inγ [41]. SinceY −s (0, x) = Y +

s (0, x), we have
E(0) = 0 from (3.8). As a consequence of assumption 3.2 and equation (3.9), we expect that
∂2k+1
γ E(0) 6= 0 with ∂jγE(0) = 0 for 06 j 6 2k. Proving this conjecture will be the focus of

the next two subsections.
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3.2. Derivatives of the slow components

The definition of the Evans function in (3.8) is based on 2n solutions of equation (3.2).
We can specify a related set of 2n linearly independent solutions{u1, . . . ,u2n} to (3.2) at
λ = 0, which are useful for differentiating components of the Evans function, as follows.
Setui (x) = Y −f,i(0, x) for i = 1, . . . , k. The existence ofk independent solutions which
grow exponentially fast as|x| → ∞ is guaranteed by a result in Gardner and Jones [17]; let
ui (x), i = k + 1, . . . ,2k be these solutions. Now set

u2k+i (x) = Y −f,k+i (0, x), i = 1, . . . , n− k − 1

un+k−1+i (x) = Y +
f,k+i (0, x), i = 1, . . . , n− k − 1.

Finally, setu2n−1(x) = Y −s (0, x), and letu2n(x) be chosen so that

u1(0) ∧ · · · ∧ u2n(0) = 1. (3.10)

Now, the(2n−1)-form exp(− ∫ x0 trM(0, s)ds)u1(x)∧· · ·∧u2n−1(x) induces a solution
uA2n(x) to the adjoint equation associated with equation (3.2); furthermore,uA2n(x)·u2n(x) = 1
[1, 33, 47]. In all of the examples having the branch point structure under consideration of
which the authors are aware, this particular adjoint solution is bounded above and bounded
from zero as|x| → ∞; hence, this will be an assumption. The theory can be appropriately
modified if this does not hold true.

Assumption 3.4.There exist positive constantsC1 andC2 such that the adjoint solutionuA2n(x)
satisfiesC1 6 |uA2n(x)| 6 C2 for all x ∈ R.

To differentiate the Evans function atγ = 0, it is necessary to derive an expression for
∂γ (Y

−
s − Y +

s )(0, x) at some value ofx. Set

Z±s (γ, x) = Y ±s (γ, x)e±γ x,

and note that for fixedx,

∂γY
±
s (0, x) = ∂γZ±s (0, x).

Following Kapitula and Sandstede [36], write

Z±s (γ, x) = v±s (γ ) + Y ±s (0, x)− v±s (0) +w±(γ, x), (3.11)

wherew±(γ, x) is assumed to decay exponentially fast asx →±∞ and to satisfyw±(0, x) =
0. This ansatz is valid due to equation (3.6).

The assumption thatb′(0) 6= 0 implies that we can write locallyλ = b−1(γ 2), which yields
that dλ/dγ = 0 atγ = 0. SinceM(λ, x) is analytic inλ, we then observe that∂γM(0, x) = 0.
Therefore, it can be readily seen that

∂x
(
∂γw

±(0, x)
) = M(0, x) ∂γw±(0, x) +M(0, x) ∂γ v

±
s (0)± Y ±s (0, x). (3.12)

The nonhomogeneous term in the above equation decays exponentially fast asx → ±∞.
This can be seen by noting that as a consequence of equation (3.7),M±(0) ∂γ v±s (0) =
∓v±s (0).

Set

G±(x) = M(0, x) ∂γ v±s (0)± Y ±s (0, x).
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Solving equation (3.12) with variation of parameters (see [33]) yields

∂γw
±(0, 0) =

n−1∑
i=1

c±i Y
±
f,i(0, 0) + c±s Y

±
s (0, 0) +

2k∑
i=k+1

ui (0)
∫ 0

±∞
G±(x) · uAi (x) dx

+u2n(0)
∫ 0

±∞
G±(x) · uA2n(x) dx. (3.13)

HereuAi (x) are solutions to the adjoint equation associated with equation (3.2) satisfying
uAi (x) · uj (x) = δij , and c±i are some constants. As a consequence of the manner in
which the solutionsui (x) were defined,uAi (x) decays exponentially fast as|x| → ∞ for
i = k + 1, . . . ,2k; hence, the improper integrals are valid. The observation that

M(0, x) ∂γ v
±
s (0) · uAi (x) = −∂γ v±s (0) ·

d

dx
uAi (x)

together with the exponential decay of the adjoint solutionsuAi (x) simplify the solution formula
in equation (3.13) to

∂γw
±(0, 0) =

n−1∑
i=1

c±i Y
±
f,i(0, 0) + c±s Y

±
s (0, 0)−

2k∑
i=k+1

[
∂γ v
±
s (0) · uAi (0)

]
ui (0)

+
[
∂γ v
±
s (0) · (uA2n(±∞)− uA2n(0))

]
u2n(0). (3.14)

Here we note that sinceY ±s (0, x) = u2n−1(x), Y ±s (0, x) · uAj (x) = 0 for j 6= 2n − 1.
Therefore, upon an appropriate renaming of the constants one sees that

∂γ (w
− − w+)(0, 0) =

n−1∑
i=1

c̃±i Y
±
f,i(0, 0) + c̃sY

−
s (0, 0) +

2k∑
i=k+1

[
∂γ (v

+
s − v−s )(0) · uAi (0)

]
ui (0)

+
[
∂γ (v

+
s − v−s )(0) · uA2n(0)

]
u2n(0)

+
[
∂γ v
−
s (0) · uA2n(−∞)− ∂γ v+

s (0) · uA2n(+∞)
]
u2n(0). (3.15)

The following lemma has now almost been proved.

Lemma 3.5. Suppose that assumptions 3.1, 3.2 and 3.4 hold. The solutionsY ±s (γ, x) then
satisfy

∂γ (Y
−
s − Y +

s )(0, 0) =
n−1∑
i=1

c±i Y
±
f,i(0, 0) + csY

−
s (0, 0)

+
[
∂γ v
−
s (0) · uA2n(−∞)− ∂γ v+

s (0) · uA2n(+∞)
]
u2n(0)

for some constantsc±i , cs .

