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a b s t r a c t

In previous work, we developed an 8-state nonlinear dynamic model of the acute inflammatory

response, including activated phagocytic cells, pro- and anti-inflammatory cytokines, and tissue

damage, and calibrated it to data on cytokines from endotoxemic rats. In the interest of parsimony, the

present work employed parametric sensitivity and local identifiability analysis to establish a core set of

parameters predominantly responsible for variability in model solutions. Parameter optimization,

facilitated by varying only those parameters belonging to this core set, was used to identify an ensemble

of parameter vectors, each representing an acceptable local optimum in terms of fit to experimental

data. Individual models within this ensemble, characterized by their different parameter values, showed

similar cytokine but diverse tissue damage behavior. A cluster analysis of the ensemble of models

showed the existence of a continuum of acceptable models, characterized by compensatory

mechanisms and parameter changes. We calculated the direct correlations between the core set of

model parameters and identified three mechanisms responsible for the conversion of the diverse

damage time courses to similar cytokine behavior in these models. Given that tissue damage level could

be an indicator of the likelihood of mortality, our findings suggest that similar cytokine dynamics could

be associated with very different mortality outcomes, depending on the balance of certain inflammatory

elements.

Published by Elsevier Ltd.
1. Introduction

Biological processes are often modeled with highly nonlinear
mathematical systems that contain large numbers of parameters.
Nonlinearity and high-dimensional parameter spaces represent
challenges in the calibration of such models to experimental data,
and such data fitting is further impaired by uncertainty and
variability of sparse observations (especially in settings of pre-
clinical and clinical relevance) (Vodovotz et al., 2007). The ensuing
inverse problem of parameter identification may be particularly
ill-posed in that a large number of parameter sets can typically
generate models that fit data equally well. There are two general
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approaches to what could constitute a satisfactory solution to the
inverse problem. One option is to implement a fully stochastic
estimation of a stationary distribution on parameter space, while
another is the approach we adopted herein, namely the creation of
an ensemble of models using constrained optimization algo-
rithms. An ensemble of models, in contrast to a single best fitting
model, can display a range of behaviors and outcomes that are
consistent with given data and thus might provide insight as to
mechanistic trade-offs implied by the inclusion of disparate
parameter sets in the ensemble. Model complexity constitutes a
major obstacle to both approaches and therefore model reduction
is desirable, but not at the expense of calibration to data or
violation of the underlying biology.

Researchers have typically approached the reduction problem
through ab initio model reduction, where an attempt is made to
simplify the biology represented and the corresponding complex-
ity of the model. This approach typically reduces both the number
of variables and the number of parameters included in the model.
A potential pitfall, however, is that oversimplification results in
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Fig. 1. Schematic diagram of the inflammatory response system challenged by

endotoxin.
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the inability to relate model outcomes to underlying biological
components, even at a high level. Accordingly, algorithmic and
data-driven model reduction techniques are desirable. These
techniques are well-developed for statistical models, but less so
for nonlinear dynamical systems. Such algorithms should aim to
(1) identify minimal model structures that will provide adequate
calibration and (2) within each structure, use identifiability and
sensitivity analysis to reduce the number of model parameters
present (Raick et al., 2006; Zak et al., 2003). The results of the
these analyses can also be used to reduce the uncertainty of
parameter estimates by collecting additional experimental data
optimal experimental design (Delforge et al., 1990; Peterson et al.,
2001).

Our earlier works present fairly detailed models of the acute
inflammatory response in diverse shock states (Chow et al., 2005;
Prince et al., 2006; Lagoa et al., 2006), and the complete model
building cycle of an ab initio reduced 8-d model of the acute
inflammatory response (Roy et al., 2007), which represents the
first step in the process of system identification (Ljung, 1999;
Walter and Pronzato, 1997). The last-mentioned model includes
activated phagocytic cells, pro- and anti-inflammatory cytokines,
and tissue damage as a surrogate for biological impact and long-
term outcome. This study established a dynamic model of the
right level of complexity in that we did not obtain satisfactory fits
to data with fewer variables.

