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Abstract. Modulation of the inflammatory response has become a key focal
point in the treatment of critically ill patients. Much of the computational
work in this emerging field has been carried out with the goal of unraveling the
primary drivers, interconnections, and dynamics of systemic inflammation. To
translate these theoretical efforts into clinical approaches, the proper biological
targets and specific manipulations must be identified. In this work, we pursue
this goal by implementing a nonlinear model predictive control (NMPC) algo-
rithm in the context of a reduced computational model of the acute inflamma-
tory response to severe infection. In our simulations, NMPC successfully iden-
tifies patient-specific therapeutic strategies, based on simulated observations
of clinically accessible inflammatory mediators, which outperform standard-
ized therapies, even when the latter are derived using a general optimization
routine. These results imply that a combination of computational modeling
and NMPC may be of practical use in suggesting novel immuno-modulatory
strategies for the treatment of intensive care patients.
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1. Introduction. Although the inflammatory response is crucial to restoring
health following a wide range of biological stresses, uncontrolled systemic inflam-
mation is also the primary cause of organ failure and death in victims of severe
trauma, infections, and many other conditions leading to admission to an intensive
care unit. Therefore, control of the inflammatory response has become a key fo-
cal point in the treatment of critically ill patients. Much of the theoretical work
regarding severe inflammation has aimed to elucidate the mechanisms underlying
systemic inflammation and to explain how the mediators of inflammation interact
with one another across their respective time scales [14, 5, 21]. Significant insight
has been acquired from these approaches, including an enhanced understanding of
the ways in which manipulations of inflammatory components may combat persis-
tent inflammation. A main result coming from this research confirms that successful
therapeutic interventions require appropriate timing relative to the evolution of the
inflammatory response [20, 9].

An early clinical approach to controlling inflammation was to target an individual
inflammatory mediator [13]. However, there is no one mediator that stands as
the source for persistent inflammation [2, 3, 17]. Instead, inflammation involves
a cascade of processes, which is initiated by a few key factors but persists as a
result of a complicated feedback process involving effectors that are produced later
than the instigator. In addition, anti-inflammatory mediators may be present at
elevated levels during prolonged inflammation, but their effects on pro-inflammatory
mediators may be small or negligible due to the relative amounts of inflammation
present in the system [4]. Inversely, immunoparalysis, an overwhelmingly under
responsive state resulting from a relative anti-inflammatory excess, may play a
large role in predisposing patients to secondary infections that compromise organ
recovery [22]. Because the inflammatory response is a complex process involving
multiple positive and negative feedback loops, it is extremely difficult to predict the
response of the various mediators to perturbations (i.e. to therapy) applied to one
or more of the system’s components.

As a result of this complexity, there is still much to be done to identify appro-
priate therapeutic targets to combat excessive and pervasive inflammation and to
develop strategies for delivering appropriate interventions in the correct amounts
and at the right times [10, 6, 7]. One of the tools that can help optimize complex
dose regimens is nonlinear model predictive control (NMPC). NMPC algorithms
have mainly been developed and applied for industrial operations involving system
processes that can be well described with mathematical models, usually systems
of ordinary differential equations. NMPC is advantageous relative to other con-
trol algorithms because it combines predictions of the real system state at a future
time, based on a mathematical model, with measurements derived from the system
to calculate a control move that will help to optimize the desired outcome for a
specific process variable. Recently, NMPC has been applied to a variety of biomed-
ical processes including the regulation of glucose supply in diabetic patients and an
exploration of optimal dosing of anticancer agents, among others [19, 12, 11].

Motivated by the recent success of NMPC in biomedical settings, we aimed to
explore the utility of NMPC for the derivation of optimal therapeutic interventions
for the control of inflammation triggered by a pathogenic infection, simulating the
ominous clinical problem of severe sepsis [15]. There are two essential components
of an NMPC scheme: the process to be controlled and the model predicting the
process (sometimes called the predictive model). In the clinical setting of a severe
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infection, the process to be controlled would be the time course of the inflamma-
tory response in a patient, while insuring eradication of the infection. To explore
the feasibility of applying NMPC, we chose to emulate the patient’s inflammatory
response with the model developed in [20], such that the current exposition is com-
pletely simulation based. This model is referred to as the patient model or virtual
patient. Initially, we used a predictive model and a patient model with identi-
cal equations, parameter values, and initial conditions, which we refer to as a no
mismatch scenario. On each time step, the NMPC algorithm was applied to the
predictive model to generate an intervention strategy, and this was directly applied
to the patient model. Subsequently, we introduced mismatch between the predic-
tive model and the patient model (i.e. patient-model mismatch) in some parameter
values and initial conditions, to achieve a more realistic representation of a clinical
scenario.

Although the model developed in [20] is more abstract than those used to simulate
insulin or cancer chemotherapeutic agents in past biological applications of NMPC,
its biological relevance is supported by previous analysis showing that it reproduces
several important observations related to severe systemic inflammation in biological
organisms [20, 9]. Our implementation of NMPC in a reduced ODE model for
inflammation will pave the road for future applications involving more quantitatively
detailed models, such as that presented in [8].

This paper is organized as follows. In Section 2, we give a brief overview of the
NMPC framework. In Section 3, we present the equation-based model of inflamma-
tion that we use, along with additional methodological details, including the way in
which we generate our simulated patient population (i.e. virtual patients) and the
specifics of the therapeutic strategies that we implement. The results of our simu-
lations are presented in Section 4, while we conclude with a discussion in Section
5.

2. NMPC overview. The NMPC algorithm must incorporate certain essential
elements, which we now briefly describe [18].

I. The Specification of a Reference Trajectory

The reference trajectory defines a target path that we would like our process
outputs to follow. Specifically, our model includes a variable representing tis-
sue damage/dysfunction that we would like to cause to decrease to zero as
quickly as possible. So, our reference trajectory for damage is the constant
function, RD(t) ≡ 0.

II. The Prediction of Process Output

The reference trajectory will be compared to a prediction of process behavior
over a specified duration of time, h, called the prediction horizon. Simulation
of the patient model (equations (1)-(4) in Section 3.1) describing the acute
inflammatory response to pathogen yields this prediction.

III. The Definition of an Objective Function

The objective function quantifies the difference between the reference trajec-
tory and the predicted process output. The objective function we use has the
typical weighted sum of squares form (see Section 3.2, equation (5)).
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IV. The Computation of a Sequence of Control Moves

Using the predictive model to simulate the system’s response to changes in
input over time h, we seek a sequence of control moves that will minimize the
objective function. The control moves are simply changes in the level of an
input into the model, calculated in such a way as to achieve the desired goal.
For example, in our model, control moves consist of steps in control terms in
equations (3) and (4), which represent pro- and anti-inflammatory therapy,
respectively.