Proof. As a consequence of equation (3.11), it follows that

∂γ
(
Y −s − Y +

s

)
(0, 0) = ∂γ

(
v−s − v+

s

)
(0) + ∂γ

(
w− − w+

)
(0, 0),

where∂γ (w− − w+)(0, 0) is given in equation (3.15). Plugging in the fact that

∂γ (v
−
s − v+

s )(0) =
2n∑
i=1

[
∂γ
(
v−s − v+

s

)
(0) · uAi (0)

]
ui (0)

therefore yields the result. �
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Remark 3.6. If only one of the matricesM±(λ), sayM−(λ), satisfies assumption 3.1, i.e. the
other matrix, sayM+(λ), is such that all of its eigenvalues are analytic inλ at λ = 0, then
it is only necessary to compute the relevant term∂γY −s (0, 0). One can then drop the term
∂γ v

+
s (0) · uA2n(+∞) in the above lemma.

3.3. Derivatives of the Evans function

We are now ready to derive expressions for certain derivatives of the Evans function with
respect toγ atγ = 0. Recall assumption 3.2, which states that there existk solutions atλ = 0
to equation (3.2) which decay exponentially as|x| → ∞. By the construction of the system
(3.2) it must then be true that fori = 1, . . . , k

Y ±f,i(0, x) =
[
ψ1,i , ψ

′
1,i

]T
,

whereLψ1,i = 0. We assume that althoughλ = 0 is not an isolated eigenvalue of finite
multiplicity, we can nonetheless find ‘generalized eigenfunctions’ forλ = 0.

Assumption 3.7.There exist numbersai and functionsψj,i, i = 1, . . . , k, j = 1, . . . , ai,
such that

Lψj,i = ψj−1,i , ψ0,i = 0.

Furthermore, ifj > 2, then|ψj,i(x)| decays exponentially fast as|x| → ∞.

Remark 3.8. If λ = 0 were an isolated eigenvalue with finite multiplicity, then the exponential
decay assumption would hold automatically. Otherwise, it is possible for the generalized
eigenfunctions to either be bounded away from zero or even grow like some power of|x| as
|x| → ∞ (see section 3.5).

Setp =∑k
i=1 ai , and let

Ψai ,i (x) =
[
ψai,i , ψ

′
ai ,i

]T
(3.16)

for i = 1, . . . , k. Following Kapitula [33] it can be shown that∂aλ (Y
−
f,i − Y +

f,i)(0, x) = 0 for
positive integersa < ai , and

∂
ai
λ (Y

−
f,i − Y +

f,i)(0, x) =
n−1∑
j=1

d±j Y
±
f,j (0, x) + dsY

−
s (0, x)

+d2nu2n(x) + ai !
2k∑

j=k+1

〈∂λM(0, x)Ψai ,i (x),u
A
j (x)〉uj (x), (3.17)

for constantsd±j , ds andd2n. In the above,

〈G(x),H(x)〉 =
∫ +∞

−∞
G(x) ·H(x) dx.

The integrals are valid due to the fact that the adjoint solutions decay exponentially fast as
|x| → ∞.
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Recall the definition of the Evans function given in equation (3.8). As a consequence of
the above discussion and equation (3.9),∂mγ E(0) = 0 for any positive integerm < 2p + 1.
Upon using relation (3.9), differentiation yields

∂2p+1
γ E(0) = (2p + 1)!∏k

i=1(2ai)!
∂γ
(
Y −s − Y +

s

) ∧ ∂γ (Y −f − Y +
f

) ∧8
= (2p + 1)!

b′(0)p
∏k
i=1 ai !

∂γ
(
Y −s − Y +

s

) ∧ ∂λ(Y −f − Y +
f

) ∧8,
where

∂γ
(
Y −f − Y +

f

) = ∂2a1
γ

(
Y −f,1− Y +

f,1

) ∧ · · · ∧ ∂2ak
γ

(
Y −f,k − Y +

f,k

)
,

and

∂λ(Y
−
f − Y +

f ) = ∂a1
λ

(
Y −f,1− Y +

f,1

) ∧ · · · ∧ ∂akλ (Y −f,k − Y +
f,k

)
,

and

8(x) = (Y −f,k+1 ∧ · · · ∧ Y −f,n−1 ∧ Y +
s ∧ Y +

f,k+1 ∧ · · · ∧ Y +
f,n−1

)
(0, x).

Substituting the result of lemma 3.5 and equation (3.17) into this expression, one obtains the
following theorem.

Theorem 3.9.Suppose that the assumptions leading to lemma 3.5 hold, and that
assumption 3.7 holds. Then derivatives of the Evans function defined from the linear operator
L satisfy

∂2p+1
γ E(0) = − (2p + 1)!

b′(0)p
αD

where

α = ∂γ v−s (0) · uA2n(−∞)− ∂γ v+
s (0) · uA2n(+∞)

and

D =

∣∣∣∣∣∣∣∣
〈∂λMΨa1,1,u

A
k+1〉 · · · 〈∂λMΨa1,1,u

A
2k〉

...
...

〈∂λMΨak,k,u
A
k+1〉 · · · 〈∂λMΨak,k,u

A
2k〉

∣∣∣∣∣∣∣∣ .
Remark 3.10. A similar theorem was proved in Kapitula [33] in the case thatλ = 0 is an
isolated eigenvalue with finite multiplicity.

