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Optimal Intrinsic Dynamics for Bursting in a Three-Cell Network∗
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Abstract. Previous numerical and analytical work has shown that synaptic coupling can allow a network of
model neurons to synchronize despite heterogeneity in intrinsic parameter values. In particular,
synchronous bursting oscillations can arise in a network with excitatory synaptic coupling, even in
the absence of intrinsically bursting neurons. In this work, we explore how the intrinsic dynamics
of neurons within a reduced three-cell network influence its ability to exhibit synchronous bursting
and the frequency range over which such activity can occur. We establish necessary and sufficient
conditions for the existence of synchronous bursting solutions and perform related numerical exper-
iments in three-cell networks that include a quiescent cell, a tonically active cell, and a third added
cell. Our results show that, in most cases, the addition of a quiescent cell is optimal for synchronous
network bursting, in a variety of ways, and that intrinsically bursting cells can be detrimental to
synchronous bursting, and we explain the mechanisms underlying these effects. These findings may
help explain how robust synchronous oscillations arise in neuronal central pattern generators, such
as the mammalian inspiratory network, despite the presence of significant cellular heterogeneity.
They also support the idea that intrinsic burst capabilities of individual cells need not be central to
these networks’ rhythms.
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1. Introduction. The pre-Bötzinger complex (preBötC) of the mammalian brainstem con-
tains a collection of coupled neurons exhibiting robust, network-wide bursts of action potential
firing under a considerable range of conditions [30]. These bursts may be responsible for con-
trolling inspiratory respiration as well as gasping [19, 20, 29]. The preBötC is located within a
ring of other networks, many of which provide inhibition to the preBötC. During phenomena
like hypoxia, this inhibition may be released as the activation in these networks fades out,
and so it falls on the preBötC to drive the respiratory rhythm [29, 25]. Thus, a significant
component of understanding the respiratory cycle involves understanding the intrinsic dynam-
ics of the preBötC. Experimental observations suggest that most cells in the preBötC, when
considered in isolation, either are tonically active (firing spikes repeatedly) or are quiescent
(spiking rarely if at all); however, there is also a significant population of cells that engage in
intrinsic bursting behavior when they are decoupled from the rest of the network [8]. This
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work attempts to answer the question of what the role of these neurons that burst in isolation
might be in the control of preBötC dynamics.

In [3, 4], Butera, Rinzel, and Smith developed an ODE model of a class of neurons in the
preBötC characterized by the presence of a persistent sodium current. Working with the model
from [3, 4], Rubin provided conditions for the emergence of synchronous bursting in a pair of
burst-capable cells, one tuned to be intrinsically quiescent and the other to be intrinsically
tonic, coupled with synaptic excitation [27], thereby proving that burst-capable neurons need
not be tuned to be intrinsically bursting in the absence of inputs in order for them to generate
network bursting when coupled (see also [23]). Purvis et al. used simulations of a network
including a mixture of intrinsically burst-capable and burst-incapable cells to show that the
presence of significant numbers of burst-capable cells enhances the parameter range over which
synchronous bursts occur and the frequency range that bursts achieve under modulation of
a control parameter [21]. Together, these findings highlight the importance of burst-capable
cells for synchronous bursting within the preBötC but also lead us to ask, given that cells that
are tuned to burst in isolation are not necessary for network-wide synchronous bursting, how
do they contribute to such activity patterns?

Given the heterogeneity of dynamics observed in isolated preBötC cells (see also [22]) and
the evidence for the involvement of burst-capable cells in network activity, we explore the
role of intrinsically bursting cells in the preBötC by considering heterogenous networks, each
containing three burst-capable cells. Such networks are large enough to include representatives
of all three types of intrinsic dynamics (quiescence, bursting, and tonic spiking), and hence for
the role of intrinsically bursting cells in a heterogeneous network to become apparent, but are
also small enough to allow for the analysis of the dynamic effects of the presence of intrinsic
bursters.

Including this introduction and the appendices, this work is partitioned into eight sections.
Section 2 introduces the model we will use for our analysis and provides a heuristic introduction
to the theory of relaxation oscillators, including the effects of synaptic coupling. Section
3 provides a set of necessary conditions for periodic, synchronous bursting oscillations to
occur within our three-cell network, as well as a separate set of sufficient conditions for such
a solution to exist in the network. Although these conditions are presented for a three-
cell network, the interested reader may refer to Appendix B, which provides a guideline for
extending these conditions to an arbitrarily sized network. Section 4 provides results and
analysis of two numerical experiments. The first experiment explores which cells promote
synchronous oscillations if added to a network already containing an intrinsically quiescent
and an intrinsically tonic cell. The second simulation addresses the issue of frequency control
in the three-cell network. Finally, we summarize our work and suggest directions for future
research in the discussion contained in section 5.

2. Introductory theory.

2.1. Models. Throughout this work, we will focus on a reduced version of the model
developed by Butera and colleagues [3, 4]. The original model for an individual cell in isolation
is

v′ = (−INaP (h, v) − INa(n, v)− IK(n, v)− IL(v) − Itonic−e(v) + Iapp)/Cm,(1)
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n′ = (n∞(v)− n)/τn(v),(2)

h′ = ε(h∞(v)− h)/τh(v),(3)

s′ = αs(1− s)s∞(v) − s/τs,(4)

with INaP (h, v) = gNaPmp,∞(v)h(v−ENa), INa(n, v) = gNam
3∞(v)(1−n)(v−ENa), IK(n, v) =

gKn
4(v − EK), IL(v) = gL(v − EL), and Itonic−e = gton(v − Esyn−e). Equation (4) relates to

the strength of synaptic signals generated by the cell. The variable s does not feed back to
(1)–(3) in the isolated cell case but will play an important role in coupled networks later in
the paper. Values for the parameters and the definitions of the other functions appearing in
this model can be found in Appendix A. Typically, the small parameter ε is absorbed into
the function τh(v); however, for clarity of analysis, we have factored it out.

Neurons modeled by these equations are classified as quiescent, bursting, or tonic, depend-
ing on their activity patterns. After a transient that depends on the initial conditions of the
system, a quiescent neuron will not spike, and a tonic neuron will repeatedly fire spikes at a
regular frequency. A bursting neuron will switch between active and silent phases. During
the active phase a bursting neuron emits spikes, while during the silent phase it does not.
Thus, a quiescent neuron can be thought of as being stuck in the silent phase, while a tonic
neuron is stuck in the active phase. Depending on the relative magnitudes of its ionic con-
ductances, each quiescent or tonic cell may be burst-capable, meaning that it can burst for
some level of gton, or not; for example, a large gL relative to gNaP , or vice versa, can eliminate
burst-capability.

In the given model, when the neuron is in the active phase, the currents IK and INa

are what cause the rapid fluctuations in the v variable that we interpret as spikes. In the
silent phase, these currents do not contribute much to the v dynamics. Removing these
terms from the v equation also allows us to remove (2) to obtain a reduced model that is
more amenable to analysis. This reduced model has been used previously for the analysis
of synchronous oscillations in a heterogeneous network combining intrinsically bursting and
intrinsically quiescent cells, as well as for a coupled intrinsically quiescent and intrinsically
tonic cell pair [26, 27]. The model takes the form

v′ = (−INaP (h, v) − IL(v)− Itonic−e(v) + Iapp)/Cm,(5)

h′ = ε(h∞(v) − h)/τh(v),(6)

s′ = αs(1− s)s∞(v)− s/τs,(7)

where INaP (h, v) and IL(v) are as given above.
The s variable in (7) is slaved to v, and it does not appear in (5) and (6), so it is useful

to do analysis on the vh phase plane. A nice feature of this reduced model is that if we make
biologically reasonable assumptions on the parameters, then (5) and (7) operate on a fast
time scale, while (6) evolves on a slow time scale, due to the small size of ε. Further, within
a broad, biologically relevant parameter range, the v-nullcline (the algebraic equation v′ = 0)
can be written as a twice differentiable function F (v) with a cubic shape, while the h-nullcline
is a sigmoidal curve that is monotone decreasing as a function of v. We follow the work of
Rubin in [27] to perform analysis on this model. Insights based on the shapes and positions of
the nullclines often suffice to analyze the model. When F (v) is cubic, we call its branches the
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Figure 1. Example nullclines for three different instances of the reduced model. For ε sufficiently small,
the dark blue nullcline corresponds to a quiescent cell, the green nullcline represents a bursting cell, and the
black nullcline represents a tonic cell. All three cells in this case share the same h-nullcline, which is light blue.
All parameters are as in Table 3, except that for the quiescent cell we have gNaP = 2, gL = 2.5, for the bursting
cell we have gNaP = 2, gL = 2, and for the tonic cell we have gNaP = 3.5, gL = 1.5.

left, middle, and right branches, respectively. The left branch satisfies F ′(v) > 0, F ′′(v) < 0;
the middle branch has F ′(v) < 0; and the right branch has F ′(v) > 0, F ′′(v) > 0. Where
the left branch meets the middle branch there is a local maximum of the nullcline, which we
will call the left knee. Similarly, where the middle branch meets the right branch there is a
local minimum of the nullcline, which we will call the right knee. See Figure 1 for an example
chosen to illustrate these definitions. If we make a further assumption that the nullclines
intersect exactly once, then it is a straightforward calculation to determine the stability of the
resulting critical point.

2.2. Review of the dynamics of a relaxation oscillator. In this subsection we simply
provide a brief, heuristic discussion of relaxation oscillator dynamics relevant for our analysis
of system (5)–(6). Analysis of the dynamics of relaxation oscillators in arbitrary dimensions
can be done using the tools of geometric singular perturbation theory [9, 17, 14].

For 0 < ε� 1 and v ∈ R, h ∈ R consider a system of the form

v′ = f(v, h),(8)

h′ = εg(v, h).(9)

Suppose further that the v-nullcline can be written as a cubic-shaped function h = F (v)
with limv→∞ F (v) = ∞. Allow the h-nullcline to be a monotonically decreasing function of
v. We will again use the terminology from section 2.1 to describe the knees and branches
of the v-nullcline; see Figure 1. Figure 1 contains three different v-nullclines, one where the
intersection with the h-nullcline is on the left branch, another where the intersection is on
the middle branch, and a last one where the intersection falls on the right branch. If the
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h-nullcline intersects the v-nullcline near one of the knees, we risk the existence of canards,
which are outside of the scope of this work. Let (vp, hp) be the intersection point of the v
and h-nullclines, and let (vLK , hLK), (vRK , hRK) denote the left and right knees, respectively.
For a given ε > 0 there is a δ = δ(ε) > 0 such that if min{|vp − vLK |, |vp − vRK |} > δ, then
canards will not exist. For the remainder of the work, we assume that this inequality holds.