Figure 1. MPC Schematic (adapted from Ogunnaike et al. [18],
1994, pg 997).

The number of control moves, m, that will be made during time h can also
be specified. If m < h, which is typically the case, then the control terms
are held constant after the mth control move when the system’s response to
the input over time h is determined. Only the first control move is actually
implemented in the patient and predictive models as the dose for the current
time step, after which the algorithm repeats, eventually determining the dose
for the next time step. The MPC schematic in Figure 1, adapted from Ogun-
naike et al., offers an excellent summary of this process [18].

V. Error Prediction Update

An important element of the algorithm lies in the error prediction step. After
a control action is implemented in both the predictive and patient models,
a measurement M(k) is taken from the patient model and compared to the
corresponding quantity p(k) computed from the predictive model, where k is
the present time step in the algorithm. In a standard NMPC implementation,
||M(k) − p(k)||22 is minimized as a part of the objective function. In our
NMPC scheme, when a mismatch exists, updating is done differently. This
is due to the fact that, when the system is only incompletely observed, the
variables that can be realistically measured are not necessarily those that
we specifically wish to minimize, and hence are not appropriate for inclusion
in the objective function. The strategies we implement for handling this
situation are discussed in Section 3.2.
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3. Designing an NMPC algorithm for the therapeutic control of inflam-
mation. Having described the general components of NMPC schemes, we now
present the acute inflammation model we use and the specific details of our cus-
tomization of an NMPC algorithm. The algorithm we use is a modified version of
that developed by Florian et al. [12] (acquired through personal communication).
All simulations were conducted using MatLab R© on a distributed computing plat-
form. The ODE system is numerically integrated using MatLab’s Simulink default
solver routine, ode45. The optimization routine used the fmincon built-in MatLab R©

function.

3.1. The model for the acute inflammatory response to pathogenic in-
fection. The model of acute inflammation was previously described in [20] and
consists of the ODE system:

dP
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= kpgP
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(
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In the model, equation (1) represents the evolution of the bacterial pathogen
population (P ) that instigates the cascade of inflammation. Equation (2) gov-
erns the dynamics of the concentration of a collection of early pro-inflammatory
mediators such as activated phagocytes and the pro-inflammatory cytokines they
produce (N∗). Equation (3) corresponds to a marker of tissue damage/dysfunction
(D), which helps to verify response outcomes. Finally, equation (4) describes the
evolution of the concentration of a collection of anti-inflammatory mediators (CA)
that inhibit many of the interactions within the system. Table 1 gives the parameter
values used in [20], which we refer to as the reference parameter set.

Equations (1) - (4), with AIDOSE=PIDOSE= 0, admit three stable critical
points (outcomes) under certain choices of parameter values [20]:

1. Healthy: (P,N∗, D,CA) = (0, 0, 0, ĈA), for a small value ĈA > 0.

2. Aseptic: (P,N∗, D,CA) = (0, N̂∗, D̂, ĈA) for N̂
∗, D̂, ĈA > 0.

3. Septic: (P,N∗, D,CA) = (P,N∗, D,CA)S , a point with all components posi-
tive.
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Table 1. Model parameter reference values for the system (1) - (4).

Parameter Reference Value Parameter Reference Value 

kpm 0.6/M units hr μn  0.05/hr 

kmp 0.01/P units hr knd 0.02/D units hr 

sm 0.005 M units/hr kdn 0.35 units of D/hr 

μm 0.002/hr  xdn 0.06 N* units 

kpg 
Various in range:  
(0.021-2.44)/hr 

μd 0.02/hr 

p∞ 20x10
6
/cc c∞ 0.28 CA units 

kpn 1.8/N* units hr sc 0.0125 CA units/hr 

knp 0.1/P units hr kcn 0.04 CA units/hr 

knn 0.01/N* units hr kcnd 48 N* units/D units 

snr 0.08 NR units/hr μc 0.1/hr 

μnr  0.12/hr    

We label our finite time simulation outcomes based on these three states, with
simulations that end with negligible P classified as healthy or aseptic depending
on which state (N∗, D,CA) are approaching, as discussed further in subsection 3.5.
Figures 2 (a) and (b) show typical aseptic and septic scenarios, respectively. It
is assumed that basic therapy, including the administration of antibiotics, resusci-
tation with fluids, and so forth, are implicitly modeled in system (1) - (4). This
means that the various outcomes mentioned above can occur despite administration
of basic treatment.

Input to the NMPC algorithm consists of an anti-inflammatory therapy, present
as a source term (+AIDOSE) in equation (4), and a pro-inflammatory therapy,
incorporated as a source term (+PIDOSE) in equation (2). Constraints are defined
that prevent dosing from going negative, meaning that therapy can be infused into
the system but not extracted.

In all of the simulations that we discuss, the total simulation time is 168 hours (1
week). In addition, k is an hourly step, so doses are adjusted on an hourly basis. The
goal of the NMPC control algorithm is to identify (virtual) patient-specific therapy
dosing profiles that can correct inflammatory responses that, without intervention,
would result in either aseptic or septic scenarios.

3.2. The objective function, constraints, and error prediction under mis-
match. The objective function J that we use contains terms to minimize damage
levels (D), pathogen levels (P ), and total therapy AIDOSE and PIDOSE given over
the prediction horizon h and takes the form

J = min
PIDOSE(t)
AIDOSE(t)

||ΓDD||22 + ||ΓPP ||22 + ||ΓAIAIDOSE(t)||22 + ||ΓPIPIDOSE(t)||22 (5)

Minimization is done over piecewise constant time courses of AIDOSE and PI-
DOSE, achieved by a sequence of control moves, as discussed in Section 2. The
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Figure 2. Representative placebo simulations of two virtual pa-
tients. (a) Simulation of a typical aseptic outcome in the absence
of treatment. (b) Simulation of a typical septic outcome in the
absence of treatment.