The current study, taking the nonlinear dynamics of the 8-d
model as its starting point, seeks to algorithmically build an
ensemble of models and identify functional compensatory
mechanisms present within the ensemble. Topics like parameter
space reduction, parameter identifiability (by using the Fisher
information matrix) and model identification are common in the
recent systems biology literature and several previous studies
have recognized the advantages of using the mentioned techni-
ques in silico (Zak et al., 2003; Rodriguez-Fernandez et al.,
2006; Audoly et al., 1998; Bellu et al., 2007; Yates, 2006; Chu
et al., 2007; Chu and Hahn, 2007; Sun and Hahn, 2006, 2005; Yue
et al., 2006). We achieved the parameter space reduction in
three different steps. First, we conducted a parametric sensitivity
analysis to identify a subset of parameters that have a high
impact on model outcome and capture essential characteristics
of the system. Second, we conducted an identifiability analysis
by calculating the sensitivity-dependent correlation matrix of
model parameters based on relative sensitivity matrices at
given time points and identified a set of highly correlated
parameters(Jacquez and Greif, 1985). We then used this informa-
tion to sequentially eliminate highly correlated but less
sensitive parameters from the ensuing optimization phase. This
elimination was achieved by fixing these parameters to their
nominal values, which have been identified in the model
building cycle of our earlier work (Roy et al., 2007). This
algorithmic reduction reduced the dimension of the parameter
space from 46 to 18.

An ensemble of 296 models was then generated by perturbing
the nominal parameter set and using the perturbations as initial
estimates for a local parameter optimization. The ensemble
consists of a continuum of models over a broad volume in
parameter space, reflecting the existence of several complemen-
tary structural mechanisms that can compensate for each other to
yield model behavior that fits the cytokine data. We specifically
identified several such compensatory components, the tuning of
which selects from among a broad continuum of damage
trajectories that are all consistent with the observed cytokine
time courses. Thus, our analysis has identified biological compo-
nents that may contribute to diverse mortality outcomes
associated with similar inflammatory insults across different
individuals.
2. Materials and methods

2.1. Experimental data

Experiments on four Sprague–Dawley rats weighing 250–300 g
were performed at the University of Pittsburgh, Department of
Surgery, following approval by the University of Pittsburgh’s
Institutional Animal Care and Use Committee, to study the acute
inflammatory response to endotoxin insults at various dose levels.
The rats received lipopolysaccharide (endotoxin) at doses of 3, 6,
and 12 mg/kg, intraperitoneally, and all animals survived the
challenge. At time points 0, 1, 2, 4, 8, 12, and 24 h post-dosing,
blood samples were taken from each rat to measure the
concentration of the inflammatory cytokines IL-6, IL-10, and
TNF-a. Cytokines were measured using commercially available
ELISA kits (R & D Systems, Minneapolis, MN).

These experimental data were used in the model building cycle
(Roy et al., 2007) to fit the acute inflammation model and
therefore to generate a first, nominal set of parameters.
2.2. Mathematical model of acute inflammation

All equations and the nominal parameter set of the considered
acute inflammation model are given in Roy et al. (2007) The
model features eight dependent variables: endotoxin con-
centration (PE(t)); the total number of activated phagocytic cells
(N(t), including all activated immune response cells, such as
neutrophils and monocytes); a tissue (damage) marker (D(t));
concentrations of pro- and anti-inflammatory cytokines, such as
IL-6 (IL6(t)), TNF-a (TNF(t)) and IL-10 (IL10(t)), respectively;
a tissue driven IL-10 promoter (YIL10(t)); and other anti-
inflammatory mediator level (CA(t)), representing slow-acting
anti-inflammatory and damage-fixing agents such as the cytokine
transforming growth factor-b1 (TGF-b1) and cortisol. Fig. 1
shows a diagram capturing all the major interactions among the
eight states.

The introduction of endotoxin in the system activates N. Once
activated, N up-regulates the production/release of all inflamma-
tory mediators (TNF-a, IL-6, IL-10, and CA) (Freeman and Natanson,
2000). The pro-inflammatory cytokines IL-6 and TNF-a exert
positive feedback on the system. These cytokines further activate
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Table 1
Nominal parameter set of the inflammation model

No. Parameter Value Unit

1 dPE 3 h�1

2 kN 5.5786e7 h�1

3 xN 14.177 N-unit

4 dN 0.1599 h�1

5 kNPE 41.267 N-unit� kg/mg

6 kND 0.013259 N-unit/D-unit

7 xNTNF 1693.9509 pg/ml

8 xNIL6 58080.742 pg/ml

9 xNCA 0.07212 pg/ml

10 xNIL10 147.68 pg/ml

11 kNTNF 12.94907

12 kNIL6 2.71246

13 kD 2.5247 D-unit/h

14 dD 0.37871 h�1

15 xD 1.8996e7 N-unit

16 kCA 1.5463e-9 pg/(ml�h�N-unit)