Remark 3.11. Another case that may arise is thatb(0) = b′(0) = 0. Sinceb(λ) is analytic,
similar expressions for the derivatives ofE(γ ) atγ = 0 can be derived via the chain rule; the
more zero derivativesb(λ) has, the more complicated the results. Such an example arises in
section 3.5.
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3.4. Example: CGL

Consider the linearized problem for the CGL (1.4), given in section 4 in equation (4.2). Upon
settingε = 0, the matrixM0(λ, x) is given by

M0(λ, x) =


0 0 1 0

0 0 0 1

2(λ− 1 + 382) 0 0 0

0 2(λ− 1 +82) 0 0

 . (3.18)

It is easy to check here thatb(λ) = 2λ. Following the procedure leading up to equation (3.10),
choose the solutions toY ′ = M0(0, x)Y to be

u1 = [8′, 0,8′′, 0]T , u2 = [u1
2, 0, u

3
2, 0]T

u3 = [0,8,0,8′]T , u4 = [0, u2
4, 0, u

4
4]T

(3.19)

(u2
4(x) = x8(x)− 1, u4

4(x) = 8(x) + x8′(x)). The solutionu2, which grows exponentially
fast asx →±∞, is chosen so that∣∣∣∣∣ 8′ u1

2

8′′ u3
2

∣∣∣∣∣ = −1;

hence,u1, . . . ,u4 satisfies (3.10). While it is possible to find an explicit expression foru2, it
is not necessary, and hence will not be done. The adjoint solutions satisfyingui ·uAj = δij are
then given by

uA1 = [−u3
2, 0, u

1
2, 0]T , uA2 = [8′′, 0,−8′, 0]T

uA3 = [0, u4
4, 0,−u2

4]T , uA4 = [0,−8′, 0,8]T .
(3.20)

Under the normalizationY ±s (0, x) = u3(x), a simple calculation reveals that

v±s (γ ) = [0,±1, 0,−γ ]T (3.21)

(recall thatγ 2 = 2λ in this case). The result of theorem 3.9, witha1 = 1 andΨ1,1 = u1, then
implies that

α = ∂γ v−s (0) · uA4 (−∞)− ∂γ v+
s (0) · uA4 (+∞) = 2,

and hence

∂3
γ E(0) =

∫ +∞

−∞
(8′)2(x) dx

= 16. (3.22)

The linearized eigenvalue problem whenε = 0 can be written as

L+p = λp, L−q = λq,
whereL± are defined in equation (4.4). As such, we can actually say much more about
the Evans function. First, both operatorsL± are self-adjoint, so their spectra must be real.
Furthermore, sinceL+8

′ = 0 and8′ has no zeros, an application of Stürm–Liouville theory
implies thatλ = 0 is the largest eigenvalue forL+. Similarly, there are no positive eigenvalues
for L−. Therefore, the following lemma holds for the Evans function.
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Lemma 3.12.Suppose thatε = 0. Setγ 2 = 2λ. For γ near zero the Evans function has the
expansion

E(γ ) = 8
3γ

3 + O(γ 4).

Furthermore, the Evans function is non-zero forReγ > 0.

Remark 3.13. As a consequence of this lemma, for a perturbed problem it suffices to locate
the zeros of the Evans function nearγ = 0 to determine the stability of the wave.

3.5. Example: NLS

Consider the linearized problem for the PNLS (1.3), given in section 5 in equation (5.1). Upon
settingε = 0, the matrixM0(λ, x) is given by

M0(λ, x) =


0 0 1 0

0 0 0 1

2(−1 + 382) −2λ 0 0

2λ 2(−1 +82) 0 0

. (3.23)

Choose the solutionsY ′ = M0(0, x)Y to be those given in equation (3.19), and let the adjoint
solutions be those given in equation (3.20). Defineγ by

γ 2 = 2(1−
√

1− λ2), (3.24)

so that upon taking the principal square root,

λ = 1
2γ
√

4− γ 2.

Note that

λ = γ + O(γ 2)

for γ sufficiently small, so that

∂

∂λ
= ∂

∂γ

at (λ, γ ) = (0, 0). Under the normalizationY ±s (0, x) = u3(x), a simple calculation reveals
that

v±s (γ ) = − 1
2

[
∓γ,∓

√
4− γ 2, γ 2, γ

√
4− γ 2

]T
. (3.25)

Thus, the result of lemma 3.5 implies that

∂γ (Y
−
s − Y +

s )(0, 0) = 2u4(0) + c1u1(0) + c3u3(0). (3.26)

In this example,b(λ) is given in (3.24), sob(0) = 0, butb′(0) = 0 as well. As noted in
remark 3.10, this does not in itself rule out use of a modified form of theorem 3.9. Unfortunately,
the result of theorem 3.9 truly cannot be applied here. Since the generalized eigenfunctions
are given by

ψ1,2(x) =
[

0
8(x)

]
, ψ2,2(x) = 1

2

[
x8′(x) +8(x)

0

]
,
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the assumption that the generalized eigenfunctions decay exponentially fast as|x| → ∞ does
not hold. Thus, we must construct the desired solutions directly. Using the fact that(

∂λY
±
f

)′ = M0∂λY
±
f + ∂λM0Y

±
f ,

and thatY ±f (0, x) = u1(x), it is not hard to verify that

∂λY
±
f (0, x) = −u4(0)∓ u3(x). (3.27)

Thus, upon solving the equation(
∂2
λY
±
f

)′ = M0∂
2
λY
±
f + 2∂λM0∂λY

±
f

by variation of parameters, one finds that

∂2
λ

(
Y −f − Y +

f

)
(0, 0) = 4u2(0) + c1u1(0).

Combining this result with equation (3.26) implies that whenε = 0,

∂3
γ E(0) = 3∂γ

(
Y −s − Y +

s

) ∧ ∂2
γ

(
Y −f − Y +

f

) ∧ Y +
s ∧ Y +

f

= −24. (3.28)

The following lemma is now almost proved.

Lemma 3.14.Suppose thatε = 0. Setγ 2 = 2(1− √1− λ2). For γ near zero the Evans
function has the expansion

E(γ ) = −4γ 3 + O(γ 4).

Furthermore, the Evans function is non-zero forReγ > 0 except atγ = 0.

Proof. It is shown in Chenet al [6] that the squared Jost solutions of the Zakharov–Shabat
eigenequation, i.e. the squared eigenfunctions, form a complete set. In other words, bounded
eigenfunctions for the linearized problem exist if and only ifλ ∈ iR (or γ ∈ iR). Thus, the
Evans function is non-zero for Reγ > 0, and to complete the proof we must show that it is
non-zero on the set iR\{0}.

To this end, we will rewrite the eigenvalue problem in such a way as to fully exploit the
results presented in [6]. Lettingψ = φ∗, the NLS can be rewritten as the system

iφt − 1
2φxx − φ + φ2ψ = 0

−iψt − 1
2ψxx − ψ + φψ2 = 0.