Γ-parameters are the weighting constants and the zero function is used as the ref-
erence trajectory for both tissue damage/dysfunction (D) and pathogen (P ). From
computational experimentation, it became apparent that striving to minimize both
damage and pathogen was essential. This, however, introduced the difficult chal-
lenge of maintaining a balance between these two objectives. An emphasis on mini-
mizing damage might lead to unrestricted pathogen growth. On the other hand, an
emphasis on minimizing pathogen might lead to an overzealous immune response
determined to eliminate pathogen as soon as possible whatever the costs, after which
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it might be too late to control the excessive inflammation. For all simulations, we
chose ΓD = ΓP = 1 so as not to emphasize one factor over the other. In addition, we
also penalized the actual dose amounts, AIDOSE and PIDOSE, over the prediction
horizon. The rationale for penalizing dosing is that drugs have financial costs as
well as the potential for harmful side effects. The values for ΓAI and ΓPI are 1 if
the corresponding form of therapy is used and 0 otherwise.

When patient-model mismatch is introduced, we need to specify which variables
from the patient model will be measured to update the predictive model. We
propose that it is fairly realistic to acquire accurate hourly measurements for N∗

and CA and hence these are designated as the variables to be measured. We assume
that it is not feasible, however, to measure the variables D and P since damage
is impossible to quantify in real time in clinical settings, and it is unlikely that
a measurement of the pathogen population could be made at all, much less at
every hour. Thus, our NMPC implementation is non-standard, in that the states
measured from the process (virtual patient) and the variables appearing in the
objective function are disjoint sets. To harness the measurements of N∗ and CA

taken from the patient model at the end of each time step, we use these values as
our initial conditions for N∗ and CA in the predictive model at the start of the next
one-hour time step, with AIDOSE and PIDOSE set to the values prescribed by the
NMPC algorithm and with P and D in the predictive model evolving continuously
across time steps.

This updating scheme does not address possible discrepancies between the pre-
dictive model and patient model with respect to levels of damage and pathogen,
both of which are the primary forces capable of pushing the system toward an un-
healthy endpoint. Hence, when pathogen levels in the predictive model and in the
patient model are vastly different due to differences between virtual patient and
predictive model parameter values, an additional updating strategy not based on
direct measurements is necessary. We added an update that kicks in when either

(A) pathogen levels are low in the predictive model but sufficiently high in the pa-
tient model, OR

(B) pathogen levels are high in the predictive model but sufficiently low in the
patient model.

Every four hours, pathogen levels in the predictive model and patient model are
compared. If (A) occurs, then the predictive model’s pathogen level for the next
time step is reset to P = 0.5, which is a relatively high value. If (B) occurs instead,
then the predictive model’s pathogen level is reset to zero. These modifications can
be looked at as a re-initialization of the pathogen value in the predictive model.
Use of the virtual patient’s pathogen values in this way is clinically justifiable,
reflecting the fact that in a clinical setting, a physician can potentially identify
persistent infection based on high fever, positive blood cultures, toxic granulations
in neutrophils, or rising procalcitonin levels, while in other cases, a physician may be
able to judge, based on the absence/resolution of symptoms, that it is highly unlikely
that a patient has a high pathogen load. This rationale, together with the fact that
we are not directly setting the predictive model’s pathogen state to the exact value
present in the virtual patient, implies that this updating strategy is a reasonable
and clinically relevant way to alert the algorithm of significant discrepancies between
the predictive model and the patient model, corresponding to either case (A) or (B)
above.
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Constraints on dosing levels must also be specified. This might be construed as
an ad hoc regularization procedure, where one wishes to reduce the likelihood of
large changes in therapy. The maximum dose amount of anti-inflammatory therapy
allowed at a given step is calculated as the difference between the current level of
CA (the anti-inflammatory mediator) and a maximum allowable level of CA, given
by CAMax := 0.6264 [20]. When pro-inflammatory therapy is used, the maximum
dose amount allowed at a given step is calculated as the difference between the
current level of N∗ and N∗

Max := 0.5. This maximum was selected as a value of
N∗ that is high enough to consistently have an impact on pathogen but not so high
that anti-inflammatory feedback cannot rein it in.

Figure 3. Scatterplot showing the distribution of patient out-
comes with respect to pathogen growth rate (kpg) and the initial
level of pathogen (P0). For the given ranges of kpg and P0 the vari-
ous outcomes (healthy, aseptic, and septic) of the patient profiles in
the placebo case are well mixed in the kpg-P0 plane. Thus, kpg and
P0 are not the primary drivers of patient outcome in the absence
of treatment.

3.3. Building a virtual patient population. Several of the reference parameters
in equations (1) - (4) and the initial conditions for P and CA, which we denote P0

and CA0, respectively, were allowed to vary to reflect virtual patient variability.
Virtual patients were generated with individualized parameter profiles as follows.
First, we selected a reference parameter set (Table 1) from [20]. Values of five
parameters, as well as CA0, were selected independently for each patient, from
bounded uniform distributions on ranges defined as the reference values +/− 25%
(Table 2). For the parameter kpg, an experimentally determined range is available:
0.021− 2.44 hr−1 (Table 1). We restricted the range of kpg values to 0.3− 0.6 hr−1

and selected P0 between 0 and 1.0 units (Table 2) such that placebo outcomes in the
virtual patient population were not driven primarily by pathogen-related parameters
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Table 2. Model parameters in which variability was assumed in
the patient-model mismatch case. Patient parameters were gener-
ated by choosing a random value from a uniform distribution on
each given range

Parameter Patient Parameter Ranges Description 

P0 0.0 – 1.0 Initial condition of pathogen (P)

CA0 0.0938 – 0.1563 Initial condition of the anti-inflammatory mediator (CA)

kpg 0.3 – 0.6 Growth rate of pathogen (P)

kcn 0.03 – 0.05 Maximum production of anti-inflammatory mediator (CA)

knd 0.015 – 0.025 Activation of phagocytes (N*) by tissue damage (D)

knp 0.075 – 0.125 (Co-varies w/ knd) Activation of phagocytes (N*) by pathogen (P) 

kcnd 36.0 – 60.0 (Co-varies w/ kcn) Controls the effectiveness of activated phagocytes (N*) versus 
damage (D) in the production of the anti-inflammatory mediator 
(CA)

knn 0.0075 – 0.0125 (Co-varies w/ knd) Activation of phagocytes (N*) by already activated phagocytes 
(N*) (or the cytokines that they produce) 

kpg and P0 but by the parameter profile as a whole (Figure 3). In some preliminary
simulations, in the absence of patient-model mismatch, the virtual patient-specific
parameter profile was also used in the underlying predictive model. When patient-
model mismatch was introduced, the reference parameter set (Table 1) was used for
the predictive model. In addition, some parameters were chosen to co-vary since
many molecules are produced by the same biological machinery or actuate their
effects through similar pathways. That is, if parameters p1 and p2 co-vary and the
value chosen for p1 is +n% of its reference value, then the generated value for p2
should also be close to +n% of its reference value. For example, we specified that
the variability in kcnd, the rate of production of the anti-inflammatory mediator
(CA) by damaged tissue (D), was to vary by the same percentage as kcn, the rate
of production of CA by activated phagocytes (N∗), so that the rates at which these
sources were producing CA were balanced.