It is useful at this point to define a way to measure the distance of a point from the
v-nullcline. For any fixed h there are between one and three values of v such that F (v) = h.
We will concern ourselves only with those v that correspond to the left and right branches
of the v-nullcline. Allow vLB(h) to be the v such that F (vLB) = h and (vLB , h) is on the
left branch of the v-nullcline, and if there is no such v, then set vLB(h) = ∞. Similarly,
allow vRB(h) to be the value of v such that F (vRB) = h and (vRB , h) is on the right branch
of the v-nullcline, and set vRB(h) = ∞ if no such v exists. Let Γv(t) be the v-coordinate
at time t of a trajectory Γ(t) of the ODE. Similarly, allow Γh(t) to be the h-coordinate at
time t for the trajectory Γ(t). Now we can define the distance from Γ(t) to the v-nullcline as
D(Γ(t)) = min{|Γv(t)− vLB(Γh(t))|, |Γv(t)− vRB(Γh(t))|}.

The intersection of the v and h-nullclines is a critical point of system (8)–(9). Suppose
now that v′ < 0 below the v-nullcline and v′ > 0 above it. Similarly, assume that h′ > 0 below
the h-nullcline and h′ < 0 above it. These assumptions, together with the critical point being
bounded away from the knees, imply that critical points on the middle branch of the v-nullcline
are unstable, while critical points on the left and right branches of the v-nullcline are stable. If
for some time t, D(Γ(t)) is large relative to ε, then |v′| � 0 and comparatively h′ ≈ 0. So we
consider that the dynamics hold h fixed, and Γ(t) quickly approaches a neighborhood of the
v-nullcline for this fixed h. Once D(Γ(t)) is small enough, then |v′| ≈ 0, and the h dynamics
become relevant.

First, consider the case that the critical point lies on the middle branch of the v-nullcline.
Suppose we start with Γ(0) on the left branch of the v-nullcline. Since the critical point is on
the middle branch of the v-nullcline, Γh(0) is below the h-nullcline, and so Γ′

h(0) > 0. The
ε in (9) implies that the h dynamics are slow, so we say that the trajectory oozes up toward
the h-nullcline, remaining close to the v-nullcline. Eventually Γh(t) > hLK . In this situation,
we find that D(Γ(t)) is large, because for Γh(t) there is only one corresponding point on the
v-nullcline, and it is on the right branch. So suddenly Γ′

v(t) � 0, and the trajectory quickly
jumps over to the right branch of the v-nullcline, with Γh(t) barely changing. Now Γh(t) is
above the h-nullcline, so Γ(t) begins to ooze down toward the right knee. Since the h-nullcline
is below the right knee, Γ(t) will eventually drift below the right knee, and as before, it is
suddenly the case that D(Γ(t)) � 0. So Γ(t) will quickly fall down to the left branch of
the v-nullcline, completing one cycle. This alternation of prolonged phases of slow change
interrupted by fast transitions between phases is the hallmark of relaxation oscillations. In
the two-dimensional case, the Poincaré–Bendixon theorem implies the existence of periodic
relaxation oscillations in this situation.

Suppose instead that the critical point is on the left branch of the v-nullcline. If Γ(t) is
on the right branch of the v-nullcline, it will ooze down until it drifts below the right knee, at
which point it falls down to the left branch of the v-nullcline, as before. However, since the
critical point on the left branch of the v-nullcline is asymptotically stable, the trajectory will
not be able to get above the left knee. So instead of jumping back to the right branch of the
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v-nullcline, the trajectory simply approaches the critical point. Similarly, if the critical point
is on the right branch of the v-nullcline, the trajectory will eventually converge to the critical
point.

The v-nullcline for (1) or (5) may or may not be cubic, depending on parameters such as
gL and gNaP . In either case, in the full model (1)–(4), spiking activity evolves due to the IK
and INa currents, and spiking occurs for v only above some threshold. This spiking behavior
is encoded in the reduced model by the variable s, representing synaptic output. We see that
(7) involves s∞(v), which is a steep sigmoidal function (Appendix A) since σs is small. s∞(v)
takes the value 1

2 at v = θs, which we call the synaptic threshold. For values of v arising during
spiking, corresponding to the right branch of the v-nullcline when it is cubic, s∞(v) ≈ 1, and
the cell is producing synaptic output as would be generated with spiking in the full model.
On the other hand, for values of v arising when the cell is quiescent, corresponding to the
left branch of the v-nullcline when it is cubic, s∞(v) ≈ 0, representing an absence of spiking.
Should the v-nullcline be cubic with a critical point on its middle branch, the cell will oscillate
between phases of low s and phases of s ≈ smax, corresponding to intrinsic bursting. We
will use the location of the critical point to classify our modeled cells as intrinsically bursting
(cubic v-nullcline with critical point on its middle branch), quiescent (cubic v-nullcline with
critical point on its left branch or monotone v-nullcline with critical point below θs), or tonic
(cubic v-nullcline with critical point on its right branch or monotone v-nullcline with critical
point above θs).

2.3. Heterogeneity in gNaP and gL. The preBötC is a heterogeneous network of cells
that are quiescent, tonically active, or bursting in isolation [8]. Following [21], in order to
reflect this heterogeneity in our work, we consider heterogeneity in two parameters: the con-
ductance gNaP of the persistent sodium current INaP and the conductance gL of the leak
current IL. Increasing gL has the effect of raising the entire v-nullcline, in particular, the left
knee. This moves the intersection of the v- and h-nullclines to lower v values. Numerically, we
observe that increasing gNaP has the effect of moving the intersection of the v- and h-nullclines
to higher v values. Below, in Figure 2, we show the partitioning of gNaP gL space into regions
where the resultant cell is quiescent (blue), bursting (green), or tonically active (black). For
each gNaP gL pair, we find the branch on which the h-nullcline intersects the v-nullcline if the
nullcline is cubic on 0 ≤ h ≤ 1. If the intersection is on the left, middle, or right branch, the
cell is declared quiescent, bursting, or tonic, and is colored blue, green, or black, respectively.
The coloring in Figure 2 does not take into account those small neighborhoods around the
knee where the intersection of the nullclines may result in a canard explosion, or where the
Andronov–Hopf bifurcation does not occur precisely at the knee, as these cases only occur on
very small parameter ranges, due to the disparity in time scales of v and h, and thus are not
significant for our results. If the v-nullcline is not cubic (e.g., large gNaP relative to gL) or
if it is only single branched for 0 ≤ h ≤ 1 (e.g., large gL relative to gNaP ), then we classify
the cell as quiescent or tonic depending on the position of the critical point relative to the
synaptic threshold, θs. Further detail on the effects of varying gNaP and gL can be found in
section 4.3.

2.4. Effects of synaptic coupling. In a network of coupled cells, each individual cell in
the network will have its own v, h, and s variables. The rest of this work concerns a network
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Figure 2. Partitioning of gNaP gL space into regions where the cells are quiescent (blue), bursting (greeen),
or tonic (black).

of three cells, so for i = 1, 2, 3, we adopt the vector notation celli = [vi, hi, si], where

v′i =

⎛
⎝−INaP,i(hi, vi)− IL,i(vi)− Itonic−e(vi) + Iapp −

∑
j �=i

gijsj(vi − Esyn−e)

⎞
⎠ /Cm,(10)

h′i = ε(h∞(vi)− hi)/τh(vi),(11)

s′i = αs(1− si)s∞(vi)− si/τs,(12)

with INaP,i(vi, hi) = gNaP,imp,∞(vi)hi(vi − ENa), IL,i(vi) = gL,i(vi − EL), and Itonic−e(vi) =
gton(vi − Esyn−e). Note that (10) excludes self-coupling, yet self-coupling could easily be
included in the analysis if desired (see Appendix B). We henceforth assume that the v-
nullcline for each neuron is cubic, with associated active and silent phases corresponding to
its right and left branches, respectively, since this assumption is violated only on the edges of
the parameter range illustrated in Figure 2, away from where the important dynamic effects
occur.

In section 3.2 we will prove that when sj increases, the knees of the coupled cells have lower
hi coordinates; see Figure 3. Here, we will use this result, without proof, to briefly illustrate
the mechanism by which a network of these modeled neurons may produce synchronous bursts.
We continue to assume that ε is small so that the h dynamics are slow relative to the v and s
dynamics; see section 2.2. Thus, in a network architecture where cell1 = [v1, h1, s1] is coupled
to cell2 = [v2, h2, s2] and both cells are initially in the silent phase, if the trajectory for cell1
transitions to the active phase, then there is an instantaneous change in the v2-nullcline. It
may happen that the left knee for cell2 has dropped below the current value of h2, in which
case cell2 immediately transitions to the active phase. A similar effect may happen when
one cell transitions to the silent phase. Such fast threshold modulation [31] can yield rapid
convergence to synchronous oscillations by allowing the trailing cell to catch up to the cell
ahead of it, although order switching may complicate the dynamics. A great amount of detail
on this mechanism is provided in [27, 2, 31, 26].