17 dCA 3.1777e-2 h�1

18 sCA 0.004 pg/(ml�h)

19 kIL6TNF 3.7209

20 xIL6TNF 1211.3 pg/ml

21 kIL6 8.8652e7 pg/(ml�h)

22 dIL6 0.43605 h�1

23 xIL6 1.7856e8 N-unit

24 xIL6IL10 1.1818 pg/ml

25 kIL6IL6 122.92

26 xIL6IL6 1.987e5 pg/ml

27 xIL6CA 4.2352 pg/ml

28 kTNF 3.9e-8 pg/(ml�N-unit1.5)

29 dTNF 2.035 h�1

30 xTNFIL10 2.2198e7 pg/ml

31 xTNFCA 0.19342 pg/ml
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N, as well as up-regulating other cytokines (Freeman and
Natanson, 2000; Bellingan, 1999). The anti-inflammatory cyto-
kines IL-10 and CA, on the other hand, exert negative feedback on
the system. They inhibit the activation of N and down-regulate
other cytokines (Pretolani, 1999; Pinsky, 2001). Tissue damage
caused by activated phagocytic cells is also taken into account in
this model. The damage marker, D, further up-regulates the
activation of N (Matzinger, 2002) and also contributes to an up-
regulation of IL-10. This quantity is used to implicitly represent
the effects of a distinct biological source of IL-10 (Rutz et al., 2008;
Rafig et al., 2001), but tissue damage should not be interpreted
directly as a cell type in the model.

We estimated the values of model parameters by fitting
the experimental measurements of the cytokines IL-6, TNF-a,
and IL-10 at endotoxin dose challenge levels of 3 and
12 mg/kg, simultaneously. We used the Nelder–Mead simplex
search method (Lagarias et al., 1998) as implemented in
MatlabTM (R 2007a, & 2007, The MathWorks, Natick, MA) for
optimization.

Validation of the model was performed by comparing the
model predictions of the time courses of the above-mentioned
cytokines at an intermediate endotoxin dose challenge level
of 6 mg/kg with available data collected at specific time points
at that challenge level. The values of all parameters of
the inflammation model (nominal parameter set) are given
in Table 1. Figs. 2 and 3 show the model fits (endotoxin
challenge of 3 and 12 mg/kg) and model validations (endotoxin
challenge of 6 mg/kg) for the observable variables IL-6, IL-10,
and TNF-a and the non-observed/non-observable variables PE,
N, D, and CA.
32 kTNFTNF 1.0e-10

33 xTNFTNF 9.2969e6 pg/ml

34 xTNFIL6 55610 pg/ml

35 kIL10TNF 2.995e-5

36 xIL10TNF 1.1964e6 pg/ml

37 kIL10IL6 4.1829

38 xIL10IL6 26851 pg/ml

39 kIL10 1.3374e5 pg/(ml�h)

40 dIL10 98.932 h�1

41 xIL10 8.0506e7 N-unit

42 sIL10 1187.2 pg/(ml�h)

43 xIL10d 791.27 pg/ml

44 kIL102 1.3964e7 YIL10-unit/h

45 dIL102 0.024943 h�1

46 xIL102 37.454 D-unit
2.3. Parametric sensitivity by the finite difference method

The inflammation system can be expressed as a set of Nx

differential equations with Nx states (x) and M parameters (y).
We calculated the Nx by M parameter sensitivity matrix
S ¼ (si,j) by using the finite difference approximation method,
in which the sensitivity coefficients si,j are calculated from
the difference of nominal and perturbed solutions using
the equation

si;jðtÞ ¼
qxiðtÞ

qyj
¼

xiðyj þ Dyj; tÞ � xiðyj; tÞ

Dyj
(1)

where iA[1, Nx], jA[1, M].
To facilitate direct comparison of sensitivities to parameters

having different nominal magnitudes, we normalized the sensi-
tivity coefficients si,j in the following way:

s̄i;jðtÞ ¼
qxiðtÞ

qyj

yj

xi
(2)

2.4. Identifiability analysis

We used the following numerical method for checking a priori
local identifiability of the parameters at a given point, based on
the one given by Jacquez and Greif (1985):

Using the values of the parameter set ȳ as nominal values,
the Nx by M sensitivity matrices S(t) are calculated at the time
points at which measurements of the cytokines have been taken
(see Section 2.1):

si;jðtlÞ ¼
qxiðtlÞ

qyj

� �
x ¼ xðt; ȳÞ; y ¼ y; l ¼ 1; . . . ;n. (3)
The matrix G is constructed by stacking the time-dependent
sensitivity matrices, which yields

G ¼

Sðt1Þ

Sðt2Þ

..