3.4. Alternative Therapies. A significant advantage of in silico simulations is
the ability to apply different therapies to the same virtual patient and compare the
outcomes. For each virtual patient receiving treatment, we use our NMPC algorithm
to generate a dynamic therapeutic profile specific to that virtual patient’s particular
evolution as determined by the virtual patient’s unique parameter profile. This is
referred to as targeted therapy. To gauge how well the targeted therapy achieves
our objectives, we compare its performance to the results from the administration
of three alternative therapies.

The simplest alternative therapy is Placebo Therapy, where no treatment is given.
Static Therapy is designed to represent the therapy currently given to critically ill
patients with severe inflammatory disorders such as, sepsis in the intensive care
unit: a consistent dosing regimen of an anti-inflammatory therapy. In practice, we
implemented this therapy by creating a dosing profile that gives a small dose (0.005)
of the anti-inflammatory therapy (via instantaneous injections) each hour over a
period of 72 hours, after which therapy terminates. The control algorithm does not
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play a role in static therapy. Standard Therapy is generated by applying the control
algorithm to the model (1) - (4), with the fixed set of reference parameter values
and the initial conditions (P0, N

∗
0 , D0, CA0) = (0.5, 0, 0, 0.125), as specified in [20],

to obtain one set of dosing profiles for pro- and anti-inflammatory therapy. This one
set of dosing profiles is then administered to all virtual patients. Thus, in contrast
to targeted therapy, standard therapy is not patient specific. Since the predictive
model’s kpg value is a parameter that we are free to tune to get the best possible
therapeutic outcomes, we repeated this process for each virtual patient for each
of three values for kpg (growth rate of the pathogen) in the underlying predictive
model: 0.52, 0.6, and 0.8. Targeted therapy is also determined for each of these kpg
values when we introduce mismatch between predictive model and patient model
parameter values.
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Figure 4. Three different standard therapy dosing profiles, with
pro- and anti-inflammatory dosing schedules. Standard ther-
apy was calculated using initial conditions (P0, N

∗
0 , D0, CA0) =

(0.5, 0, 0, 0.125) and a model kpg value of 0.52 (top panel), 0.6 (mid-
dle panel), or 0.8 (bottom panel). The same pair of doses, both pro-
and anti-inflammatory, was administered to all patients receiving
treatment.



750 JUDY DAY, JONATHAN RUBIN AND GILLES CLERMONT

We initially chose kpg = 0.52 in the predictive model, since this value is above the
bifurcation point where healthy, aseptic, and septic states co-exist (kpg = 0.514) and
lies within the range of virtual patient kpg values. A later choice of kpg = 0.8 in the
predictive model, although above the upper bound of the range for kpg patient values
we used, allowed for a more aggressive therapeutic approach. Although results with
this value were favorable for targeted therapy, the outcomes for standard therapy
suffered. Thus, we subsequently explored the kpg value of 0.6 in the predictive
model, which is the upper bound of the patient kpg range. When we display our
results for standard therapy and targeted therapy (in the mismatch case), we show
outcomes for all three kpg values. Figure 4 displays the three sets of dosing profiles
that were calculated for the standard therapies explored, using initial conditions
(P0, N

∗
0 , D0, CA0) = (0.5, 0, 0, 0.125).

3.5. Additional practical issues. In our simulations, we based the intervention
time, or time of onset of therapy, on the level of N∗, which denotes the early pro-
inflammatory signals. During the course of an infection, if a virtual patient’s N∗

level rises above a certain threshold, the virtual patient is considered to show clinical
manifestations warranting treatment. This implies a biomarker driven approach
to initiating therapeutic intervention. This method, however, is not without its
complications. For instance, how should the N∗ threshold be chosen? In the current
exploration, anN∗ threshold of 0.05 was selected, based on the finding thatN∗ levels
generally do not exceed this threshold in simulations yielding healthy outcomes. Of
the 1000 virtual patients we generated and simulated, 620 exhibited values of N∗

that exceeded this threshold and thus received treatment.
As we worked through the process of customizing the algorithm, one of the main

goals was to make the setup and assumptions more realistic. For instance, we
noticed that the prescribed amount of anti-inflammatory therapy given to virtual
patients would sometimes cause the levels of the anti-inflammatory mediator to stay
elevated for very long periods of time. This problem usually happened in scenarios
when inflammation was very high after the eradication of pathogen. Consequently,
to bring inflammation down, the anti-inflammatory therapy would be given contin-
ually, in an attempt to essentially saturate the system with as much CA as possible
for as long as possible. This situation would be avoided clinically for fear of sec-
ondary infections, and hence we put a mechanism into place so that if the level of
CA remained consistently elevated for more than 48 hours, the maximum allowable
amount of CA was reduced by half. This mechanism compares the CA measure-
ment of the current step with that of the previous step and if the difference is close
(within 0.001), then this implies that the level of CA has remained elevated from
one time step to the next. A counter is then incremented to keep track of how many
consecutive times this occurs.

It was also necessary to choose an algorithm for determining the outcome (i.e.
healthy, septic, or aseptic) of an individual simulation once an entire therapy dosing
profile was administered to a virtual patient. Outcome was determined from the
values of the variables at the end of the simulation time of 168 hours; however,
when the outcome could not be determined at 168 hours because the system had
not yet reached a steady state, we took the values of the variables at 168 hours and
integrated the system with AIDOSE=PIDOSE= 0 for an additional 300 (simulated)
hours, by which time the solution invariably settled to a steady state. From such
simulations, we systematically determined virtual patient outcomes and tallied the
results. A virtual patient outcome was labeled septic if pathogen levels were above
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Table 3. Summary for NPMC Simulation Setup

Therapies used No Mismatch (Case 1):   Anti-inflammatory only 
 
No Mismatch (Case 2)  
& Mismatch Case:           Anti- and Pro-inflammatory 
 

 

 

Total number of virtual patients generated 1000 

Treatment Intervention Time After N* levels in the patient are greater than or 
equal to 0.05 