2.5. Illustration of three coupled cells. In this section, we illustrate how the dynamics
in which we are interested, synchronous bursting, can arise in an all-to-all coupled network of
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Figure 3. Various levels of synaptic input to sample instances of the reduced model. The blue, green, and
black nullclines represent, respectively, a quiescent, a bursting, and a tonic cell under various levels of synaptic
input. The key feature is that synaptic input from another cell lowers both the left and the right knee of the
receiving cell. In this way, a quiescent cell can become bursting, and a bursting cell can become tonic.

three cells, modeled by (10)–(12), with heterogeneity introduced through gNaP and gL, such
that one cell is intrinsically quiescent, one is intrinsically bursting, and one is intrinsically
tonic. We define a solution as a synchronous bursting oscillation if all three cells transition
repeatedly, via fast excursions controlled by their v dynamics, between the silent and active
phases, and, after one cell undergoes a transition from one phase to another, all the other cells
join it in its new phase before any cell undergoes a transition out of that phase. We will study
this system by projecting the solution onto three separate phase planes, (v1, h1), (v2, h2), and
(v3, h3), while keeping in mind that the position of vj in the (vj, hj) phase plane directly
affects sj and so changes the shapes of the v-nullclines in the other two phase planes. Suppose
that in the absence of coupling, cell1 is quiescent, cell2 is bursting, and cell3 is tonic. We will
use the shorthand Q, B, and T , for cell1, cell2, and cell3, respectively. We start with all three
cells in the silent phase, and view the evolution of the trajectory as a series of snapshots, laid
out in Figures 4–15. Though the vj-nullclines actually change continuously as a function of
vi for i �= j, we assume that the change is fast enough to be considered instantaneous relative
to the slow h dynamics.

Figure 4. Starting with all cells silent, T is the first to reach its left knee and enter the active phase. In
this figure and for Figures 5–15, the dark blue, green, and black curves represent the v-nullclines for the Q, B,
and T cells, respectively. The light blue curve is the h-nullcline. Red represents the trajectory of the system.
One black arrow indicates slow evolution, while two black arrows indicates a fast evolution.
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Figure 5. Now that T is in the active phase, it sends synaptic input to the other two cells, and their
v-nullclines change abruptly.

Figure 6. Due to the synaptic input from T, B is suddenly above its left knee, so it immediately enters the
active phase. Meanwhile, Q quickly approaches its v-nullcline.

Figure 7. Now that B is in the active phase, it sends synaptic input to both Q and T, and their v-nullclines
are updated accordingly.

Figure 8. Q is now above its left knee, and so it enters the active phase.
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Figure 9. Now that Q is in the active phase, it sends synaptic signals to B and T, so their v-nullclines are
updated.

Figure 10. The system evolves until one of the cells reaches its right knee. In this case, the Q cell must be
the first to do so, because the other two cells become tonic under the current input levels.

Figure 11. Q has returned to the silent phase, so the v-nullclines are updated for cells B and T.

Figure 12. With the synaptic input from Q removed, B is below its right knee and enters the silent phase.
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Figure 13. Now that B is in the silent phase, synaptic inputs to Q and T are removed, and their v-nullclines
are updated.

Figure 14. Finally T is below its right knee, so it falls down to the silent phase.

Figure 15. All cells have returned to the silent phase, so all synaptic inputs are removed. This completes
one cycle of the oscillation.

2.6. Remarks on synaptic adaptation. The cartoon presented in Figures 4–15 omits one
feature of (12). Typically, s∞(v) is a sigmoidal function. However, if the sigmoid is not steep,
then there is a significant range of values of v where the synaptic output of the cell is reduced
from its maximal value but remains nonzero. This effect can represent synaptic adaptation,
if the relevant range of v-values overlaps the right branch of the v-nullcline (i.e., the active
phase). That is, v effectively evolves on the slow time scale for a cell on the right branch, and
a slow change in v yields a slow change in s and hence a gradual change in the v-nullclines
of the other cells. This may have far-reaching ramifications; for instance, if the v-nullcline of
a quiescent cell does not change fast enough, then the cell may not be able to transition to
the active phase. Further consideration of the effects of synaptic adaptation can be found in
[32, 7].
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3. Synchronous oscillations in three-cell networks.

3.1. Necessary conditions for synchronous bursting. Our definition of synchronous does
not require cells to transition between the active and silent phases at precisely the same time.
Instead, we call a solution synchronous if the following conditions are always met after some
transient time. When celli transitions to the active phase, every other cellj , for j �= i, must
have been in the active phase before celli returns to the silent phase. Similarly, after the
return to the silent phase, celli does not transition to the active phase until all other cells
have visited the silent phase. For an n-cell network, these conditions can be formulated in
terms of the time it takes each cell to reach the left or right knee, as appropriate.

We will consider iterations on two sets of integers, one set containing the indices of cells in
the active phase, the other set containing the indices of cells in the silent phase. An iteration
involves moving an index between the two sets. We let i ∈ Sm ⊆ {1, 2, . . . , n} if celli is in the
silent phase at iteration m. Similarly, i ∈ Am ⊆ {1, 2, . . . , n} if celli is in the active phase at
iteration m. Let TLK(i,m) be the time it takes celli to reach the left knee from its current
position, which depends heavily on the current state of the network, implicitly encoded in
the iteration number m. Similarly define TRK(i,m) as the time it takes celli to reach the
right knee from its current position in iteration m. There are two network-wide stages to
consider: the first is “cells are transitioning from the silent to the active phase,” and the other
is “cells are transitioning from the active to the silent phase.” Assume that S0 = {1, 2, . . . , n}
and A0 = ∅. Let k be the index such that k = argmini∈{1,2,...,n}TLK(i, 0). Then we write
S1 = S0\k and A1 = A0 ∪ k. This completes one iteration on the sets. We then consider the
system again after time TLK(k, 0).

With this notation, the necessary condition that no cell in the active phase may return
to the silent phase until there are no cells in the silent phase during the mth iteration can be
phrased as

inf
i∈Sm

{TLK(i,m)} < inf
j∈Am

{TRK(j,m)}.(13)

That is, for fixed m, as long as (13) holds, the first cell to jump up can be moved from Sm
to Am+1 to complete the mth iteration. If (13) holds for m = 0, 1, . . . , n − 1, then all cells
enter the active phase before any cell leaves it. Then, after the first cell returns to the silent
phase, the condition is reversed for the “cells returning to the silent phase” network stage.
We must have infj∈Am{TRK(j,m)} < inf i∈Sm{TLK(i,m)} in this case, until all cells are back
to the silent phase. In order for a network to maintain synchronous bursting, these conditions
must be satisfied for all m ∈ N.

Remark. For fast-slow networks of arbitrary size, classification of cells into finer bins,
depending on slow variable values in the silent phase, can be used to develop a Markov chain
representation of network dynamics [24]. For the study of synchronous bursting solutions as
we have defined them, two bins suffice.

3.2. Sufficient conditions for synchronous bursting. In this section we provide sufficient
conditions for the existence of synchronous bursting oscillations in a three-cell network of
cells with all-to-all coupling modeled by (10)–(12). The results in this section generalize to
networks with an arbitrary number of cells with all-to-all coupling. The technique used can
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also be generalized to other architectures; see Appendix B for details. Also for convenience,
we assume that one cell in this network is intrinsically quiescent and another cell is tonic in
the absence of input. We will place some restrictions on the third cell, again for notational
convenience. These restrictions will arise in the context of the proof. The proof that the
provided conditions are sufficient for synchronous bursting works in the ε = 0 limit, though
with sufficient effort it may be extended to 0 < ε � 1; see [17]. We also assume without
loss of generality that gton = 0, because the arguments below are based on the shapes of the
nullclines and the times of flight, which are qualitatively independent of gton.

Suppose that j ∈ Z3. Let j = 0 correspond to the intrinsically quiescent cell, which we
shall also call Q for short. Let j = 2 correspond to the intrinsically tonic cell, also called T
below. Further, j = 1 will denote the other cell, which we will abbreviate by A for “added.”
The architecture is such that cell j receives synaptic input from cells j − 1 and j + 1.

In the ε = 0 limit, the dynamics for vj and sj are reduced to algebraic equations, and the
hj dynamics become relevant. For a fixed sj−1 and sj+1 and a given hj , there are up to three
corresponding values of vj , one for each branch of the vj-nullcline. However, if we restrict our
view to each branch individually, the monotonic nature of these branches permits us to write
vj = vXj (hj , sj−1, sj+1) for X ∈ {L,M,R}. Further, since sj can be considered as a function

of vj , we can write sj = sXj (hj , sj−1, sj+1) for X ∈ {L,M,R}. Since there are three cells and
each could be on either the left or right branch of the v-nullcline, there are many possible slow
subsystems. Due to the algebraic dependencies detailed above, to describe the dynamics for
−→
h = [h0, h1, h2], we use the notation

−̇→
h = GXY Z(h) if v0, v1, v2 are on the X, Y , Z branches

of their respective v-nullclines, for X,Y,Z ∈ {L,M,R}.
For each cell j we label the h coordinate of the left knee, right knee, and fixed point

by LK(sj−1, sj+1; j), RK(sj−1, sj+1; j), FP (sj−1, sj+1; j), respectively. Below, we justify this
functional notation by the implicit function theorem. We will carry through the analysis for
(10)–(12), though it is clear that the techniques apply to any model with similar structure.

Lemma 3.1.The h-coordinates of the left and right knees and the fixed point of cellj , modeled
by (10)–(12), are monotonically decreasing functions of the synaptic input variables sj−1 and
sj+1.

Proof. Note that vj obeys the equation

v̇j =
(− gNaPmP,∞(vj)(vj − ENa)hj − gL(vj − EL)(14)

− gj,j−1sj−1(vj − Esyn−e)− gj,j+1sj+1(vj − Esyn−e)
)
/Cm.

We solve v̇j = 0 for hj to find F (vj , sj−1, sj+1), the v-nullcline:

(15)

hj = F (vj , sj−1, sj+1) :=
−gj,j−1sj−1(vj − Esyn−e)− gj,j+1sj+1(vj − Esyn−e)− gL(vj − EL)

gNaPmp,∞(vj)(vj − ENa)
.

For fixed synaptic input variables s∗j−1, s
∗
j+1, the v-coordinate of the right knee of cell j,
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denoted by vRK
j , satisfies

∂F

∂vj

∣∣∣∣
(vRK

j ,s∗j−1,s
∗
j+1)

=: Fvj (v
RK
j , s∗j−1, s

∗
j+1) = 0,

∂2F

∂v2j

∣∣∣∣∣
(vRK

j ,s∗j−1,s
∗
j+1)

=: Fvjvj (v
RK
j , s∗j−1, s

∗
j+1) > 0.