.

SðtnÞ

2
666664

3
777775

. (4)

We obtained the M�M sensitivity-dependent correlation matrix of
the parameters, which we denote R, by first calculating the covariance
matrix of G, C ¼ cov(G) ¼ GTQG. In general, Q is a square matrix
with user supplied weighing coefficients, reflecting the possibility of
weighing the matrix G with additional information. Here, we take Q to
be the identity matrix. Normalization of the covariance matrix C with
the geometric mean of its diagonal elements gives the sensitivity-
dependent correlation matrix R with elements

ri;j ¼
ci;jffiffiffiffiffiffiffiffiffiffiffi
ci;icj;j
p . (5)
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Fig. 2. The observable states of the inflammatory response to endotoxin challenge. The curves show simulated time courses of several components of the inflammatory

response to endotoxin challenge, namely IL-6, IL-10, and TNF-a. The discrete points indicate levels of these elements measured experimentally; error bars representing one

standard deviation about the mean are also shown. Endotoxin challenge levels were 3 (top), 6 (middle), and 12 (bottom) mg/kg.

Fig. 3. Non-observable states of the model inflammatory response to endotoxin challenge. Simulated time courses of the non-observable variables D and CA and the non-

observed variables PE and N for different endotoxin challenges (solid: 3 mg/kg, dashed: 6 mg/kg, and dotted: 12 mg/kg) are shown. Note that the time scale of PE goes from 0

to 3 h, whereas the time scales of N, D, and CA goes from 0 to 24 h.

S. Daun et al. / Journal of Theoretical Biology 253 (2008) 843–853846
Each parameter that is locally identifiable has a correlation
strictly between �1 and +1 with each of the other parameters.
Parameters that are not locally identifiable have a correlation of
exactly �1 or +1 with at least one other parameter. This means
that these two parameters influence the model outcome in exactly
the opposite or exactly the same manner, respectively.



ARTICLE IN PRESS

S. Daun et al. / Journal of Theoretical Biology 253 (2008) 843–853 847
2.5. Parameter space reduction

The number of free parameters in the original M-dimensional
parameter set ȳ can be reduced by using the following iterative
process:
1.
 Calculate the sensitivity-dependent correlation matrix R.
2.
 Identify one highly correlated parameter pair (A,B).
3.
 If model outcome is highly sensitive to both parameters,

fix neither of them and restart with step 2. Else fix the

parameter in the pair to which model outcome is least

sensitive at its nominal value and go back to step 1.
The process continues until no more highly correlated para-
meters to which model output is highly sensitive remain. Note
that the calculations within this process are equivalent to
(1) calculation of the sensitivity vectors of each parameter,
(2) calculation of the angle between each pair and, for a pair
with a sufficiently small angle between them, and (3) calculation
of the lengths of the vectors in the pair.

2.6. Ensemble of models

We created an ensemble of models by refitting the reduced
model to the experimental data described in Section 2.1
repeatedly, starting with 250 different initial parameter vectors.
These initial parameter vectors have been obtained by applying
Latin Hypercube sampling (Iman et al., 1981) to the nominal
parameter set with a standard deviation of 50%. Our parameter
estimation is based on a nonlinear least-squares technique in
which the normalized residual is given by

w2 ¼
1

max
j
ðyjÞ

XN

i¼1

½yi � yðti; y1 . . . yMÞ�
2. (6)

Here yi and y(ti, y1yyM) represent the data and the model
prediction at the time points ti, respectively. yj are the model
parameters. The difference between measured data and model
prediction at the given time points is normalized by max(yj),
which is the maximum value of the data over all time points. N is
the number of data points and M is the total number of model
parameters. Further, we used the Nelder–Mead simplex search
method (Lagarias et al., 1998) as implemented in MatlabTM (v.
R2007a, The Mathworks, Natick, MA) to minimize the normalized
residual.

2.7. Hierarchical clustering

We use the single-linkage clustering algorithm based on a
basic process of hierarchical clustering defined by Johnson (1967)
to perform a cluster analysis of our ensemble of models. In this
method the distance between one cluster and another cluster is
considered to be equal to the shortest distance from any member
of one cluster to any member of the other cluster. After
performing a cluster analysis on the ensemble of models, we
calculated the centroid of each cluster by calculating the mean of
the parameter vectors in each given cluster.