Number of virtual patients whose N* levels 
surpassed the threshold for receiving 
treatment  

620 

Control parameter values m=2 and h=12 

Γ–weighting constants in objective function 

given by Equation (5) 
All weights equal to 1 

Maximum allowable levels of CA: CAMax 0.6264 

Maximum allowable levels of N*: N*Max 0.5 

Maximum duration for elevated CA levels 48 hours 

Patient initial conditions (P0, N*, D, CA) = (P0-random, 0, 0, CA0-random) 
(See Table 2 for ranges for P0-random and CA0-
random) 
 

The following are applicable in the mismatch simulations only: 

   Model initial conditions (P0, N*, D, CA) = (0.5, 0, 0, 0.125) 

   Pathogen update check  Every 4 hours  

   kpg value in underlying model Various explored: 0.52, 0.6, or 0.8  

a threshold of 1.0 and damage and activated phagocytes were also above their
designated thresholds of 1.0 and 0.05, respectively. If pathogen levels were not above
threshold, yet damage and activated phagocyte levels were, then the virtual patient
outcome was labeled aseptic, in accordance with the definitions of these physiologic
states mentioned earlier. Otherwise, a virtual patient was labeled healthy.

Finally, after experimenting with a number of values for the prediction horizon,
h, and the move horizon, m, we chose h = 12 hours, since this was long enough to
capture essential model dynamics, andm = 2, which provided moderately aggressive
dosing. Table 3 summarizes the setup details for the virtual patient simulations with
and without the presence of patient-model mismatch.

3.6. Predictors of the response to a control intervention. It is of interest
to identify initial conditions and model parameters predictive of the response to a
targeted strategy in virtual patients that would otherwise evolve to either a septic
or aseptic outcome in the absence of therapy. We therefore constructed a variety of
standard statistical classifiers, to identify such predictors. We considered as poten-
tial predictors all initial conditions and model parameters that varied among virtual
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Table 4. No Mismatch Case 1 and Case 2 Simulation Results and
Comparison to Alternative Therapies. Standard therapy results
are given over three different kpg values for the underlying model:
0.52, 0.6, and 0.8. The number of patients out of 620 is given in
parenthesis (unless otherwise specified). In the first three rows,
this number is followed by a number that represents either the
quantity of patients coming from an unhealthy placebo category
into the healthy category due to the effects of treatment or the
number coming from the healthy placebo category into either of
the unhealthy categories.

Therapy 
Type:  

Placebo Static 
Standard Therapies: 

 kpg=0.52       kpg=0.6       kpg=0.8     

No
Mismatch 
Targeted 

Anti-
inflammatory

No
Mismatch 
Targeted 

Anti- & Pro-
inflammatory

Percentage
Healthy: 

40% 

(251) 

46% 

(282; 36) 

60% 

(370; 119) 

67% 

(417; 191) 

52% 

(322; 159) 

55% 

(341; 99) 

95% 

(588; 337) 

Percentage
Aseptic: 

37% 

(228) 

32% 

(195; 1) 

19% 

(118; 0) 

22% 

(138; 25) 

48% 

(298; 88) 

21% 

(133; 4) 

5% 

(32; 0) 

Percentage
Septic:

23% 

(141) 

23% 

(143; 4) 

21% 

(132; 0) 

11% 

(65; 0) 

0% 

(0; 0) 

24% 

(146; 5) 

0% 

(0; 0) 

Percentage
Harmed 

(out of 251): 

n/a
2% 

(5/251) 

0% 

(0/251) 

10% 

(25/251) 

35% 

(88/251) 

4% 

(9/251) 

0% 

(0/251) 

Percentage
Rescued 

(out of 369): 

n/a
10% 

(36/369) 

32% 

(119/369) 

52% 

(191/369) 

43% 

(159/369) 

27% 

(99/369) 

91% 

(337/369) 

patients (see Section 3.3 and Table 2). The classification variable was restoration of
health by targeted therapy (Yes/No). A logistic regression (LR) classifier performed
consistently better than other classifiers in its ability to identify responders to tar-
geted therapy (as judged by receiver operating characteristic (ROC) performance),
and we therefore report the LR results.

4. Results. Outcomes of the 620 patients qualifying for therapy are presented in
Tables 4 and 5. In the placebo case, 40% (251) fell into the healthy category
and 60% (369) fell into the unhealthy categories, with 37% (228) and 23% (141)
having aseptic and septic outcomes, respectively. We also provide the percentages
of patients harmed and rescued under the various treatments. Harmed patients
are those that were in the healthy state under placebo but were instead redirected
to an unhealthy state under a non-placebo treatment. On the other hand, rescued
patients are those that were in an unhealthy state under placebo but were redirected
to the healthy state under a non-placebo treatment. Since there were 251 healthy



OPTIMAL MODULATION OF INFLAMMATION USING NMPC 753

patients and 369 unhealthy patients under placebo, we use these totals to determine
percentages of patients harmed and rescued.

4.1. Static and standard therapies (Table 4). The overall outcomes of static
therapy were marginally better than placebo, with 46% of patients achieving healthy
outcomes. This weak improvement resembles results attained in current clinical
practice, unfortunately [16]. Even though static therapy rescued 10% (36/369) of
unhealthy patients, it also harmed 2% (5/251) of otherwise healthy patients.

The administration of standard therapy yielded better overall outcomes than
the placebo case or static therapy for each kpg considered, even though it was not
individually tailored (Table 4 and Section 3.4). Standard therapy rescued 32%
(119/369), 52% (191/369), and 43% (159/369) of unhealthy patients, for kpg values
of 0.52, 0.6, and 0.8, respectively. However, within standard therapies, only a kpg
value of 0.52 did not harm any patients, whereas values of 0.6 and 0.8 respectively
harmed 10% (25/251) and 35% (88/251) of otherwise healthy patients, resulting in
aseptic outcomes instead.

4.2. No mismatch (Table 4). We next present results from the use of targeted
therapy, first without patient-model mismatch and second in the more realistic case
when mismatch is present. In the absence of mismatch, the predictive model will
forecast patient dynamics perfectly, which is useful for algorithmic development and
for determining the optimal performance of our control algorithm. Since the patient
state and the predictive model state are the same at every step in this case, no
updating of predictive model states is needed. In the first set of simulations under
the no mismatch setup, we experimented with anti-inflammatory therapy alone
(Table 4, Case 1). The results obtained demonstrate the need for an additional
therapeutic option (Table 4, Case 2) to correctly modulate the immune response,
even in the absence of patient-model mismatch.