The implicit function theorem applied to Fvj (v
RK
j , s∗j−1, s

∗
j+1) asserts the existence of a unique

aj(sj−1) and a neighborhood N1 around s
∗
j−1 such that for all sj−1 ∈ N1 we have Fvj (aj(sj−1),

sj−1, s
∗
j+1) = 0, and so

RK(sj−1, s
∗
j+1; j) = F (aj(sj−1), sj−1, s

∗
j+1),

∂RK

∂sj−1

∣∣∣∣
(sj−1,sj+1)

=: RKsj−1(sj−1, s
∗
j+1; j) = Fvj (aj(sj−1), sj−1, s

∗
j+1)a

′
j(sj−1) + Fsj−1(aj(sj−1), sj−1, s

∗
j+1),

RKsj−1(sj−1, s
∗
j+1; j) =

−gj,j−1(aj(sj−1)− Esyn−e)

gNaPmp,∞(aj(sj−1))(aj(sj−1)− ENa)
.

Since aj(sj−1) − Esyn−e < 0, aj(sj−1) − ENa < 0, and all other terms are positive, we
conclude that

RKsj−1(sj−1, s
∗
j+1; j) < 0.

A similar argument grants that there is a unique function bj(sj+1) and a neighborhood N2 of
s∗j+1 such that for all sj+1 ∈ N2 we may conclude

RKsj+1(sj−1, sj+1; j) < 0.

Similar arguments also yield that the left knee is a monotonically decreasing function of both
synaptic inputs. Also, solving ḣj = 0 for hj yields hj = H(vj), the hj-nullcline. The inter-
section of the v- and h-nullclines satisfies F (vj , sj−1, sj+1)−H(vj) = 0. For vj corresponding
to the left and right branches of the vj-nullcline, by assumption Fvj (sj−1, sj+1) > 0, and
also by assumption Hvj(vj) < 0, so that the implicit function theorem again applies, yielding
a function ψ(sj−1) or φ(sj+1), each describing the change of the v coordinate of the fixed
point under variation of sj−1 or sj+1, respectively. Straightforward differentiation yields that
ψ′(sj−1) > 0 and φ′(sj+1) > 0, and combined again with the fact that the hj-nullcline is a
monotonically decreasing function of vj, we see that ∂FP

∂sj−1
|(vj ,sj−1,sj+1) < 0. Similarly, the h

coordinate of the fixed point is a monotonically decreasing function of sj+1.
This result justifies the functional notation in the definitions of DQ,DA,DT , IQ, IA, IT and

other terms in Table 1.
The proof we provide for the existence of a periodic orbit corresponding to synchronous

bursting relies on the Brouwer fixed point theorem, for which there is a constructive proof.
Theorem 3.2. Let D1,D2,D3 be closed and bounded intervals in R

3. Consider a set D =
D1×D2×D3 and a continuous function B : D → D. There is an x∗ ∈ D such that B(x∗) = x∗.

Proof. For the proof of this result, see [16].
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Table 1

Symbol Mathematical definition

DQ [RK(smax, smax;Q),RK(0, 0;Q)]
DA [RK(smax, smax;A),RK(0, 0;A)]
DT [RK(smax, smax; T ),RK(0, 0; T )]
Ω DQ ×DA ×DT

UQ [LK(smax, smax;Q), FP (0, 0;Q))] valid by (A3)

IQ [RK(smax, smax;Q), FP (0, 0;Q))
IA (FP (smax, smax;A), LK(0, 0;A)] valid by (A1)
IT (FP (smax, smax; T ), LK(0, 0; T )]
W IQ × IA × IT

τ0(hQ, hA, hT ) time of flight from (hQ, hA, hT ) ∈ Ω to hT = LK(0, 0;T ) under the flow
−̇→
h = GLLL(

−→
h )

τ1/3(hQ, hA, hT ) time of flight from (hQ, hA, hT ) ∈ W to hA = LK(0, sT ;A) under the flow GLLR(
−→
h ); see Figure 16

τ∗
1/3 time of flight from hQ ∈ IQ, hT ∈ IT , hA = RK(0, 0;A) to hA = LK(0, 0, A) under the flow

−̇→
h = GLLL(

−→
h ), with the additional condition that we hold sQ = sT = 0 constant; see Figure 17

τ2/3(hQ, hA, hT ) time of flight from hQ ∈ IQ, hT ∈ (FP (0, 0;T ), LK(0, 0;T )], hA = LK(0, sT ;A)

to hQ = LK(sT , sA;Q) under the flow
−̇→
h = GLRR(

−→
h ); see Figure 18

ṽA vA corresponding to hA = LK(0, 0;A) and sT = smax

ṽQ vQ corresponding to hQ = LK(smax, smax;Q) and sT = sA = smax

s̃T sT corresponding to hT = FP (0, 0; T ), with vT = vRB(hT )
s̃A sA corresponding to hA = RK(s̃T , 0;A) for vA = vRB(hA)
s̃Q sQ corresponding to hQ = RK(s̃T , s̃A;Q) for vQ = vRB(hQ)

τ∗
2/3 τh(ṽA) log(LK(0, smax;A)/RK(0, s̃T ;A))

τ1(hQ, hA, hT ) time of flight from hQ ∈ UQ, hA ∈ [LK(0, 0;A),RK(0, smax;A)), hT ∈ [LK(0, 0; T ), FP ((smax, 0; T )]

to hQ = RK(sT , sA;Q) under the flow
−̇→
h = GRRR(

−→
h ); see Figure 19

TA time of flight from hQ ∈ IQ, hA = LK(0, 0;A), hT ∈ IT , to hA = RK(0, smax;A) under the flow
−̇→
h = GRRR(

−→
h ); see Figure 20

TT time of flight from hQ ∈ IQ, hA ∈ IA, hT = LK(0, 0; T ) to hT = RK(0, smax;T ) under the flow
−̇→
h = GRRR(

−→
h )

T0 time of flight from hQ ∈ DQ, hA ∈ DA, hT = FP (smax, smax;T ) to hT = LK(0, 0; T ) under the flow
−̇→
h = GLLL(

−→
h ) with sQ = sA = 0 fixed

T2/3 τh(ṽQ) log(RK(smax, smax;Q)/LK(s̃A, s̃T ;Q))
T1 time of flight from hQ = LK(smax, smax;Q), hA ∈ IA, hT ∈ IT to hQ = RK(s̃T , s̃A;Q)

under the flow
−̇→
h = GRRR(

−→
h ) with sT = sA = smax held constant

We work in the ε = 0 limit, so that for any particular triple (h1, h2, h3) we precisely know
the possible states of the entire solution via the algebraic relations previously mentioned. We
will begin by considering the set Ω consisting of all possible (h1, h2, h3) coordinates where all
three cells can enter the silent phase simultaneously, with vj = vLj (hj , 0, 0) and sj = 0 for all j,
corresponding to all cells being in the silent phase. We will construct a continuous functionM :
Ω → Ω by considering the evolution of a trajectory with arbitrary initial condition in Ω until
all cells return to the silent phase. Due to the fact that solutions to ODEs depend continuously
on their initial conditions, since M simply evolves a trajectory with initial conditions in Ω,
M will be a continuous function. In order to construct M in such a way that it will map Ω
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Table 2

Symbol Interpretation

DQ range of possible h values at which the Q cell can enter the silent phase
DA range of possible h values at which the A cell can enter the silent phase
DT range of possible h values at which the T cell can enter the silent phase
Ω box containing all possible (hT , hA, hQ) coordinates at which the network can enter the silent phase

UQ range of possible h values at which the Q cell can enter the active phase

IQ range of h values that Q can achieve
IA range of h values that A can achieve
IT range of h values that T can achieve
W all possible (hT , hA, hQ) coordinates

τ0(hQ, hA, hT ) the time T takes to enter the active phase, that is, the time for hT to reach the left knee
τ1/3(hQ, hA, hT ) the time A takes to enter the active phase, taking into account that the position

of the left knee changes based on sT
τ∗
1/3 the minimum time A can spend in the silent phase, without input from T

τ2/3(hQ, hA, hT ) the time it takes Q to enter the active phase after A, T have entered the active phase
ṽA the maximal value attainable by vA when only T is in the active phase
ṽQ the maximal value attainable by vQ while Q is still in the silent phase
s̃T the minimal synaptic output from cell T when it is in the active phase
s̃A the minimal synaptic output from cell A when both A and T are in the active phase
s̃Q a lower bound on the minimal synaptic output from cell Q when all three cells are in the active phase

τ∗
2/3 the minimal time A can spend in the active phase, if T is also in the active phase

τ1(hQ, hA, hT ) the time it takes Q to reach its right knee from the time it enters the active phase
TA maximum time it takes A to reach a point where it will enter the silent phase when Q does
TT maximum time it takes T to reach a point where it will enter the silent phase when A does
T0 upper bound on the time T can spend in the silent phase

T2/3 upper bound on the time Q can spend in the silent phase
T1 a lower bound on the time Q can spend in the active phase

to Ω, we need estimates on the time it will take each cell to change phases, and it is on these
estimates that we will build our assumptions. We note that M can be viewed as a Poincaré
map on the three-dimensional section Ω of the nine-dimensional phase space. The proposition
below states that under certain assumptions on times of passage associated with trajectories
with initial conditions in Ω, there exists a periodic synchronous bursting solution to (10)–(12).
Roughly speaking, the assumptions set an order in which the cells enter the active phase; first
T will enter the active phase, then A will follow, and at last Q will enter the active phase
before A can return to the silent phase ((A2) and (A3)). Finally, we set an assumption (A4)
that will guarantee that all cells enter the silent phase simultaneously, which ensures that M
will map Ω to Ω (otherwise, a cell that entered the silent phase first might have time to evolve
such that its h coordinate leaves Ω). To prove this result, we will show that these assumptions
imply that, even in the absolute worst case scenario, every cell will jump from the silent to the
active phase before any cell falls from the active to the silent phase and all cells will eventually
enter the silent phase together, with respect to the fast time scale.