2.8. Marginal distributions of parameters

Given n random variables x1, x2,y,xn with joint prob-
ability function f(x1,y,xn), the marginal distribution of xr is
obtained by integrating the joint probability density over all
variables but xr:

grðxrÞ ¼

Z 1
�1

Z 1
�1

� � �

Z 1
�1

f ðx1; x2; . . . ; xnÞdx1; . . . ;dxr�1;dxrþ1; . . . ;dxn.

(7)

The resulting function can be interpreted as a probability
density of the single variable xr.
3. Results

3.1. Sensitivity analysis

We calculated the model sensitivity coefficients s̄i;j as de-
scribed in Section 2.3. The time points we used correspond to the
time points at which measurements of the cytokines were
collected (see Section 2.1). As an example, Fig. 4 shows the
dependence of IL-10 on changes in each of the 46 parameters at
six different time points subsequent to time 0.

We recognize that this model variable is most sensitive to the
parameters 1 and 2, which are the decay rate of endotoxin and the
activation rate of phagocytic cells, during the early time points
(3–5). This is a logical situation, since we assumed in the model
building cycle that the first peak of IL-10, which happens early in
time, is driven by activated phagocytic cells.

We assumed in our modeling study that the second peak in
IL-10 is driven by tissue damage working through a dynamical
filter (YIL10, 2nd effect on IL10). Hence, it is not at all surprising,
and indeed is a nice confirmation of computational accuracy, to
observe that at later time points (5 and 6), IL-10 is most sensitive
to the parameters 13–15 and 46, which appear in the equations for
tissue damage and YIL10.
3.1.1. Sensitivity-dependent correlation of model parameters

The sensitivity-dependent correlation matrices at an early and
at a late time point (time points 3 and 7, respectively) are
displayed in Figs. 5A and B, while Fig. 5C depicts the sensitivity-
dependent correlation matrix, R, summarized over all time points.
Unlike other model parameters, parameters 33, 35 and 36 act
independently to influence the early time course of the model
outcome and parameters 13–15 have a similarly prominent
influence on the later time course.

The calculation of the sensitivity-dependent correlation matrix
summarized over all time points yields one pair of parameters
with perfect correlation (+1 or �1 of the diagonal of the
correlation matrix). Of the 1035 pairs of parameters, 163 exhibited
a correlation with absolute value 40.99. The absolute correlation
was o0.5 in 91 pairs of parameters and less than 0.1 for two
parameters.
3.2. Parameter space reduction

Starting with the 163 pairs of highly correlated parameters as
determined from the sensitivity-dependent correlation matrix R

(see Sections 2.4 and 3.1.1), we reduced the parameter space from
46 to 18 dimensions, using the iterative process described in
Section 2.5. The remaining 18 free model parameters appear in red
in Table 1. We have observed that a similar reduction, yielding
between 15 and 18 free parameters, could be obtained, by
choosing a correlation cut-off between 80% and 99%, and that
the rest of our results are similar for any choice in this range. The
focus henceforth will be on the set of 18 parameters resulting
from the 99% cut-off.
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Fig. 4. Sensitivity analysis. Sensitivities of IL-10 to changes in each of the 46 model parameters were determined at several time points at which measurements of the

cytokines were collected. Time points 2 through 7 correspond to measurements taken at 1, 2, 4, 8, 12, and 24 h after endotoxin challenge (see Section 2.1). The higher the

absolute value of the sensitivity, the more sensitive IL-10 is to the corresponding model parameter.

Fig. 5. Sensitivity-dependent correlation matrix containing the correlation coefficients of the 46 model parameters at (A) an early time point and (B) a late time point. (C)

Sensitivity-dependent correlation matrix summarized over all seven time points.

S. Daun et al. / Journal of Theoretical Biology 253 (2008) 843–853848
To verify that a reasonable model fit can also be obtained with
the reduced model, we increased each of the 18 remaining free
parameters by 50% of their nominal values and refitted the model
simultaneously to the experimental data obtained from the
system response to challenges of doses of 3 and 12 mg/kg of
endotoxin (see Section 2.1). Fig. 6 shows that the model with the
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Fig. 6. Simulated time courses of the 8-state variables of the inflammation model for an endotoxin challenge of 6 mg/kg. The solid line shows the inflammatory response

simulated with the nominal parameter set and the dashed line shows the inflammatory response simulated with the parameter set obtained after refitting the reduced

model, with only 18 parameters, to the experimental cytokine data.