Linearizing about the wave8 yields the system

iφt − 1
2φxx − φ + 282φ +82ψ = 0

−iψt − 1
2ψxx − ψ +82φ + 282ψ = 0,

which, upon setting

(φ, ψ)→ (φ, ψ)eiρt ,

induces the eigenvalue problem
1
2φ
′′ + (1− 282)φ −82ψ = −ρφ

1
2ψ
′′ + (1− 282)ψ −82φ = ρψ

(′ = d/dx).
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Sinceγ ∈ iR if and only if ρ ∈ R, we will now explicitly construct the Evans function
for realρ. In the usual way, the eigenvalue system

Y ′ = M(ρ, x)Y
can be constructed. Set

ξ = ρ +
√

1 +ρ2,

where the principal square root is taken. Note thatρ ∈ R implies thatξ ∈ R+, and that
ρ = 0 implies thatξ = 1. The eigenvalues for the asymptotic matrixM0(ξ) are given by
±µf (ξ), ±µs(ξ), where

µf (ξ) = ξ + 1√
ξ
, µs(ξ) = i

ξ − 1√
ξ
,

and the principal square root is being taken. The corresponding eigenvectors are given by

v±f = [1, ξ,±µf ,±ξµf ]T , v±s = [1,−1/ξ,±µs,∓µs/ξ ]T .

Now, when Reγ > 0, Im ρ < 0, so that for Imξ 6 0 we need to define the solutionsY ±s
andY ±f comprising the Evans function so that

lim
x→±∞

(
Y ±s ∧ Y ±f

)
(ξ, x)e±(µs+µf )x = v∓s ∧ v∓f .

This is done so that the definition of the Evans function is consistent with that given in
equation (3.8). Using the information presented in [6], it can readily be checked that

lim
x→+∞

(
Y −s ∧ Y −f

)
(ξ, x)e−(µs+µf )x = a(ξ) b(ξ) v+

s ∧ v+
f ,

where

a(ξ) =
√
ξ − i√
ξ + i

, b(ξ) =
(√

ξ − 1√
ξ + 1

)2

.

Thus, we get that

E(ξ) = lim
x→+∞

(
Y −s ∧ Y −f ∧ Y +

s ∧ Y +
f

)
(ξ, x)

= a(ξ) b(ξ) v−s ∧ v−f ∧ v+
s ∧ v+

f .

Since

v−s ∧ v−f ∧ v+
s ∧ v+

f = −4i
(1 + ξ2)2(1− ξ2)

ξ3
,

we see thatE(ξ) 6= 0 for ξ ∈ R+ except whenξ = 1. As ξ = 1 corresponds toρ = 0, the
proof is complete. �

Remark 3.15. The functionsa(ξ) andb(ξ) are related to the transmission coefficient for the
Zakharov–Shabat inverse scattering problem.

Remark 3.16. As a consequence of proposition 2.17 in [36], the Evans function will remain
non-zero forε > 0 and|γ | sufficiently large. Therefore, for a perturbed problem it suffices to
locate the zeros of the Evans function nearγ = 0 to determine the stability of the wave.



100 T Kapitula and J Rubin

4. Perturbation calculations at the branch point: CGL

In the next two sections we will be using the Evans function to locate the eigenvalues that
bifurcate out of the branch point. To accomplish this task, we will need to perform perturbation
calculations for the various coefficients of terms in the series expansions for the Evans function.
Fortunately, the techniques have been developed that will enable us to do so. In Kapitula [33],
a procedure was described which allows one to perform these calculations for expansions
about an eigenvalue that is isolated with finite multiplicity. This assumption is not valid for
the systems considered in this paper, as we wish to do perturbation calculations around a
branch point; however, all is not lost. Kapitula and Sandstede [36] showed that it is possible
to perform perturbation calculations around a branch point if a transformation is done on
the eigenvalue parameter so that the branch point does not move under the perturbation. By
combining and appropriately modifying the approaches of these two works, together with the
results in section 3, we are able to perform an expansion around the branch point in terms
of the transformed eigenvalue parameter. Recall the manner in whichE(γ ) is defined in
equation (3.8). To compute the coefficients in the Taylor expansion forE(γ ), we will need to
be able to compute terms such as∂kε (Y

−
f − Y +

f )(0, 0) for an appropriate value ofk. The first
three subsections are devoted to this task.

Henceforth, set

0 = d1 + d3 + 2d4, a = 0ψ+
ε , (4.1)

whereψ+
ε is specified by (2.13) and (2.11). Note thata is exactly the parameter that appears

on the left-hand side of conditions (2.14) and (2.15); that is, the sign ofa is directly related to
the structure of the manifolds whose intersection forms the hole solution.

4.1. Preliminaries

After settingφ = u + iv in equation (1.4), let the perturbation of the wave be written in the
form

u + iv = (r + (p + iq)) exp

{
i
∫ x

0
ψ(s) ds

}
(this follows the scheme used in Kapitula [27]). Herer andψ are given in lemma 2.5. For
ε 6= 0, the linearized eigenvalue problem derived from equation (1.4), is given, up to O(ε2),
by

λ

[
1− ε2d2

1 εd1

−εd1 1− ε2d2
1

]
= L0 + εLε + 1

2ε
2Lεε, (4.2)

where

L0 =
[
L+ 0
0 L−

]
(4.3)

with

L+ = 1
2∂

2
x + 1− 382, L− = 1

2∂
2
x + 1−82, (4.4)

and

Lε = −
(
ψε∂x − 8

′

8
ψε

)[
0 1
−1 0

]
− 282

(
d1 + d3 + 2d48

2
) [ 0 0
−1 0

]
, (4.5)
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and

Lεε = −
[

68rεε +ψ2
ε 0

0 28rεε +ψ2
ε

]

+2d1

(
ψε∂x − 8

′

8
ψε

)[
1 0
0 1

]
+ 4d18

2
(
d1 + d3 + 2d48

2
) [ 1 0

0 0

]
. (4.6)

Note that

L+8
′ = 0, L−8 = 0.