Rather than writing out each mathematical definition relevant to the proof individually, we
have collected these definitions in Table 1. The reader may find it useful to consult this table in
conjunction with Table 2, which gives heuristic interpretations of the mathematical definitions.
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Figure 16. Plot of hA against sT . The blue curve is the curve of the left knees of the vA-nullcline as a
function of sT . When the black trajectory reaches the curve of left knees, the added cell A will jump up to
the active phase. The time it takes to reach the curve of left knees is τ1/3(hQ, hA, hT ) for initial conditions
hQ, hA, hT ∈ W . In this figure, the blue curve LK(0, sT ;A) was generated numerically for one particular added
cell A, while the black trajectory is a schematic included for illustrative purposes. For the added cell A, all
parameters are as in Table 3 in Appendix A, except gNaP = 2, gL = 2.

The reader may also find it illuminating to refer to Figures 16–20 for a graphical representation
of some of the critical times involved in the proof of the existence of a synchronous bursting
solution given below.

Figure 17 illustrates the definition of τ∗1/3. We have omitted a similar figure for T0. The
idea behind these two quantities is that we want to ensure that T enters the active phase
before A. Therefore, we need to compare the shortest possible time A could take to reach its
left knee from the silent phase with the longest possible time T could take to reach its left
knee from the silent phase.

Figure 18 illustrates the definition of τ2/3(hQ, hT , hA). For a given coordinate (hQ, hT , hA)
in the silent phase, this gives the time it takes for Q to reach the active phase from that point.
An upper bound on τ2/3(hQ, hT , hA) is given by T2/3. This bound must be compared against
τ∗2/3, which is the shortest possible time it could take for A to enter the silent phase from the

active phase (Figure 19).
Finally, Figure 20 illustrates the quantity TA. As stated above, we will require all cells to

enter the silent phase simultaneously, though we prescribe a particular falling order to track
the corresponding change in the nullclines. First, Q will enter the silent phase, and then A will
follow. For A to be able to enter the silent phase upon the sudden removal of synaptic input
from Q, the coordinate hA must be below RK(0, sT ;A), which takes its lowest possible value
if sT = smax. Correspondingly, TA is defined using RK(0, smax), as shown in Figure 20. TT
denotes a similar longest active time for the tonic cell, and a similar figure could be generated
to illustrate how it is defined. If TA and TT are both less than T1, then both the A and T
cells will return to the silent phase when Q does.
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Figure 17. Plot of hA against vA. The green curve is the vA-nullcline, while the light blue curve is the hA

nullcline. In the worst case, shown here, the trajectory starts as high as possible, namely at RK(0, 0;A), and
continues to the left knee LK(0, 0;A). This evolution takes time τ∗

1/3. In this figure, the light blue and green
nullclines were generated numerically for a particular choice of the added cell A, while the black trajectory is
fictive and included for illustrative purposes. For the added cell A, the parameters are as in Table 3 in Appendix
A, except gNaP = 2, gL = 2.

Figure 18. Plot of hQ against sT and sA. The multicolored surface is the sheet of Q’s left knees as a function
of sT and sA. The black curve is the hQ coordinate of the Q subsystem under the flow GLRR(hQ, hA, hT ). The
trajectory evolves towards the sheet as sT and sA experience some decay. When trajectory reaches the sheet
LK(sT , sA), Q enters the active phase. From initial conditions hQ, hA, hT , the time it takes the trajectory to
reach the sheet is τ2/3(hQ, hT , hA). In this figure, the sheet of left knees LK(sT , sA;Q) for the quiescent cell
was generated numerically, while the black trajectory is included for illustrative purposes only. For the quiescent
cell Q, the parameters are as in Table 3 in Appendix A, except gNaP = 2, gL = 4.
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Figure 19. Plot of hA against sT . The green curve is the curve of right knees of A as a function of sT .
The trajectory begins at LK(0, smax) and has maximum velocity while sT = smax. The point with the largest
value at which A can enter the silent phase is RK(0, s̃T ;A). τ∗

2/3 is defined such that if sT suddenly dropped
to sT = s̃T after time τ∗

2/3, then the trajectory of A would exactly hit the curve of knees at RK(0, s̃T ;A). In
this figure, the green curve RK(0, sT ;A) of right knees was generated numerically for a particular choice of the
added cell A. For the added cell A, the parameters are as in Table 3 in Appendix A, except gNaP = 2, gL = 2.
The black trajectory is an illustration of the worst-case trajectory and may not be realized.

Figure 20. Plot of hA against sT and sQ. The green-hued surface is the sheet RK(sQ, sT ;A) of right knees
for A as a function of sT and sQ. The red plane is h = RK(0, smax;A), the h value of the lowest possible right
knee for A when Q has entered the silent phase. In order for A to return to the silent phase simultaneously
with Q, hA must be below the red sheet when Q enters the silent phase. We define TA as the time it takes a
trajectory starting from LK(0, 0;A) to reach the red sheet. Here, the green-hued sheet RK(sQ, sT ;A) and the
red sheet RK(0, smax;A) were generated numerically for a particular choice of the added cell A. For the added
cell A, the parameters are as in Table 3 in Appendix A, except gNaP = 2, gL = 2. The black trajectory, on the
other hand, is fictive and included for illustrative purposes.
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We make the following assumptions about some of the quantities defined in Table 1:
(A1) Let the added cell A be such that when sT = s̃T and sQ = s̃Q the fixed point for the

A subsystem occurs on the right branch of the vA-nullcline.
(A2) T0 < τ∗1/3.
(A3) T2/3 < τ∗2/3.
(A4) max(TA, TT ) < T1.
Proposition 3.3.Under assumptions (A1)–(A4), with the definitions in Table 1, the system

of three cells modeled by equations (10)–(12) admits a periodic orbit representing synchronous
bursting.

Before stating the proof of the above proposition, we introduce one more bit of notation.
Definition 3.4. Allow x · t to represent the result of applying the flow of (10)–(12) to the

initial condition x for t units of model time.
Proof. Assume that (A1)–(A4) hold. Given the definitions in Table 1, the proof is rather

concise. First, let x0 = (h0Q, h
0
A, h

0
T ) ∈ Ω. Because T0 < τ∗1/3 via (A2), T is the first cell to

enter the active phase, after time τ0(x0). We then allow x1 = x0 ·τ0(x0). Since Q is silent under
input from T , we evolve until A enters the active phase, after an additional time τ1/3(x0), and
set x2 = x1 · τ1/3(x1). The condition T2/3 < τ∗2/3 of (A3) asserts that Q will always join the
active phase before A can fall down to the silent phase. Synaptic input from A lowers T ’s
fixed point. The result of this is that T cannot return to the silent phase until the synaptic
input is removed. Thus, we call x3 = x2 · τ2/3(x2), and after time τ0(x0) + τ1/3(x1) + τ2/3(x2)
all three cells are in the active phase simultaneously. When Q falls down to the silent phase,
hQ ∈ DQ by the definition of DQ. Finally, the condition max(TA, TT ) < T1 of (A4) asserts
that when Q falls down to the silent phase, hA ∈ DA and hT ∈ DT , and both A and T will
return to the silent phase. If we define x4 = x3 · τ1(x3), then we have x4 ∈ Ω. Thus, the map
M : x0 → x4 is a continuous map from Ω into Ω, and by Brouwer’s fixed point theorem there
is an x∗ such that M(x∗) = x∗. Thus, in the ε = 0 limit, the solution with initial condition
corresponding to x∗ is a periodic orbit. By construction, this orbit meets our definition of a
synchronous bursting solution.

Numerical explorations indicate that assumptions (A1)–(A4) are easy to satisfy in the
case where two cells are intrinsically tonic and the third is intrinsically quiescent. Parameter
sets for which the model satisfied (A1)–(A4), with one cell intrinsically tonic, one intrinsically
bursting, and one intrinsically quiescent, were harder to find. An example of such a set consists
of the parameter values from Table 3 in Appendix A, except gij = 0.0875, gNaP,1 = 0.795,
gNaP,2 = 1.6945, gNaP,3 = 0.705, gL,1 = 0.898, gL,2 = 1.94709, gL,3 = 1.209.

3.3. Observations on failures to produce synchronous bursts. In searching for parameter
sets for which (A1)–(A4) hold and one cell is intrinsically bursting, the condition T2/3 < τ∗2/3
proved to be the hardest to satisfy. While it is true that this condition is fairly restrictive,
it reveals a key feature of three-cell networks that include a cell that intrinsically bursts:
if the synaptic input from the tonic cell is not strong enough to cause the bursting cell to
become tonic itself, then the bursting cell has an opportunity to reenter the silent phase
before the quiescent cell can enter the active phase. More precisely, suppose that sT = s̃T
and sQ = 0. Suppose that, under the corresponding level of input, the fixed point for cell
A falls on the middle branch of the vA-nullcline. In this case, the condition T2/3 < τ∗2/3 can
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be violated. If this occurs, then there may be an (h1, h2, h3) such that Q fails to enter the
active phase before A enters the silent phase, which would violate our necessary conditions for
synchronous bursting. In our numerical explorations of these three-cell networks, we identified
this premature return to the silent phase as the most common cause for a network to fail to
burst synchronously. Addition of a tonic cell instead of a bursting cell ensures that the added
cell will not fall down from the active phase to the silent phase before the quiescent cell has
a chance to jump up, while addition of a quiescent cell yields a relatively late entry of the
added cell into the active phase, which makes it less likely that the original quiescent cell will
get stuck in the silent phase.

4. Numerical experiments.

4.1. Implementation. The numerical results presented in this section were gathered with
the MATLAB programming language (The MathWorks, Natick, MA). Equations (10)–(12) are
very stiff, and speed became an issue due to the large number of simulations we ran. To speed
up our simulations, we used a C implementation of the CVODE package from SUNDIALS
[11] for the differential equation integration, compiled as a MATLAB function by way of the
mex command.

We allowed a transient of 1000 milliseconds of model time before any conditions on bursting
were checked. Typically, integration was done for 10000 milliseconds. When a cell’s synaptic
output increased beyond 60% of the maximum possible output value, we recorded that the
cell entered the active phase. On the other hand, when the cell’s synaptic output decreased
below 20%, we recorded that the cell entered the silent phase. For purposes of approximating
the frequency of synchronous activity, we track each time when all three cells have reentered
the silent phase after all three cells have been in the active phase.