S. Daun et al. / Journal of Theoretical Biology 253 (2008) 843–853 849
reduced parameter set is able to capture the experimental data,
which correspond to an endotoxin challenge of 6 mg/kg, well. A
residual value of 0.3355 of this new fit compared with a value of
0.2617 of the original fit shows also that reducing the parameter
space does not impact the quality of the model fits. On the other
hand, optimization after a further reduction to a randomly
selected subset of 10 parameters from the reduced set of 18, and
optimization over a randomly selected set of 18 parameters, gave
significantly elevated averaged (n ¼ 5) residual values of 1.2901
and 0.9153, respectively.

3.3. Ensemble of models

We created an ensemble of 102 models by refitting the reduced
model to the experimental data starting with 250 different initial
parameter vectors (see Section 2.6). The reduction from 250
initially started optimizations to 102 good fits is due to either
integration failure of the ODE solver (13 cases) or convergence to a
minimum with a residual greater than 0.5 (133 cases). A residual
of 0.2617 in fitting our original model was the reason for choosing
0.5 as a cut-off limit.

3.4. Hierarchical clustering

We performed a cluster analysis on our ensemble of models
using the single-linkage algorithm described in Section 2.7. Fig. 7
shows the clustering result as a hierarchical tree. The x-axis shows
the different cluster nodes (only 29 nodes are shown; the most
similar models are already combined into one cluster node) and the
y-axis shows the Euclidian distance between them. This direct
clustering method (without normalization and sensitivity compen-
sation) shows a division of our ensemble of 103 models
(we included the original parameter set for comparison reasons)
into three different clusters: the black cluster, which contains 95
models; the dark gray cluster, which contains 6 models and the
light gray cluster, which contains only two of the 103 models.
An alternative analysis, in which the model parameters were
normalized and multiplied with their sensitivity value before the
calculation of the Euclidian distance, suggests that there exists only
one single cluster. A cluster analysis dependent on the maximum
distance between the models yields a division of the ensemble of
models into the same three clusters as the ones resulting from the
cluster analysis dependent on the Euclidian distance.

Even though the direct clustering algorithm might not be an
appropriate clustering method because it does not take any
normalization or sensitivities into account, the calculation of the
centroids of the three different clusters obtained from the direct
clustering algorithm reveals an interesting fact. Figs. 8A and B show
the damage trajectories of the three centroids for an endotoxin
challenge of 3 and 6 mg/kg, respectively. Interestingly, the three
distinct clusters differ significantly in their damage behavior.

This diversity in damage trajectories, together with the fact
that all models fit the IL-6, IL-10, and TNF-a data equally well,
suggests that either there are a collection of distinct mechanisms
that can generate the observed data or there are one or more
compensatory mechanisms leading to a continuum of models
capable of producing this behavior.

3.4.1. Generation of additional models

To ascertain whether a continuum of models based on
compensatory mechanisms exists or whether distinct mechan-
isms are responsible for the coexistence of the diverse damage
and the similar cytokine behavior, we generated 193 additional
models using the method described in Section 2.6, starting from
the centroids of the dark (97 models) and light gray clusters (96
models).

3.4.2. Clustering result on 296 models

Fig. 9A shows the result of the direct clustering method
(clustering is only based on the Euclidian distance). Fig. 9B shows
the cluster result after model parameters have been normalized
and multiplied with their corresponding sensitivity values before
the Euclidian distance was calculated. In both cases 295 models
form a continuum over a broad distance in parameter space, as
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Fig. 7. Cluster tree of the ensemble of 103 models. Only 29 cluster nodes are shown, because the most similar models are already comprised into single nodes. This tree

suggests a natural division of the ensemble of models into three distinct clusters.

Fig. 8. (A and B) Damage trajectories of the centroids of the three different clusters for an endotoxin challenge of 3 (left) and 6 (right) mg/kg, respectively. The used black

and gray colors correspond to the ones of the cluster tree in Fig. 7. (C and D) Damage trajectories of the continuum of 296 models for an endotoxin challenge of 3 (left) and 6

(right) mg/kg, respectively. We see that altering the dose by a factor of two has negligible effects on the curves.

S. Daun et al. / Journal of Theoretical Biology 253 (2008) 843–853850
would be expected from the continuous tuning of one or more
compensatory mechanisms. A single other model forms its own
cluster. Figs. 8C and D show the continuum of predicted damage
trajectories in the case of an endotoxin challenge of 3 and 6 mg/kg.