4.2.1. No Mismatch Case 1: Anti-inflammatory therapy only. In this initial no
mismatch case, motivated by the clinical practice of targeting a single inflammatory
mediator [16, 1], we set the source term PIDOSE to 0 for each time step and
allowed only AIDOSE to take on nonzero values according to the output of the
NMPC algorithm. This strategy achieved an overall healthy resolution for 55%
(341) of patients compared to 40% (251) under placebo (Table 4). Even though 27%
(99/369) of unhealthy patients were rescued, approximately 4% (9/251) of healthy
patients were harmed under this targeted treatment regimen, with four becoming
aseptic and five septic. Note that the outcomes of the standard treatment (with
kpg = 0.52) not only yielded better overall results than this strategy but also did
not harm any patients.

In septic scenarios, the control algorithm deems the anti-inflammatory therapy
irrelevant, since curbing inflammation will not help eliminate pathogen; thus, only
aseptic patients could be helped under this treatment. Figure 5 shows the out-
come of targeted therapy, without mismatch, applied to the aseptic patient #26,
where anti-inflammatory therapy was successfully able to redirect the response to
a healthy outcome. On the other hand, Figure 6 shows results for another aseptic
patient (#91) who was not helped with therapy, most likely due to the increased
infection severity compared to patient #26. Figure 7 shows an unfortunate example
of a therapy-driven septic outcome demonstrated with virtual patient #473. The
five therapy-driven septic outcomes and four therapy-driven aseptic outcomes were
due to the suppression of inflammation by the anti-inflammatory treatment early
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Figure 5. The NMPC algorithm is applied to an aseptic vir-
tual patient (#26), using anti-inflammatory therapy alone and no
patient-model mismatch. Solid curves: Targeted therapy; Dashed
curves: Placebo. An anti-inflammatory therapy regimen gener-
ated by the algorithm successfully redirects an otherwise aseptic
response to the healthy state.

in the response. While therapy helped to minimize tissue damage, the pathogen
gained the upper hand during the resulting immuno-suppressed state. Once the
pathogen levels became sufficiently elevated, the algorithm discontinued the anti-
inflammatory therapy and the inflammatory mediators were free to respond fully
to the infection. However, by this time, either the pathogen could not be reined
in (septic outcomes) or the amount of inflammation needed to successfully eradi-
cate the pathogen was excessive and could not be controlled even by continuing the
anti-inflammatory treatment (aseptic outcomes).

4.2.2. No Mismatch Case 2: Anti- and pro-inflammatory therapy. Since anti- in-
flammatory therapy alone could not prevent septic outcomes and was also unsuc-
cessful for many aseptic patients, we added pro-inflammatory therapy, which could
boost the immune response. Specifically, we allowed PIDOSE to take on nonzero
values in equation (2) and reran the algorithm on each patient. The use of combined
therapies did not harm any of the patients and 91% (337/369) of unhealthy patients



OPTIMAL MODULATION OF INFLAMMATION USING NMPC 755

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Hours

A
ct

iv
at

ed
 P

ha
go

cy
te

s

0 20 40 60 80 100 120 140 160
0  

0.3

0.6

HoursA
nt

i−
in

fla
m

m
at

or
y 

M
ed

ia
to

r

0 20 40 60 80 100 120 140 160
0

5

10

15

20

Hours

D
am

ag
e

0 20 40 60 80 100 120 140 160
0

1

2

3

Hours

P
at

ho
ge

n

 

 

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

Hours

A
I C

on
tr

ol
/D

os
es

0 10 20 30 40 48
0

0.05

0.1

0.15

Hours

A
I C

on
tr

ol
/D

os
es

Targeted Therapy
Placebo

Close up of
anti−inflammatory
dosing over 48 hours

Figure 6. The NMPC algorithm is applied to another aseptic vir-
tual patient (#91), using anti-inflammatory therapy alone and no
patient-model mismatch. Solid curves: Targeted therapy; Dashed
curves: Placebo. Unlike the results shown in Figure 5, anti-
inflammatory therapy fails to redirect this aseptic response to the
healthy state, due to the higher levels of pathogen growth seen in
this virtual patient.

were rescued. Only 5% (32) of patients overall remained aseptic and none remained
septic, with 100% of the septic patient population rescued (Table 4). Figure 8 shows
a successful outcome for patient #2 under the dual therapy regime. In such success-
ful interventions, initial pro-inflammatory dosing knocks out the pathogen, while
subsequent anti-inflammatory dosing reins in the inflammation. If a clinician had
full information about each patient, this would be the obvious therapy of choice,
tailored specifically for each patient. Overall, 95% (588) of the 620 patients receiv-
ing dual therapy resolved to healthy outcomes, making this approach much more
favorable than using anti-inflammatory therapy alone as in the previous results. In
addition, this strategy was superior to the standard and static therapies. However,
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Figure 7. The NMPC algorithm is applied to a virtual pa-
tient (#473) who would have survived without treatment. Anti-
inflammatory treatment alone is used and there is no patient-
model mismatch. Solid curves: Targeted therapy; Dashed curves:
Placebo. The use of anti-inflammatory therapy suppresses the im-
mune system in an attempt to minimize damage; however, this
prevents a successful response, causing the pathogen to grow such
that the immune system is unable to control it. By the time the
immune system begins to respond, it is too late, showing that the
therapy can have adverse effects.

the fact that no patient-model mismatch was included makes these results less im-
pressive, since the presence of mismatch is inevitable and potentially severe in a
real world setting.

4.3. Patient-Model mismatch. We next considered the more clinically relevant
scenario of patient-model mismatch, reflecting the reality that only highly incom-
plete observations of a patient’s inflammatory response are available. Mismatch was
introduced by using the reference parameters listed in Table 1 in the underlying pre-
dictive model, instead of patient-specific parameters. To correct for the mismatch
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Figure 8. The NMPC algorithm is applied to patient #2, who
was septic under placebo, with both pro- and anti-inflammatory
components and with no patient-model mismatch. Solid curves:
Targeted therapy; Dashed curves: Placebo. The therapy found
by the algorithm successfully changes the outcome from septic to
healthy. This figure is representative of the No Mismatch Case 2
results for all virtual patients who were septic under placebo.

introduced between patient and model, the algorithm had to rely on updates from
hourly virtual patient measurements of N∗ and CA and indirect pathogen updates
every four hours, as described in Section 3. Only dual therapy was considered under
the mismatch construct, permitting both AIDOSE and PIDOSE to take on positive
values.