The necessary conditions given in section 3.1 provide a guideline for checking whether
a solution is synchronous. We implemented these conditions by using a series of Boolean
flags that track the states for cells j + 1, j − 1 relative to cell j. Should a solution fail to
meet the necessary conditions at any time after the initial transient, the integration stops
and the solution is declared to be asynchronous. One shortcoming of this implementation
is that a solution may be declared synchronous if the first time the necessary conditions are
violated occurs after 10000 milliseconds. A second shortcoming is that we may be misled by
parameter values supporting bistability. Although we cannot guarantee that bistability does
not arise, additional numerical explorations suggest that it was rare in the parameter regimes
considered.

4.2. Which cells promote synchronous bursting?. Intuitively, a cell that is intrinsically
bursting seems like a safe cell to add to a network to promote synchronous bursting; however,
section 3.3 casts doubt on this intuition. We tested this idea more systematically by performing
the following numerical experiment. First, pick at random one cell that is intrinsically tonic
and another that is intrinsically quiescent. Next, partition gNaP gL space into a mesh, and use
each mesh point to form a third cell to be coupled with the other two into a three-cell network.
For each network, integrate (10)–(12) and check whether the network sustains synchronous
bursting. We present a colorization of gNaP gL space as follows. If the third cell failed to
create a synchronous burst, we color the coordinate red. Otherwise we color the coordinate
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(a) (b)

(c) (d)

(e) (f)

Figure 21. Each panel is a plot of gNaP vs. gL and represents a numerical experiment with a different pair
of fixed intrinsically quiescent and intrinsically tonic cells. For each such experiment, we choose a third cell
with parameters gNaP and gL, and color the point (gNaP , gL) red if the network failed to exhibit synchronous
bursting. Otherwise, we color the point according to the added cell’s intrinsic dynamics, using blue for quies-
cent, green for bursting, and black for tonic. For each cell, all parameters are as in Table 3 in Appendix A,
except that (gNaP,1, gL,1, gNaP,2, gL,2) = (a) (5.772, 1.842, 2.043, 2.552), (b) (4.529, 1.842, 2.043, 2.552),
(c) (4.529, 2.236, 5.772, 4.342), (d) (4.529, 2.000, 3.286, 4.105), (e) (4.529, 1.921, 3.286, 4.105), and (f)
(4.529, 2.000, 5.772, 5.815).

blue if the added cell was intrinsically quiescent, green if it was intrinsically bursting, and
black if it was intrinsically tonic. We repeated this experiment with many different random
choices of the Q,T pair. After this numerical exploration, certain patterns emerged in these
colorizations. In Figure 21, we provide examples that qualitatively cover the breadth of our
numerical findings. It may be useful to refer to Figure 2 to recall the division of gNaP gL
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Figure 22. An animated comparison (76580 01.gif [1.25MB]) between the original partition of gNaP gL space
and one example of the numerical experiment detailed in section 4.2.

space into regions where the resultant cell is quiescent, bursting, or tonic. We also direct the
web-enabled reader to Figure 22 for an animated comparison (76580 01.gif [1.25MB]) between
the original partition of gNaP gL space and one example of the numerical experiment detailed
here. A brief analysis of which underlying cell pairs yielded each type of synchronization
configuration shown in Figure 21 can be found in Appendix C.

4.3. Explanation of the mechanisms involved in synchronous bursting. In each panel
of Figure 21, large gL/gNaP or small gL/gNaP in the added cell leads to an absence of syn-
chronous bursting in the network. These failures correspond to cases when the third cell is
“too quiescent”—that is, even under full input from the other two cells it cannot activate—or
“too tonic,” in that when input is removed, it cannot transition to the silent phase. Out-
side of these extreme ranges of gL and gNaP , it was often those coordinates that represent
the addition of an intrinsically bursting cell that failed to produce synchronous network-wide
bursting. In this section we attempt to explain the mechanisms underlying the changes in
network dynamics that occur at the boundaries between the red region and nonred regions of
the parameter space.

To explain the results of our experiments, we will for convenience provide arguments
based on the positions of the knees of various nullclines. It should be noted that more precise
arguments should be expressed in terms of times of flight, as in the proof of the existence of
synchronous solutions in section 3.2. However, numerically we observe that the time of flight
to the knee in the silent phase is an increasing function of the h-coordinate of the left knee
and a decreasing function of the h-coordinate of the right knee. This result allows an easy
translation from knee-based arguments to their time-based analogue.

We consider four basic movements in gNaP gL space corresponding to increasing or de-
creasing gNaP or gL independently. Keeping in mind the insight from section 3.3, that the
most common source of network failure is for a cell to prematurely return to the silent phase,
we will explain how modulation of gNaP or gL may affect the bursting behavior of the sys-
tem. Specifically we are interested in what happens to induce a switch from a red region to a
nonred region. That is, we seek to explain the bifurcation from nonsynchronous solutions to
synchronous solutions resulting from changes in gNaP or gL.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/76580_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/76580_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/76580_01.gif
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As we did in section 3.2, we can use the implicit function theorem to write the h-coordinates
of the left knee and right knee each as a function of gL. By straightforward differentiation of
(15), it is then easy to see that the h-coordinates of the left and right knees are monotone
functions of gL, but an important difference is that the h-coordinate of the left knee is much
more sensitive to changes in gL, so that for fixed (hQ, hA, hT ) ∈ W, τ1/3(hQ, hA, hT ) is a
monotonically increasing function of gL. Consider then the crossing from a red region to
a nonred region as gL increases. The result of the added cell having a higher gL is that
it spends more time in the silent phase. This means that the difference between the times
when the A and Q cells will enter the active phase is smaller, and thus it is less likely to
be the case that A will prematurely return to the silent phase. This explains the transition
through the red-nonred border as gL increases for all the panels in Figure 21, except for Figure
21(b). In Figure 21(b), the only cell within a reasonable parameter regime that could not be
successfully added to the network to achieve synchronous bursting was another tonic cell. The
explanation for the transition in this case is that the Q for this particular experiment, under
synaptic input from the other cells, has a nullcline where the left and right knees have very
similar h coordinates. The result is that assumption (A4) is violated. In particular, T will
not return to the silent phase with Q each time, because Q does not spend enough time in
the active phase for hT to fall below the h-coordinate of the required knee. Increasing gL to
the added cell in this case still causes the A to spend more time in the silent phase, but the
beneficial effect is that when Q enters the active phase, hT is lower and thus more likely to
sink below the knee, as required for T to join the silent phase when Q does.

This is not the whole picture, however. Consider those added cells such that when they
receive input from a tonic source, they have a fixed point on the right branch of the v-
nullcline. Such cells will not return to the silent phase until Q first enters the active phase
and then returns to the silent phase. If we increase the added cell’s value of gL from such
a configuration, it can happen that the intersection of the vA- and hA-nullclines will occur
on the middle branch of the vA-nullcline. Suddenly, it becomes possible for A to reenter the
silent phase before Q can join the active phase. Reversing this process reveals a mechanism
by which lowering gL for the added cell can allow the network to burst synchronously, and so
explains the transition from a red region to a nonred region by lowering gL.

To understand the result of modulation of gNaP , we again use the implicit function theo-
rem, but this time we write the v-coordinates of the left knee and right knee each as a function
of gNaP , say v = ψ(gNaP ). Unfortunately, it is not true that the h-coordinates of the knees
of a cell are monotonically dependent on gNaP , and so our analysis of crossing the red-nonred
border is more restricted. Increasing gNaP has the general effect of sliding the vA-nullcline
to the left, which causes the intersection with the hA-nullcline to move to the right, possibly
causing the intersection point to change from the center to the right branch. We claim that
the mechanism for creating synchronous bursting by increasing gNaP is analogous to that
generated by lowering gL, consistent with the positive slopes of the boundary curves in Figure
21. That is, increasing gNaP puts the intersection point of the vA- and hA-nullclines for the
added cell on the right branch of the vA-nullcline when T is in the active phase. Conversely,
lowering gNaP should have an effect analogous to raising gL. Indeed, in the absence of synaptic
coupling, lowering gNaP increases the h-coordinate of the knees. When A is receiving synaptic
input from T , the situation is not as obvious. We seek conditions for which the left knee will
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increase as gNaP decreases. Allowing v = ψ(gNaP ) and differentiating (15) with respect to
gNaP yields the relation

gL >
−gsj+1sj+1(ψ(gNaP )− Esyn−e)

ψ(gNaP )−EL
.(16)

For gL satisfying (16), the left knee is a monotone decreasing function of gNaP when T
is in the active phase. In this case when gNaP is lowered, the left knee’s h-coordinate again
increases more than the right knee’s h-coordinate, and the analysis is the same as that of the
modulation of gL that we presented previously.

In summary, we identified two primary transitions from asynchronous network dynamics
to synchronous network oscillations. One transition mechanism is to eliminate the possibility
of the added cell’s prematurely entering the silent phase. If the added cell can prematurely
return to the silent phase, it must be because, under input from the tonic cell, the intersection
of the vA- and hA-nullclines is on the middle branch of the vA-nullcline. When this intersection
is moved (by modulation of gL or gNaP ) to the right branch of the vA-nullcline, the added
cell no longer can return to the silent phase until after the quiescent cell first enters the active
phase and then reenters the silent phase. The other transition mechanism involves keeping
the quiescent cell in the silent phase for an extended period of time, which allows the tonic
cell to approach the intersection of the vT - and hT -nullclines. The closer the tonic cell is to
this intersection point, the more likely it is to have its h-coordinate sink below the right knee
when the quiescent cell returns to the silent phase. The mechanism provided for buying this
extra time is not only to make the added cell quiescent, but to ensure that the h-coordinate
of its left knee is high even under synaptic input from the tonic cell, though not so high that
it intersects the h-nullcline on the left branch of the vA-nullcline, preventing it from being
active. In this way, the quiescent cell and the added cell will spend more time in the silent
phase and will enter the active phase at similar times, which prevents one cell from returning
to the silent phase before the other cell is ready to follow.