This result suggests that the different cluster results obtained
by applying both clustering algorithms to the ensemble of 103
models emerged from consideration of an insufficient diversity of
parameter values.
3.5. Compensatory mechanisms

To investigate which of the remaining 18 parameters of the
reduced model are responsible for compensating for the diverse
damage behavior, we calculated the covariance matrix of these
parameters directly, across the ensemble of 296 models. As with
the sensitivity-dependent correlation matrix computed earlier, we
normalized by the geometric mean of the diagonal elements. We
emphasize that, in contrast to the correlation matrix of all original
46 parameters calculated in Section 3.2, this calculation was based
on the values of parameters, not the sensitivities of model
outcomes to their values. The result is shown in Fig. 10. This
figure has been produced by plotting the surface formed by linear
interpolation between values of the correlation coefficients
followed by projection of this surface back to the parameter—

parameter plane. For each colored square, each vertex describes
the correlation between a different parameter pair. The color of
the square is determined by the highest correlation value of the
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Fig. 9. Cluster results of the ensemble of 296 models represented by cluster trees. (A) Clustering is only based on Euclidian distance between the models, (B) model

parameters have been normalized and multiplied with their corresponding sensitivity values before the Euclidian distance has been calculated. In both cases 295 models

form a continuum of models based on compensatory mechanisms.

Fig. 10. Correlation matrix computed from the values of the 18 parameters in the

reduced parameter set.
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four different parameter pairs represented at its vertices. For each
white square, at least one of the vertices corresponds to a highly
correlated parameter pair, and in each case, the identity of this
vertex was determined by direct inspection of correlation values.

The parameter pairs kD–xIL102, xD–xIL10, and kCA–xTNFCA exhibit a
correlation greater than 0.8. Fig. 11 shows the scatter plots of
these three parameter pairs (A–C) and the scatter plot of one
parameter pair exhibiting an absolute correlation smaller than
0.02 (D). The high positive correlation between the parameter
pairs kD and xIL102 and xD, and xIL10 tells us that differences in the
damage trajectory produced by changes in damage generation kD

or by changes in the damage saturation constant xD are
compensated by the dynamical filter YIL10 (see of Roy et al.,
2007), since damage drives the second surge in IL-10 production
as captured by the variable YIL10, or by the saturation constant of
the basic production of IL-10, respectively. A high positive
correlation between the parameters kCA and xTNFCA means that
differences in the anti-inflammatory mediator (CA) trajectory
produced by changes in kCA are compensated by the down-
regulation of TNF-a by CA.
The marginal distributions of all 18 parameters have been
calculated and those for parameters in the three highly correlated
parameter pairs are shown in Fig. 11. The finding that the marginal
distributions of the correlated parameters are not uniform may
reflect an indirect effect of other model parameters on these
compensatory mechanisms, or vice versa.
4. Discussion

In this work we reduced the 46 dimensional parameter space
of an 8-state mathematical model of the acute inflammatory
response to 18 dimensions using parameter sensitivity and local
identifiability analysis. We verified that the solutions of the
reduced model exhibit qualitatively similar dynamics to the
solutions of the full model and provide a similarly good fit to
experimental data. We created an initial ensemble of 103
parameter vectors providing a good fit to experimental data by
calibrating to experimental data using only the core parameters.
The hierarchical cluster analysis of the ensemble of 103 models
suggested that the ensemble could be classified into three
clusters. However, an alternative clustering that takes a normal-
ization of model parameters and their sensitivities into account
eliminated this clustering. Nonetheless, an important observation
is that the centroids of the three original clusters all lead to good
fits to experimental data but with diverse damage time courses.
This diversity in damage outcomes, together with the fact that all
models fit the IL-6, IL-10, and TNF-a data equally well, suggested
either that the model includes multiple distinct mechanisms that
produce behavior consistent with the data or that the model
features compensatory parameter pairs that allow a particular set
of mechanisms to work across a diverse range of parameter
values, as long as certain parameters co-vary. To distinguish
between these possibilities, we used parameter optimization from
additional starting points to increase the number of models in the
ensemble to 296. Cluster analysis showed that this expanded
ensemble included a continuum of models yielding similar
cytokine time courses, revealing the presence of compensatory
mechanisms within our mathematical representation of the acute
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Fig. 11. Non-uniform distributions of compensatory parameter pairs. The scatter plots of the three correlated compensatory parameter pairs (A–C) and one uncorrelated

parameter pair (D) are shown, together with the marginal distribution of each parameter.
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inflammatory response. Indeed, we identified the three particular
mechanisms that provide the strongest compensation by inves-
tigating the correlations between the 18 parameters in the
reduced parameter set. The mechanisms that we have identified
each consist of components that, in our model, represent related
biological processes. This observation raises the hypothesis that
such compensatory effects are embedded within the biological
acute inflammatory response.