In the above,8 is again given by equation (2.2).
In the standard way, the expansion for the linear operatorL given in equations (4.2)–(4.6)

yields an expansion for the matrixM(λ, x), i.e.M = M0 +Mεε +Mεεε
2/2. It is clear that

M(λ, x)→ M±(λ) asx → ±∞. The branch point for the Evans function,λb, is theλ value
such that the matricesM±(λb) have an eigenvalueαb± which has a geometric multiplicity of one
and an algebraic multiplicity of two. A routine calculation yields the following proposition.

Proposition 4.1. For a given by (4.1), the branch point of the Evans function is given by

λb = − 1
2a

2ε4.

Set

γ =
√

2(λ− λb).
For λ close toλb the eigenvalues ofM±(λ) that have a geometric multiplicity of one and an
algebraic multiplicity of two whenλ = λb are given by

∓γ + αb±,

where

αb± = ±aε2.

Whenλ = λb, the associated eigenvectors are given by

ηb± = ∓u4(0) + aε2u3(0).

Remark 4.2. It should be noted that the location of the branch point does not depend on which
of M±(λ) is being discussed.

4.2. Calculations forY ±f

SinceY ±f (λ, x) are analytic in an O(1) neighbourhood of the origin, for fixedx these functions
have Taylor expansions. Together with proposition 4.1, this implies that(
Y −f − Y +

f

)
(λb, 0) =

(
Y −f − Y +

f

)
(0, 0) + ∂λ

(
Y −f − Y +

f

)
(0, 0)λb + O(ε8). (4.7)

The behaviour of these solutions atλ = 0 is fairly well understood. As a consequence of the
derivative formula (3.17),

∂λ(Y
−
f − Y +

f )(0, 0) = 〈∂λM(0, x)u1(x),u
A
2 (x)〉u2(0) + cu1(0) + O(ε)

= − 8
3 u2(0) + cu1(0) + O(ε). (4.8)
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for some constantc. In addition, since

Y ±f (0, x) =


r ′(x)

(rψ)(x)

r ′′(x)

(rψ)′(x)

∓ ψ+


0
r(x)

0
r ′(x)

 , (4.9)

where

ψ+ = lim
x→+∞ψ(x),

it is seen that

(
Y −f − Y +

f

)
(0, 0) = 2ψ+


0
r(0)

0
r ′(0)

. (4.10)

Sincer(0) = 0 for all ε > 0, it is necessarily true that(Y −f − Y +
f )(0, 0) will be a multiple

of u3(0) for all ε > 0, and hence it will not make a contribution in the resulting perturbation
calculations for the Evans function. Since|λb| = O(ε4), the following lemma has now been
proved.

Lemma 4.3. The difference in the fast solutions satisfies, to leading order,

∂4
ε

(
Y −f − Y +

f

)
(λb, 0) = 32a2u2(0) + c14u1(0) + c34u3(0),

for some constantsc14 andc34. Furthermore,

∂jε
(
Y −f − Y +

f

)
(λb, 0) = c1ju1(0) + c3ju3(0), j = 0, . . . ,3

for some constantsc1j andc3j .

4.3. Calculations forY ±s

In this subsection all of the calculations will be performed atγ = 0, where

γ 2 = 2(λ− λb). (4.11)

As such, theγ dependence of solutions will be suppressed. Set

Z±s (x, ε) = Y ±s (x, ε)e−α
b
±x.

The rescaled variable then satisfies the ODE

∂xZ
±
s (x, ε) =

(
M(x)− αb± id

)
Z±s (x, ε), (4.12)

and the asymptotic matrices are now such that they have the Jordan block
[

0 1

0 0

]
at γ = 0 for

all ε > 0. Again following the procedure outlined in Kapitula and Sandstede [36], set

Z±s (x, ε) = ηb±(ε) + Y ±s (x, 0)− ηb±(0) +w±(x, ε), (4.13)

wherew±(x, ε) is assumed to decay exponentially fast asx →±∞ and satisfyw±(x, 0) = 0.
Furthermore,w±(x, ε) should not be a scalar multiple ofu1(x). The vectorsηb±(ε) are given
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in proposition 4.1. Since∂εηb±(0) = ∂εαb± = 0, upon recalling thatM = M0 +Mεε+Mεεε
2/2,

it follows that

∂x(∂εw
±(x, 0)) = M0(x) ∂εw

±(x, 0) +Mε(x)Y
±
s (x, 0), (4.14)

and

∂x
(
∂2
ε w
±(x, 0)

) = M0(x) ∂
2
ε w
±(x, 0) +M0(x) ∂

2
ε η

b
± + 2Mε(x)∂εw

±(x, 0)

+
(
Mεε(x)− ∂2

ε α
b
± id

)
Y ±s (x, 0). (4.15)

Proposition 4.4. Given the ansatz in equation (4.13), the relevant solution to (4.14) satisfies

∂εw
±(x, 0) = 0.

Proof. This follows immediately from the fact thatMε(x)Y
±
s (x, 0) = 0. �

Upon solving equation (4.15) with the variation of parameters formulation, and using the
facts that

M0(x) ∂
2
ε η

b
± · uAi = −∂2

ε η
b
± · ∂xuAi ,

and

Mεε(x)Y
±
s (x, 0) = 8(28rεε +ψ2

ε )u3(0),

one obtains

∂2
ε (w

− − w+)(0, 0) = [∂2
ε η

b
− · uA4 (−∞)− ∂2

ε η
b
+ · uA4 (+∞)

]
u4(0)

+
∫ +∞

−∞
82(x)

(
28(x) rεε(x) +ψ2

ε (x)
)

dx u4(0) + cu1(0)

for some constantc. A tedious calculation reveals that∫ +∞

−∞
82(x)

(
28(x) rεε(x) +ψ2

ε (x)
)

dx = −2d1ψ
+
ε ;

combined with proposition 4.1, this yields the following lemma.

Lemma 4.5. The difference in the slow solutions satisfies

∂ε(Y
−
s − Y +

s )(0, 0) = 0,

and

∂2
ε (Y

−
s − Y +

s )(0, 0) = −4
(

1
2d1 + 0

)
ψ+
ε u4(0) + c2u1(0)

for some constantsc1 andc2.