The results show that under targeted therapy with the higher kpg values of 0.6
and 0.8, more than twice as many patients ( 82% and 83% vs. 40%) achieved healthy
outcomes as in the placebo case (Table 5). In addition, targeted therapy with these
higher kpg values helped more septic patients. Overall, only 10% (61) of patients
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Table 5. Patient-Model Mismatch Simulation Results and Com-
parison to Alternative Therapies. Both targeted and standard ther-
apy results are given over three different kpg values for the underly-
ing model: 0.52, 0.6, and 0.8. The number of patients out of 620 is
given in parenthesis (unless otherwise specified). In the first three
rows, this number is followed by a number that represents either
the quantity of patients coming from an unhealthy placebo cate-
gory into the healthy category due to the effects of treatment or
the number coming from the healthy placebo category into either
of the unhealthy categories.

Therapy 
Type:  

Placebo Static 
Standard Therapies: 

 kpg=0.52     kpg=0.6      kpg=0.8     

Mismatch Targeted Therapies: 

 kpg=0.52      kpg=0.6       kpg=0.8 

Percentage
Healthy: 

40% 

(251) 

46% 

(282; 36) 

60% 

(370; 119) 

67% 

(417; 191) 

52% 

(322; 159) 

60% 

(369; 118) 

82% 

(510; 261) 

83% 

(513; 278) 

Percentage
Aseptic: 

37% 

(228) 

32% 

(195; 1) 

19% 

(118; 0) 

22% 

(138; 25) 

48% 

(298; 88) 

19% 

(120; 0) 

8% 

(49; 2) 

17% 

(107; 16) 

Percentage
Septic:

23% 

(141) 

23% 

(143; 4) 

21% 

(132; 0) 

11% 

(65; 0) 

0% 

(0; 0) 

21% 

(131; 0) 

10% 

(61; 0) 

0% 

(0; 0) 

Percentage
Harmed  

(out of 251): 

n/a
2% 

(5/251) 

0% 

(0/251) 

10% 

(25/251) 

35% 

(88/251) 

0% 

(0/251) 

1% 

(2/251) 

6% 

(16/251) 

Percentage
Rescued 

(out of 369): 

n/a
10% 

(36/369) 

32% 

(119/369) 

52% 

(191/369) 

43% 

(159/369) 

32% 

(118/369) 

71% 

(261/369) 

75% 

(278/369) 

remained in the septic outcome with kpg = 0.6 and there were no septic outcomes
with kpg = 0.8. Further analysis shows that under kpg = 0.6, 55% (77/141) of septic
patients (under placebo) had a healthy outcome under targeted therapy and only 2%
(3/141) of these had an aseptic outcome instead. Correspondingly, under kpg = 0.8,
96% (135/141) of septic patients (under placebo) had a healthy outcome under
targeted therapy and only 4% (6/141) of these had an aseptic outcome instead.
With a model kpg value of 0.52, however, NMPC conferred little gain, as targeted
results were nearly identical to standard therapy results with the same kpg value
(third column, Table 5). While the targeted therapy results with kpg = 0.52 helped
relatively few patients, no patients were harmed by this treatment. Under model
kpg values of 0.6 and 0.8, however, although the overall results were better, 1% of
patients (2/251) and 6% of patients (16/251), respectively, were harmed, resolving
to the aseptic condition instead.

Since the presence of noise is inevitable in measurement data, we next incorpo-
rated 5% Gaussian noise to each hourly measurement of N∗ and CA to observe the
effects of measurement noise on the targeted therapy results discussed above. For
each of the three kpg values, six sets of simulations were run on the virtual patient
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cohort and the percentages of healthy, aseptic, and septic patients were averaged
over the six trials. The inclusion of noise necessitated a very minor modification to
the NMPC algorithm, to avoid missing cases where CA levels were consistently ele-
vated but the measurement of CA was lower due to noise. For all three kpg values,
the outcomes with this addition of noise were quite similar to simulation results
without noise.

Figure 9. Pro-inflammatory and anti-inflammatory dosing pro-
files that either redirected septic placebo outcomes to healthy (suc-
cessful) or sustained a septic outcome (unsuccessful). The doses
for successful (left panels) and unsuccessful (right panels) control
strategies are similar, with an early pro-inflammatory peak that
helps control pathogen (bottom row) and a later anti-inflammatory
peak that reins in inflammation (top row). Median (solid line)
and 2.5%-97.5% dosing range (grey band) are depicted. Successful
(left panels) and unsuccessful (right panels) control strategies both
feature late surges in pro-inflammatory components, while unsuc-
cessful control strategies feature late surges in anti-inflammatory
components as well. Successful control of aseptic patients do not
do not show such a late surge in the pro-inflammatory component
(data not shown).

4.4. Comparing intervention strategies and predicting controllability. Al-
though the targeted therapies generated by the NMPC algorithm were individual-
ized, the resulting dosing profiles nonetheless presented the same general features
(Figure 9). Not surprisingly, the control strategy first targets pathogen destruction
by enhancing pro-inflammation, then modulates anti-inflammation to mitigate ex-
cessive inflammation and restore health. This pattern of two slightly offset large
dosage peaks is preserved even when the control strategy is unsuccessful. In un-
successful cases, one also notices a later surge of both pro- and anti-inflammatory
dosing, a feature absent in successful control strategies. Moreover, in aseptic cases,
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the anti-inflammatory therapy saturates at our preset maximum level. Indeed, this
anti-inflammatory cut-off can explain the lack of controllability of several aseptic
cases, where it is plausible that allowing a more incisive anti-inflammatory therapy
could thwart excessive pro-inflammatory activity. At the intermediate kpg value,
kpg = 0.6, the cumulative dose of pro-inflammatory therapy varied by 47% across
outcomes, with higher mean values for cases yielding septic outcomes, while the
cumulative anti-inflammatory dose varied by 100%, with cases in which aseptic
death occurred in spite of treatment receiving the highest doses. The cumulative
dose of the pro-inflammatory intervention doubled (0.23 to 0.47) with increasing
kpg (0.52 to 0.8). The opposite trend held for the anti-inflammatory intervention
(1.20 to 0.90), likely reflecting the fact that elevated pro-inflammatories intrinsically
promote additional anti-inflammatory activation, as evident in equation (4), result-
ing in less need for externally applied anti-inflammatory dosing. Together, these
variations yielded a three-fold variation in the relative cumulative dosing across kpg .