This analysis of the bifurcation from asynchronous network dynamics to synchronous
network oscillations reveals what may be called a weakness of a neuron with intrinsically
bursting dynamics. When such a bursting cell is added and receives synaptic input from
the tonic cell, the intersection of the vA- and hA-nullclines may still be on the center branch
of the vA-nullcline. This presents the opportunity for A to enter the silent phase before Q
enters the active phase. There are two primary ways to correct this phenomenon. We can
increase the h-coordinate of A’s left knee, thereby giving Q more time to enter the active
phase, or we can change the position of A’s right knee enough that the intersection of the vA-
and hA-nullclines falls on the right branch of the vA-nullcline. Such adjustments are required
less frequently for added cells with intrinsically quiescent or tonic dynamics. When a cell
is added with intrinsically tonic dynamics, it cannot prematurely return to the silent phase.
Therefore the only concern is that Q spends enough time in the active phase to allow T and
A to return to the silent phase. On the other hand, if the added cell is intrinsically quiescent,
we potentially must still face the issue of A returning to the silent phase before Q enters the
active phase. However, the left knees of Q and A have more similar h-coordinates than if A
were not intrinsically quiescent, and hence the times at which they enter the active phase will
differ by less than if A had any other intrinsic dynamics. Therefore it is more likely that Q will
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follow A into the active phase. Keeping such results in mind, it is perhaps unsurprising that
when adding a third cell to a network already containing a quiescent and tonic cell, it is those
added cells which are intrinsically bursting that are most likely to fail to create synchronous
oscillations.

4.4. Which cells promote frequency modulation?. Another important aspect of the
preBötC is that it exhibits a wide range of bursting frequencies, perhaps influenced by an out-
side population of tonically active cells. Biologically, control over frequency for the preBötC
would allow it to adapt to changes in environmental and metabolic demands. Further, the sys-
tem should not be too sensitive to modulation of a control parameter, such as the conductance
gton of the tonic drive current Itonic (i.e., |dfrequencydgton

| should not be too big). Intuitively, it
may seem that a cell that is intrinsically bursting may enhance this dynamic range of network
bursting, given that it is naturally tuned to burst. We performed a numerical experiment,
however, which suggests that this may not be the case. In our experiment, we repeatedly
selected two cells, one intrinsically quiescent and one intrinsically tonic, at random. For each
such pair, we added a third cell with gNaP = 2 and varied gL systematically in the interval
(.5, 4). Finally, for each value of gL, we varied gton ∈ (0, .25), taking gton = 0 as the baseline
value without loss of generality. For each (gL, gton) pair, we recorded the frequency of the net-
work, if it bursted, as the inverse of the average period of synchronous oscillations, recording
0 if synchronous oscillations were not obtained. Figure 23 illustrates some of the results from
this experiment.

Our simulations showed that adding an intrinsically bursting cell to the network did not
promote synchronous oscillations particularly well, even under modulation of the control pa-
rameter gton. Even in those cases where the network demonstrated synchronous oscillations
over a wide range of gton when an intrinsically bursting cell was added, we did not observe
a wide range of frequencies for these synchronous oscillations. On the other hand, we saw
that adding a quiescent cell often promoted synchronous oscillations under a broad range of
gton, and further, when the network produced synchronous oscillations over a wide frequency
range, it was commonly an intrinsically quiescent cell that had been added.

4.5. Explanation of the mechanisms involved in frequency control. The numerical ex-
periments illustrated in Figure 23 have a trait reminiscent of those in Figure 21: it is common
for the network to fail to exhibit synchronous oscillations when the added cell is intrinsically
bursting. This experiment gives us information about more than just the existence of syn-
chronous oscillations, however. It also indicates the range of frequencies that the three-cell
networks can produce, as well as their robustness to variation of the control parameter gton.
We rescaled the parameters relating to the time constants from Butera’s original model in [3]
to speed up the simulations, so the frequencies recorded here do not match the frequencies
seen in the preBötC. However, our qualitative results should carry over to biologically relevant
time scales. Based on the criteria discussed in section 4.4, an optimal network should generate
a significant color variation extending over a wide range of gton values. We consistently find
that it is the addition of a quiescent cell to the network that allows the network to burst at a
wide range of frequencies over a wide range of values of gton.

We offer an explanation for this result by analyzing the v-nullclines of the cells. Suppose
that we have a network consisting of two quiescent cells and one tonic cell. The control
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(a) (b)

(c) (d)

(e) (f)

Figure 23. Frequency modulation by gton depends on the added cell. Each panel shows an individual exper-
iment where an intrinsically quiescent cell and an intrinsically tonic cell were chosen at random. Then, with
gNaP = 2 and a range of values of gL between .5 and 4, we added a third cell to the network. For this network,
we varied gton from 0 to .25, and at each mesh point we recorded the average period of synchronous oscillations
(recording 0 if synchronous oscillations did not occur). The frequency is color-coded here as the inverse of this
average period, unless the period was 0, in which case we recorded the frequency as 0 as well. As indicated on
the gL axis, gL = 1.3947 and gL = 2.1579 represent, for gNaP = 2, where the added cell’s intrinsic dynamics
transition from tonic to bursting and from bursting to quiescent, respectively. The black regions indicate a fail-
ure by the network to burst synchronously. The parameters for each cell are as in Table 3 in Appendix A, except
(gNaP,1, gL,1, gNaP,2, gL,2) = (a) (4.5293, 2.0789, 5.7724, 5.8158), (b) (5.7724, 2.6316, 5.7724, 5.8158), (c)
(5.7724, 2.3158, 3.2862, 4.1053), (d) (4.5293, 2.0000, 3.2862, 4.1053), (e) (4.5293, 2.2368, 4.5293, 4.4474),
and (f) (5.7724, 2.1579, 4.5293, 4.4474).
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parameter gton modulates the strength of the excitatory synaptic current Itonic−e in (14),
and mathematically, varying gton is analogous to varying a synaptic conductance variable s.
Therefore, an argument similar to those in section 3.2 implies that the h-coordinate of the
left knee of the v-nullcline is a monotonic decreasing function of gton. Suppose that input
from the tonic cell is insufficient to activate either quiescent cell; that is, they still have their
fixed points on the left branches of their v-nullclines. Then it is modulation of gton that can
push the knees low enough that one of the quiescent cells can activate through a singular
Andronov–Hopf bifurcation where there is an O(ε) pure imaginary eigenvalue corresponding
to the change in the intersection point of the v- and h-nullclines of the activating cell. In the
ε = 0 case, for values of gton beyond this bifurcation but still nearby, the quiescent cell can
take arbitrarily long to activate, which yields an arbitrarily low network oscillation frequency.
Thus, in the ε > 0 case, this slow activation may account for the wide range of frequencies
observed, even though arbitrarily low frequencies may no longer be achieved.

Interestingly, in some cases, adding a T cell to a given (Q,T ) pair gives a broad range of
frequencies similar to that achieved by adding a Q cell, as in Figures 23(a) and 23(b). Let T
and Q be the intrinsically tonic and intrinsically quiescent cells fixed for this experiment, and
let A be the added cell. We observe that the added cells that yield synchronous oscillations
in this experiment for low levels of gton are either intrinsically tonic or have high values of gL,
corresponding to a high value of the h-coordinate of the left knee. For intermediate values
of gL, a high value of gton is required to induce the network to burst synchronously. These
observations together indicate that the left knee of the quiescent cell has a high h-coordinate,
even under synaptic input from the tonic cell. With this insight in mind, it makes sense
that adding a cell that will become tonic under input from T will provide the Q cell with
adequate time to become active over a broad range of gton, with a correspondingly wide range
of frequencies of synchronous oscillations. The mechanism for achieving this frequency range
will be the same as before: two cells, A and T , are stuck in the active phase, so increasing
gton lowers LK(sT , sA;Q), which hastens the Q cell’s jump to the active phase. As Q jumps
into the active phase progressively faster with increased values of gton, the network frequency
increases, since Q always controls the network’s return to the silent phase. On the other hand,
an added cell that is intrinsically quiescent, with the h-coordinate of its left knee at a high
value similar to that of the Q cell’s left knee, will jump up close to the time when Q does,
and so also generates synchronous network oscillations.

5. Discussion. This work was motivated by the current debate about the source of syn-
chronous rhythmic bursting in the heterogeneous network of cells coupled with synaptic ex-
citation within the preBötC, which includes some intrinsically bursting neurons. It is quite
possible that the alternation of the preBötC network between active and silent phases, seen
in intact respiratory preparations, is largely controlled by release from and onset of inhibition
from outside the preBötC, under some conditions [29, 25]. Nonetheless, it seems clear that
bursting emerges from within the preBötC under certain experimental conditions linked to
hypoxia or gasping [29, 19, 20]. Previously, it has been shown that cells that intrinsically
burst are not required for sustained network-wide bursting in the preBötC [4, 27, 21, 28]. Nu-
merical results do suggest, however, that the presence of neurons that burst under some range
of tonic input current does enhance the robustness and frequency range of preBötC bursting.
We have furthered this result by explaining why, of all such burst-capable cells, those that are
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intrinsically quiescent best support synchronous bursting over a broad frequency range when
embedded within a network, as long as intrinsically tonic cells are also present.

To arrive at this conclusion, we provided a definition of synchronous bursting and stated
sufficient conditions under which a three-cell network will support a solution that satisfies this
definition. To expand upon these results, we numerically explored the effects of adding in-
trinsically quiescent, bursting, or tonic cells to various (quiescent, tonic) pairs to form various
three-cell networks with all-to-all coupling architectures. The central result from these ex-
periments and analysis is that typically, if we start with a network containing an intrinsically
quiescent and an intrinsically tonic cell, then it is preferable to add an intrinsically quiescent
cell instead of an intrinsically bursting cell to endow the network with the capacity to burst
synchronously and to achieve a wide frequency range under variation of the strength gton of an
excitatory synaptic drive. In brief, tonic cells play a key role in spreading synaptic excitation
throughout the network and meanwhile remain active, ensuring that all other cells can enter
the active phase. Intrinsically bursting neurons can also recruit quiescent cells, but they tend
to return to the silent phase too soon, before quiescent cells can become active or before the
persistent sodium current for the tonic cells can inactivate sufficiently to allow them to become
silent along with the bursters. Intrinsically quiescent cells offer three advantages relative to
bursters: because they enter the active phase more slowly, they (a) allow for slower overall
burst frequencies to be achieved (see also [7]); (b) provide tonic cells with more inactivation
time, decreasing their chances of being stuck in the active phase; and (c) provide extra time
for other, even less excitable cells to be recruited to the active phase.