Proof. Following the discussion leading up to the lemma, it is seen that

∂2
ε (w

− − w+)(0, 0) = −4
(

1
2d1 + 0

)
ψ+
ε u4(0) + cu1(0).

The conclusion now follows from the ansatz given in equation (4.13) and the results of
propositions 4.1 and 4.4. �
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4.4. Calculations for the Evans function

Set

0̃ = ( 1
2d1 + 0), ã = 0̃ψ+

ε ,

where0 is specified by (4.1). In the following, all of the evaluations will be performed at
(γ, x, ε) = (0, 0, 0), and the constantsci will be unknown (but irrelevant).

Since∂2
γ = ∂λ, as a consequence of equation (4.8),

∂2
γ

(
Y −f − Y +

f

) = − 8
3 u2 + c1u1,

with

∂γ
(
Y −f − Y +

f

) = 0.

Furthermore, as a consequence of lemma 3.5,

∂γ
(
Y −s − Y +

s

) = 2u4 + c2u1 + c3u3.

From lemmas 4.3 and 4.5 one has, respectively, that

∂4
ε

(
Y −f − Y +

f

) = 32a2u2 + c4u1 + c5u3,

and

∂2
ε

(
Y −s − Y +

s

) = −4ãu4 + c6u1.

We are now in a position to write down a perturbation expansion for the Evans function.
In the following, theε dependence of the Evans function is being implicitly assumed. First,

∂6
ε E(0) =

6!

2!4!
∂2
ε

(
Y −s − Y +

s

) ∧ ∂4
ε

(
Y −f − Y +

f

) ∧ Y +
s ∧ Y +

f

= 8
36! a2ã,

and

∂4
ε ∂γE(0) = ∂γ

(
Y −s − Y +

s

) ∧ ∂4
ε

(
Y −f − Y +

f

) ∧ Y +
s ∧ Y +

f

= − 8
34! a2,

and

∂2
ε ∂

2
γ E(0) = ∂2

ε

(
Y −s − Y +

s

) ∧ ∂2
γ

(
Y −f − Y +

f

) ∧ Y +
s ∧ Y +

f

= 32
3 ã.

In addition, recall equation (3.22), which states that

∂3
γ E(0) = 16.

Note that all lower derivatives ofE are zero. Based on the above expansions, the Evans
function can be written as

E(γ, ε) = 8
3(γ

3 + ãε2γ 2 − a2ε4γ + a2ãε6). (4.16)

While the zeros of the Evans function can be found analytically, it is difficult to analyse
the resulting expressions. Whend1 = 0, so thata = ã, however, the roots are given by

γ1 = −1.839aε2, γ2,3 = (0.420± 0.606i) aε2. (4.17)

Recall thatγ 2 = 2(λ − λb), whereλb is given in proposition 4.1. The roots ofE(γ, ε) are
valid as eigenvalues if and only if Reγ > 0. This is due to the fact that the sheetK0 of RK
corresponds to the principal part of

√
2(λ− λb). Thus, ifa > 0, thenγ2,3 represent the valid

zeros of the Evans function, while ifa < 0, thenγ1 is the valid zero. Upon using the inversion
formulaλ = γ 2/2 +λb, one has the following lemma.
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Lemma 4.6. Suppose thatd1 = 0. If a > 0, then the zeros of the Evans function inside the
curveK are given by

λ2,3 = (−0.595± 0.255i) a2ε4.

If a < 0, then the zero of the Evans function insideK is given by

λ1 = 1.191a2ε4.

Remark 4.7. As a consequence, the linearized operator has an unstable eigenvalue ifa < 0.

Now suppose thatd1 6= 0, and setPj1 = dj/d1. To find the zeros, it is most illustrative
to do a standard bifurcation analysis. From the definition ofã, it follows that there is at least
one positive real zero if( 3

2 + P31 + 2P41)(1 +P31 + 8P41/5) < 0; otherwise, there is at least
one negative real zero. In addition, a saddle-node bifurcation occurs on the lines

P31 + 2P41 = µ±sn,
where

µ±sn =
3

2

±α − 2
3

1∓ α , α2 =
√

125 + 11

2
(4.18)

(µ+
sn = −1.716,µ−sn = −1.385). By checking the sign ofγ when ∂γE(γ, ε) = 0, it is

seen that the zeros created by the saddle-node bifurcation have the opposite sign from those
described above.

If ψ+
ε = 0, thena = ã = 0, so that the branch point does not move and the zeros of

the Evans function remain atγ = 0. For the rest of the discussion, assume thatψ+
ε 6= 0. If

0̃ = 0, then the zeros of the Evans function are given byγ = 0 andγ = ±aε2. Upon using
the inversion formulaλ = γ 2/2 + λb, it is seen that there is an eigenvalue atλ = 0, and no
eigenvalues with a positive real part. Thus, it is expected that the plane0̃ = 0 will serve as
the critical plane for which an edge bifurcation may take place.

Now assume for the rest of the discussion that0̃ 6= 0. Set

γ = 0̃ψ+
ε ε

2y.

SolvingE(γ, ε) = 0 is then equivalent to solving

y3 + y2 − µy +µ = 0, µ =
(
0

0̃

)2

.

For this equation, a saddle-node bifurcation occurs whenµ = α2. For 0< µ < α2, there
is one real negative zero, and the other two zeros are complex with positive real parts. For
µ > α2, all of the zeros are real, and two are positive while one is negative (see figure 4).

Using the definition of the variabley and the inversion formula, it is seen that for Reγ > 0,

λ = 1
2(y

2 − µ)(0̃ψ+
ε

)2
ε4

= − 1
2

y2 +µ

y

(
0̃ψ+

ε

)2
ε4.

First suppose that̃0ψ+
ε < 0. To achieve a positive zero forγ , one must then havey < 0.