To identify initial conditions and model parameters predictive of the response to
control in cases that would otherwise evolve to septic or aseptic death at kpg = 0.6,
we designed several classifiers, including logistic regression (LR), nave Bayes, a
support vector machine (linear kernel), a neurl net0work (NN), and a variety of
decision trees (DT). All of these models were run using 10-fold cross validation.
Very consistently, P0 and kpg were the strongest predictors of non-controllability
for both septic and aseptic outcomes. For lower P0 and kpg values, kdn and kcn
were also important predictors. That is, whereas P0 and kpg did not determine
a patient’s outcome in the absence of therapy (Figure 3), they nonetheless were
dominant factors in determining responsiveness to therapy within each outcome
class. We found that LR, NN and DT performed well as classifiers, with an ROC of
0.922 to 0.949, respectively, and misclassification rates of 7.9% to 8.4%. When we
omitted P0 and kpg from the best classifiers, CA0 and the parameters knn and kcn
were also discriminatory of outcome, but the ROC dropped to 0.676 for the best
LR classifier, with 20% misclassification.

5. Discussion. We have shown that incorporation of an NMPC algorithm into a
model of the acute inflammatory response to pathogenic infection allows for the
derivation of therapeutic interventions that can produce healthy resolutions for
virtual patients that would have otherwise faced septic or aseptic outcomes. If
we supply the model with complete information about each virtual patient, with
parameters selected from anywhere within a physiological range, then the NMPC
routine almost always produces a healthy outcome, as long as both pro- and anti-
inflammatory dosing are included. If we consider a more realistic scenario in which
only clinically available virtual patient information is supplied to the predictive
model, then, although the results are less perfect than in the no-mismatch case, the
NMPC algorithm again significantly enhances the likelihood of healthy outcomes
across the virtual patient population, an advantage maintained in the presence of
noisy patient measurements. The success rate of the algorithm depends on the
pathogen growth rate, kpg, used in the predictive model, with use of a high growth
rate leading to a therapy with a strong pro-inflammatory component that prevents
septic outcomes, and use of a more moderate growth rate minimizing the rate of
aseptic outcomes.

Therapeutic dosing profiles can be quite similar on trials that lead to differ-
ent outcomes. Differences in dynamic dosing are subtle indeed, while outcomes
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themselves are strikingly influenced by treatment. This finding argues strongly
for individually titrated therapy, especially given the modest effects observed from
constant, untitrated anti-inflammatory therapy and the diverse outcomes obtained
from even a standardized dynamic dosing profile.

Although clinicians practice titrated patient care in modern intensive care units
to support organ systems and combat infections, existing guidelines as to how to
treat patients with potentially lethal infections are generic, with very limited room
for individualized titration [10]. In particular, targeted immunomodulation remains
an elusive goal [7, 6]. Even when appropriate drugs are available, there is no uni-
fying concept as to how these should be used and combined to improve patient
outcome. Model-based immunomodulation of complex inflammatory diseases thus
represents an extraordinary opportunity for very significant advances in the care of
the critically ill. Indeed, the idea of using a control-based algorithm to generate ap-
propriate therapeutic regimens makes particular sense in light of the fact that the
acute inflammatory response features multiple interconnected nonlinear feedback
loops that would vastly complicate the design of successful therapies under clinical
conditions.

In this work, we implement control algorithms in a four-equation reduced ordi-
nary differential equation model for the acute inflammatory response [20]. Reynolds
et al. briefly explored the possibility of modulating the outcome of a simulated infec-
tion, in the context of this model, by altering the anti-inflammatory mediator levels
at a particular time point. It was found that most of the alterations perturbed the
system from an otherwise healthy resolution to an unfavorable state. The NMPC
algorithm that we implemented yields a much more refined approach to the design of
therapeutic strategies. In particular, our results illustrate the need for multimodal
therapeutic strategies to successfully modulate a complex inflammatory response.

Our approach has several limitations. Our representation of the inflammatory
response is extremely simplified and our lumped model variables and parameters
cannot be mapped directly to quantities accessible in clinical or laboratory set-
tings. It would be advantageous to incorporate the algorithm into a more detailed
model that can give quantitative predictions about specific mediators of the acute
inflammatory response (e.g. [8]). In addition, the pharmacokinetics of existing
or potential therapies could be incorporated to generate specific predictions with
respect to particular dosing profiles. The customizations of our NMPC algorithm
and features of the controller that we used were based on pragmatic clinical consid-
erations, yet some decisions were admittedly arbitrary. For example, although we
limited the intensity of anti-inflammatory therapy to cap the risk of secondary in-
fections associated with states of elevated anti-inflammation, it appears clear that
allowing more intensive anti-inflammatory therapy would rescue more cases oth-
erwise destined for aseptic death. Ideally, such limitations on therapy would be
implemented much more precisely, based on clinical or experimental data. Another
issue for future consideration is the construction of an optimal objective function,
which is nontrivial, even in this very simplified context. We experimented with a
wide combination of weights and penalty terms, arriving at our objective function
empirically. We believe that, for clinical applications, biological input will be es-
sential in constructing suitable objective functions, and that there could be a good
argument made for the inclusion of time-varying weights in the objective functions
used.
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The translation of biomarker-targeted methods, such as we have implemented in
this work, to clinical practice will require empirically validated predictions. In a
realistic experimental protocol, a mathematical model that forecasts several immune
mediators fairly well from a mouse/rat model of endotoxin challenge would be used
as the underlying model, predicting the immune response of each animal. A small
set of initial observations of individual animals subjected to an infectious challenge
would be taken to generate an ensemble of candidate models for each subject. The
NMPC algorithm, applied to the predictive ensemble of models, would suggest a
therapeutic intervention that would be implemented in each animal, after which
measurements of various analytes would be taken to update the ensemble (adaptive
control). After repeated iterations of this procedure, comparisons of outcomes in
animals receiving such targeted therapy would be made to those observed in animals
either receiving a standardized therapy or no therapy at all.

In conclusion, based on the results presented in this paper and other biomedical
applications of feedback control, we maintain that the utilization of feedback control
methods to assist in treating the critically ill is a strategy worth further exploration.
In practice, clinicians currently implement a sort of dosing strategy algorithm, in
which they iteratively determine the next treatment step based on all of the infor-
mation available to them. To utilize their knowledge and expertise most effectively,
it is logical to propose the incorporation of model-based control algorithms as a tool
to guide them in this process of selecting patient-specific treatment strategies.
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