As stated in the introduction, algorithms set up for model
complexity reduction should aim to (1) identify minimal model
structures that will provide adequate calibration and (2) within
each structure, reduce the number of parameters using identifia-
bility and sensitivity analysis. Since our earlier work suggested
that the model of the inflammatory response would lose validity
under further state reduction, we focused here on simplifying the
inverse or data fitting problem by reducing the parameter space.
The approach we used for the reduction of the parameter space
fits well into the current literature (Zak et al., 2003; Rodriguez-
Fernandez et al., 2006; Joseph et al., 2002; Chang et al., 2005). For
example, in previous work, identifiability analysis has been
applied in studies of ligand binding (Delforge et al., 1990) and
water treatment (Peterson et al., 2001) to investigate how
additional perturbations or measurements improve the accuracy
of parameter estimates.

In theory, we could have attempted to further reduce the set of
18 parameters varied in our data fitting procedure. In particular,
the reduced parameter set that we obtained by applying the
parameter space reduction technique still contains several non-
correlated, non-sensitive parameters. We did not fix those
parameters, however, because it might well be the fact that a
non-sensitive parameter becomes more important for model
outcome as other parameters are varied or if the value of the
parameter itself is varied dramatically. That is, the sensitivity
analysis we applied gives only results that are local in parameter
space. Hence, the use of correlations in sensitivities is crucial to
our approach, and the question whether non-correlated, non-
sensitive parameters should be fixed to their nominal values to
reduce the parameter space even further has to be answered
carefully using other diagnostics.

Clearly, in the absence of damage data, it is important not to fix
parameters in the three correlated pairs responsible for the
compensatory model behavior, since such a restriction would
automatically constrain the second parameter in each pair,
leading to a single model behavior instead of a continuum. If
information about damage becomes available, then these para-
meters would represent natural handles to use in fitting that data.
Interestingly, the fact that the marginal distributions of the
correlated parameters responsible for the compensatory model
behavior are not uniform suggests that additional parameters
interact with the six parameters specifically identified as provid-
ing compensation. The suggestion of such balancing mechanisms
has considerable biological face validity, although those identified
herein remain hypothetical.

Although we could possibly have overlooked biologically
relevant regions of parameter space, we are confident we explored
the parameter space of the mathematical model exhaustively
since we identified a continuum of models by refitting the
nonlinear mathematical model starting from initial parameter
guesses obtained by a 50% disturbance of the nominal parameter
set. To further verify the thoroughness of our search, we are
currently applying a stochastic method based on an adaptive
Markov Chain Monte Carlo algorithm as an alternative approach
to the creation of an ensemble of models for this system. This
algorithm will search a much larger volume of parameter space.

It must also be emphasized that all models in our ensemble
have been calibrated to mean experimental data and not to
individual animals. Before we calculated the mean of the
experimental observations, we verified that the cytokine response
is consistent across all animals (i.e. a second surge in IL-10 was
observed in every animal). Nonetheless, predictions from an
ensemble such as the one we created are most relevant to cohort
behavior and not individual behavior. On the other hand, it is
possible that certain subsets of the ensemble might be particu-
larly relevant to the outcomes seen in specific subpopulations of
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animals. For example, in Fig. 8, we see that different parameter sets
that give good fits to data yield very different damage curves. This
disparity in damage time courses suggests the possibility of using
the area under the damage curve as a measure of model outcome
(death or health). Based on this measure, a subset of the ensemble of
models could be selected to simulate the behavior of a rat population
exhibiting a given mortality. Of course, the subset selection
procedure could be adjusted as additional information about the
distribution of initial conditions across the population becomes
available. In particular, the quantitative fits obtained would change if
we had additional data from animals that did not survive the
endotoxin challenge. Future work will explore the use of individual
time course data in the generation of an ensemble of models.

The derivation of computationally tractable models of biolo-
gical systems, which are sufficiently reduced to provide insight
into mechanisms underlying system behavior, typically requires
identification of a key set of minimal components to be modeled,
irrespective of the particular scale addressed by the model. For
many systems, however, ab initio reduction still yields a
potentially severely underconstrained system. The methods
presented herein (1) suggest a tractable, effective method to
reduce parameter space while maintaining a good fit to experi-
mental data, and (2) identify diverse, possibly compensatory
dynamic mechanisms contributing to these fits. Therefore, we
expect such an approach to be of broad applicability to future
work on the modeling of biological systems.
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