Sincey2 +µ > 0, this then implies that there is a real positive eigenvalueλ, so that the wave is
unstable. Now suppose that0̃ψ+

ε > 0. One must then look at those roots with Rey > 0. If y
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Figure 4. Zeros ofE(γ, ε) for the CGL(d1 > 0). The configuration of the zeros matches that
shown in the legend in the upper right-hand corner.

is real, then it is clear that the resulting eigenvaluesλ are negative. Ify = y1 + iy2 is complex
with y1 > 0, then by checking that

Re
y2 +µ

y
= y1

y2
1 + y2

2

(
y2

1 + y2
2 +µ

)
> 0,

it is seen that the resulting complex pair of eigenvalues has a negative real part. The picture is
summarized in figure 2. Thus, the following lemma holds; theorem 1.8 follows from lemma 4.6
and this result.

Lemma 4.8. Suppose thatd1 6= 0, and setPj1 = dj/d1. If(
3
2 + P31 + 2P41

)(
1 +P31 + 8

5P41
)
< 0,

then there is one positive realO(ε4) eigenvalue for the linearized problem, and the wave is
linearly unstable. If

d1
(
1 +P31 + 8

5P41
)
> 0, d1

(
µ−sn + P31 + 2P41

)
> 0

or

d1
(
1 +P31 + 8

5P41
)
< 0, d1

(
µ+
sn + P31 + 2P41

)
< 0,

then there is a complex pair ofO(ε4) eigenvalues with a negative real part (µ±sn are defined in
equation (4.18)). Otherwise, no eigenvalues bifurcate from the continuous spectrum.
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5. Perturbation calculations at the branch point: NLS

5.1. Preliminaries

As in the previous section, let the perturbation of the wave be written in the form

u + iv = (r + (p + iq)) exp

{
i
∫ x

0
ψ(s) ds

}
.

For ε 6= 0, the linearized eigenvalue problem derived from (1.3) is given up to O(ε2) by

λ

[
εd1 −(1− ε2d2

1

)
1− ε2d2

1 εd1

]
= L0 + εLε + 1

2ε
2Lεε, (5.1)

where the operatorsL0, Lε andLεε are specified in equations (4.3)–(4.6). As previously, the
expansion for the linear operatorL given in equations (4.2)–(4.6) yields an expansion for the
matrixM(λ, x) with M(λ, x)→ M±(λ) asx → ±∞. As in (4.1), we set0 = d1 + d3 + 2d4

anda = 0ψ+
ε .

Proposition 5.1. The branch point of the Evans function is given by

λb = a2

2(0 − d1)
ε3.

Forλ close toλb the eigenvalues ofM±(λ)which have geometric multiplicity one and algebraic
multiplicity two whenλ = λb are given by

αb± ∓ ψ+
ε λ(γ )ε ∓ γ,

where

αb± = ±aε2,

and

γ =
√
λ2 − 2ε(0 − d1)λ + a2ε4,

and

λ(γ ) = (0 − d1)ε +
√
γ 2 + (0 − d1)2ε2 − a2ε4.

Whenλ = λb, the associated eigenvectors are given by

ηb± = ∓u4(0) + aε2u3(0).

Remark 5.2. To ensure thatλb < 0, it is necessary that

0 − d1 = d3 + 2d4 < 0.

This condition is consistent with [4, 5, 22, 23], and it will henceforth be assumed.

Remark 5.3. Since we are taking the principal square root, note that up to leading order
λ(0) = λb for all ε > 0.
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5.2. Calculations forY ±f

As in section 4.2, we use the Taylor expansions ofY ±f (λ, x), centred atλ = 0, for x fixed at
the origin. From (4.9),

∂εY
±
f (0, x) =

(
ψε(x)∓ ψ+

ε

)
u3(x) +8(x)ψ ′ε(x)u3(0),

so that

∂λM0(0, x)∂εY
±
f (0, x) = 28(x)

(
ψε(x)∓ ψ+

ε

)
u2(0).

The expression given in equation (3.27) implies that

Mε(x)∂λY
±
f (0, x) = 2

8′(x)
8(x)

ψε(x)u2(0).

Solving the equation

(∂2
ελY

±
f )
′ = M0∂

2
ελY

±
f +Mε∂λY

±
f + ∂λM0∂εY

±
f

by variation of parameters thus gives

∂2
ελ(Y

−
f − Y +

f )(0, 0) = 2

(∫ +∞

−∞

8′(x)
8(x)

ψε(x) dx + 2ψ+
ε

∫ 0

−∞
8(x)8′(x) dx

)
u2(0) + c1u1(0),

which upon integrating yields

∂2
ελ(Y

−
f − Y +

f )(0, 0) = 4
3

(
d1 + d3 + 4

5d4
)
u2(0) + c1u1(0). (5.2)

Evaluating the Taylor expansions for bothY −f −Y +
f and∂λ(Y

−
f −Y +

f ), centred atλ = 0, and
using the fact thatλb = O(ε3) from proposition 5.1 yields the following lemma (to leading
order).

Lemma 5.4. The difference in the fast solutions satisfies

∂4
ε (Y

−
f − Y +

f )(λb, 0) = 160b(ψ+
ε )

2u2(0) + c14u1(0) + c34u3(0),

where

b = d1 + d3 + 4
5d4,

for some constantsc14 andc34. Furthermore,

∂jε
(
Y −f − Y +

f

)
(λb, 0) = c1ju1(0) + c3ju3(0), j = 0, . . . ,3

for some constantsc1j andc3j . In addition,

∂2
ελ

(
Y −f − Y +

f

)
(λb, 0) = 4

3bu2(0) + c1u1(0).

5.3. Calculations forY ±s

The only difference in the results of propositions 5.1 and 4.1 arises in the expression for the
branch pointλb. Furthermore, since|λb| 6 O(ε3) in both cases, the fact that it changes does
not affect the calculations up to O(ε2). Hence, the proof of lemma 4.5 applies here to give the
following result.

Lemma 5.5. The difference in the slow solutions atγ = 0 satisfies

∂ε
(
Y −s − Y +

s

)
(0, 0) = 0,

and

∂2
ε

(
Y −s − Y +

s

)
(0, 0) = −4

(
1
2d1 + 0

)
ψ+
ε u4(0) + c2u1(0)

for some constantsc1 andc2.
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5.4. Calculations for the Evans function

Set

0̃ = 1
2d1 + 0.

In the following, all of the evaluations will be performed at(γ, x, ε) = (0, 0, 0), and the
constantsci will be unknown (but irrelevant). Recall that∂γ = ∂λ; using this fact, along with
equation (3.26) and lemmas 5.4 and 5.5, we can differentiate to obtain a perturbation expansion
for the Evans function. As in the previous section, theε dependence of the Evans function is
being assumed implicitly. First, we find

∂6
ε E(0) =

6!

2!4!
∂2
ε

(
Y −s − Y +

s

) ∧ ∂4
ε

(
Y −f − Y +

f

) ∧ Y +
s ∧ Y +

f

= 4
36!00̃b(ψ+

ε )
3,

and

∂3
ε ∂γE(0) =

3!

1!2!
∂2
ε (Y

−
s − Y +

s ) ∧ ∂2
εγ (Y

−
f − Y +

f ) ∧ Y +
s ∧ Y +

f

= 8
33! 0̃bψ+

ε ,

and

∂ε∂
2
γ E(0) =

2!

1!1!
∂γ
(
Y −s − Y +

s

) ∧ ∂2
εγ

(
Y −f − Y +

f

) ∧ Y +
s ∧ Y +

f

= − 8
32! b.

In addition, recall equation (3.28), which states that

∂3
γ E(0) = −24.

All lower derivatives ofE are zero, so based on the above expansions, the Evans function can
be written as

E(γ, ε) = −4(γ 3 + 2
3bεγ

2 − 2
30̃bψ

+
ε ε

3γ − 1
300̃b(ψ

+
ε )

3ε6)

= −4
(
γ + 2

3bε
)(
γ 2 − 0̃ψ+

ε ε
2γ − 1

200̃
(
ψ+
ε

)3
ε5
)
. (5.3)

To leading order, the roots for the Evans function are thus

γ1 = − 2
3bε, γ2 = 0̃ψ+

ε ε
2, γ3 = − 1

20(ψ
+
ε )

2ε3. (5.4)

These can correspond to true eigenvalues only if Reγ > 0. First suppose thatb < 0, so that
γ1 > 0. From the transformation given in proposition 5.1, i.e.

λ(γ ) = (0 − d1)ε +
√
γ 2 + (0 − d1)2ε2 − a2ε4,

we find, to leading order, the positive eigenvalue

λ1 = −(0 − d1)

(√
1 +

4b2

9(0 − d1)2
− 1

)
ε. (5.5)

Now suppose that̃0ψ+
ε > 0, so thatγ2 > 0, and setγ 2

2 − a2ε4 = γ̃ ε4, where

γ̃ = d1
(
ψ+
ε

)2( 5
4d1 + d3 + 2d4

)
.
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One obtains, to leading order, the second eigenvalue

λ2 = − γ̃

2(0 − d1)
ε3, (5.6)

which is only positive ifγ̃ > 0. Finally, independent of its sign,γ3 is of too high an order to
correspond to a positive eigenvalueλ; hence, it can be ignored. The following lemma has now
been proved; this also yields theorem 1.4.

Lemma 5.6. Letd3 + 2d4 < 0. Suppose thatd1 > 0, and setPj1 = dj/d1. If

P31 < − 4
5P41− 1,

then there is a positiveO(ε) real eigenvalue given, to leading order, by equation (5.5).
Furthermore, if

P31 > − 8
5P41− 1, P31 > −2P41− 5

4,

then there is a positiveO(ε3) real eigenvalue which is given, to leading order, by equation (5.6).
Otherwise, the wave is linearly stable, as no other eigenvalues bifurcate from the continuous
spectrum (see figure 1). Ifd1 = 0, then the wave is linearly stable if5d3 + 4d4 > 0; otherwise,
there is anO(ε) eigenvalue which is given by equation (5.5).

5.5. Comparison with the adiabatic approach

There have been many recent efforts to determine the stability of the dark soliton for the
perturbed NLS by using an adiabatic approach [4, 5, 22, 23, 38]. Applying the method used by
Lega and Fauve [38] for thed4 = 0 case, we write the solution to the perturbed NLS as

φ = (κR8(κξ) + εφ1 + ε2φ2 + · · ·)

× exp
[
i
(
qx −�t + qx0 + θ0

)]
exp

[
iε
∫ κξ

0
ψε(s) ds

]
,

where

ξ = x − ct + x0, q = kκ − c, � = − 1
2q

2 − (κR)2, R2 = 1 + k2.

Following the procedure outlined in appendix C of [38], and using the requirement that
d2 + d3 + d4 = O(ε2) for the dark soliton to persist as a regular perturbation, one finds that for
the time scaleT = εt ,
kT = 2

3κ
[
d1c − (d1 + d3)kκ − 6

5d4kκ
3
(
1 + 5

3k
2
)]
(1 + k2)

κT =
[
d3(κ

2 − 1) + d4(κ
4 − 1) + (d3 + 2d4)k

2κ2 + d4k
4κ4 − 1

2d1q
2
]
κ − k

1 + k2
κkT .

A linear stability analysis of the critical point(k, κ, c) = (0, 1, 0) yields the eigenvalues

λ1 = 2
(
d3 + 2d4

)
, λ2 = − 2

3

(
d1 + d3 + 6

5d4
)
,

which, as noted in the introduction, is inconsistent with the rigorous analysis ifd4 6= 0. Thus, it
must be concluded that the ansatz for the slow-time variation displayed by the wave is incorrect
if d4 6= 0. It is beyond the scope of this paper to determine the exact cause of the difficulty;
however, it may be a consequence of the fact that ford4 6= 0 the angular component of the wave
is written as the sum of two different functions (see lemma 2.5), which is perhaps fundamentally
different from the form of the solution used by Lega and Fauve [38]. Specifically, it is possible
that the addition of the term 3d48

3(x)/5 toψε(x) somehow introduces a correction into the
variational equations that was not taken into account above. Alternatively, the answer may be
as subtle as that found by Kaup and Newell [37] for the evolution of the soliton for a perturbed
KdV equation.
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