In our simulations, consistent with these features, we observe tightly synchronized transi-
tions from the active phase to the silent phase, whereas the transitions from silent to active
may be much less unified. Interestingly, single cells in the preBötC appear to be unable to
initiate network bursts, which instead arise through a gradual recruitment [22], reflected in a
diversity in active phase onset times observed experimentally [4, 5, 13]. On the other hand,
too much spread could pose disadvantages for a strong activation of muscles associated with
inspiration; thus, some of the oscillations on the low end of the frequency range that we
consider may not be biologically relevant. Clearly, less heterogeneous networks would yield
tighter synchronization, but heterogeneity is a known feature of the preBötC. Beyond the
possibility that our definition of synchrony is overgenerous, another limitation of our study is
the omission of spikes. Spiking effects may make important contributions to preBötC network
bursting. For example, two intrinsically tonic preBötC model cells coupled with synaptic
excitation may engage in synchronous bursting at a very low frequency, due to asynchrony
at the level of spikes within bursts [1]. Nonetheless, our main qualitative result should en-
compass such spike-related phenomena: to maintain synchronous bursting over a broad range
of frequencies, it is optimal to introduce intrinsically quiescent cells into the network, such
that a full range of dynamic regimes can be sampled by gradually turning up the strength of
the drive (e.g., gton) to these cells, as long as there are enough tonically active cells in the
network to recruit the quiescent cells to become active in the first place. Once these cells
join the active phase, similar spike asynchrony effects should apply to the network dynamics,
regardless of what behavior these added cells exhibited in the absence of coupling.

There are many ways to extend this work. In particular, our work focused on strong exci-
tatory synaptic coupling, and the results may change with weak synaptic excitation, synaptic
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inhibition [33], or synaptic plasticity [15]. Further, to understand the dynamics of the preBötC,
it is important to realize that the persistent sodium current is not the only mechanism that
may yield intrinsically bursting dynamics. Rubin et al. [28] developed a computational model
for an experimentally grounded group pacemaker, showing that a calcium-activated nonspe-
cific cation (CAN) current present in at least some cells in the preBötC can give rise to
synchronous network bursting that depends crucially on synaptic interactions. As such, an
important next step will be to analyze the role of such a group pacemaker within a small
heterogeneous network that also includes some cells featuring bursting dependent on the per-
sistent sodium current. It may also be important to understand how the CAN and persistent
sodium currents work together within the same cell, to help with the interpretation of various
pharmacological experiments.

Another important direction for future work is to consider the effect of noise on the overall
dynamics. In particular, a study of which network configurations sustain robust synchronous
oscillations in the presence of noise is critical to an understanding of the overall picture of the
preBötC. Headway into analysis of noise in the slow-fast dynamics of the preBötC has been
made by Nesse, Del Negro, and Bressloff [18].

The preBötC is an example of a central pattern generator (CPG): a network that produces
repetitive, multiphasic activity patterns that drive rhythmic motor outputs. CPG rhythms
are composed of sequences of synchronous bursts emitted by multiple subnetworks of neurons.
Our results could theoretically be relevant to any such subnetwork within the many CPGs
identified across a variety of species, as long as its components include conditionally burst-
capable neurons, irrespective of the mechanisms responsible for their burst capability (see also
[12, 7]). Our conclusions may apply to neural systems other than CPGs as well. For example,
our results may be relevant to the generation of gamma oscillations in certain cortical regions,
in which rhythmically bursting neurons have been shown to participate [10, 6]. In particular,
chattering cells in the visual cortex have been shown in experiments done in vivo to lack
intrinsic membrane oscillations in the presence of subthreshold stimuli yet to develop bursting
oscillations in response to optimal visual stimuli and to interact with a heterogeneous network
of other cell types.

Ultimately, our work identified no significant advantage of adding intrinsically bursting
neurons to a network of intrinsically quiescent and intrinsically tonic cells. In this model,
modulation of gNaP or gL switches a cell’s intrinsic behavior from quiescent to bursting to
tonic, or from tonic to bursting to quiescent. The fact that intrinsically bursting neurons are
in the center of this slice of parameter space may account for their presence in the preBötC. In-
deed, if there were a similar region of the brain exhibiting network-wide synchronous bursting
oscillations, and the mathematical model for the individual cells transitioned under parameter
variation from intrinsically quiescent directly to tonic and then to bursting, then we would
predict that cells with intrinsically bursting dynamics would not be prominent in the network.

Appendix A. Function definitions and parameter values. Below we record the defi-
nitions of the individual functions that make up (1)–(4), which were introduced in [3, 4].
In these equations, for x ∈ {h,m,mP , n, s} the function x∞(v) takes the form x∞(v) =
{1 + exp[(v − θx)/σx]}−1, and also for x ∈ {h, n} the function τx(v) has the form τx(v) =
τ̄x/ cosh[(v − θx)/(2σx)]. The parameter values used in the simulations are listed in Table 3.
These parameters appear as they did in [27], except that we set θh = −40mV. Heterogeneity
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Table 3
Parameter values for (10)–(12).

Parameter Value Parameter Value Parameter Value

αs 0.2 ms−1 Iapp 12 mV τ̄h 1 ms
Cm 0.1 pF σh 6 mV τ̄n 10 ms
EK −85 mV σm −33 mV τs 6.25 ms
EL −65 mV σmP −5 mV θh −40 mV
ENa 50 mV σn −4 mV θm −34 mV
Esyn−e 0 mV σs −1 mV θmp −38 mV
gij 0.35 nS θn −29 ms
gton 0 nS ε 1/100 θs −33 mV

was introduced by the parameters gNaP and gL, so they do not appear in Table 3.

Appendix B. Sufficient conditions for synchronous bursting with alternate architectures
and n ≥ 3 cells. The conditions presented in section 3.2 applied to a network of three
relaxation oscillators. These conditions generalize naturally for a network of n cells, even if
the architecture is not all-to-all. Recall that the network as a whole can be thought of as
being in one of two stages, “cells moving to the active phase” and “cells moving to the silent
phase.” Consider a starting set D1×D2×· · ·×Dn, where the Dj are analogous to DQ,DA,DT

in Table 1. When the network is in the stage where cells are moving to the active phase, the
following rules should be used to generate the sufficient conditions. First, an order in which
the cells are going to enter the active phase must be decided upon, and conditions must be
placed to ensure that this will be the order for any initial condition on the cross product of
possible locations where the cells could reenter the silent phase. Once this order is established,
then use C to denote the next cell in line to enter the active phase. Consider TC to be the
longest possible time that C could take to enter the active phase. Next, look at all the cells
currently in the active phase. Calculate the fastest-case scenario for a cell to return to the
silent phase. As in Figure 19, realize that the h-coordinate of a cell in the active phase evolves
fastest under maximal input from the other cells in the active phase. If it happened that
all synaptic inputs decayed to some minimal value by the time the h-coordinate reached the
right knee height, the cell would transition to the silent phase. Make this calculation for each
active cell, and allow TA to be the smallest of all these times. Then the sufficient condition
becomes TC < TA. Repeat this process for every cell in the silent phase, each time evolving
the network until C enters the active phase.

When the network is returning cells to the silent phase, numerical results suggest an
approach to deriving a reasonable set of sufficient conditions for synchrony to be maintained.
As in the first case, decide on an order in which the cells will return to the silent phase. Then
the sufficient conditions become a cascade; as each cell enters the silent phase, the right knees
of all other cells are raised. The sufficient condition is then that the next cell that is to return
to the silent phase must be below its new right knee. Repeat this condition for each cell until
all of the cells have returned to the silent phase.

This return condition in particular can be relaxed a bit. The Brouwer fixed point theorem
requires a map to return a closed set to itself. Thus, if the cells do not return to the silent
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phase simultaneously, as long as the last cell enters the silent phase before any cell leaves the
starting set, we construct a map that evolves the system until the last cell returns to the silent
phase. This map will return the starting set to itself, and so the fixed point theorem yields a
fixed point, which will be a periodic orbit of the ODE.

For a network with a different architecture, the same steps as above must be applied.
However, care must be taken when determining the order for the cells transitioning between
phases. A network other than all-to-all coupling is more complicated because when a cell
switches between the active and silent phases, it may not update the nullclines of every
other cell in the network. As long as this variation is handled properly in calculating the
sheet of knees that each cell must reach to switch phases, the proof does not change. In fact,
calculating the fastest time in which a cell can return to the silent phase can be kept the same,
again because the h dynamics are fastest under full input. This shortcut may be undesirable;
with less than full connectivity the bound will be significantly tighter if the network coupling
architecture is incorporated properly.

On the other hand, an architecture including self-coupling may promote synchronous os-
cillations. We identified in section 3.3 that intrinsically bursting cells that do not become
tonic under synaptic input from the tonic cell may prematurely fall down to the silent phase
before the rest of the network can join the active phase. However, should these intrinsically
bursting cells provide synaptic input to themselves, that extra kick may be enough to push
their critical point to the right branch, inducing a tonic behavior. As long as the intrinsically
quiescent cell can fall down to the silent phase under full synaptic input, the all-to-all ar-
chitecture with self-coupling should support synchronous oscillations more robustly than the
architecture considered throughout this work.

Appendix C. Additional analysis for section 4.2. Figure 24 highlights an auxiliary ex-
periment designed to increase our understanding of the relative frequency of occurrence of
the various configurations represented by the individual panels of Figure 21, and of which
pairs of intrinsically quiescent and intrinsically tonic cells give rise to each configuration. For
the numerical experiment, we selected a set of intrinsically quiescent and intrinsically tonic
cells. For each pair, we explored network dynamics over a range of added cell parameters,
as in section 4.2, and produced a diagram of the results, as for Figure 21. We qualitatively
categorized each pair based on the similarity of the resulting diagram to the individual panels
from Figure 21. Figure 24 illustrates the pairs identified for two such panels.

One result of this experiment is that, for each panel in Figure 21, Q cells with diverse
(gNaP , gL) values appear to generate similar synchrony configurations, and they do so by pair-
ing with different T cells. This observation suggests that there may be multiple mechanisms
through which each configuration represented in Figure 21 can arise. Interestingly, the ratio
gL

gNaP
for the quiescent cell seems to be important in selecting the configuration that results,

although the parameters for the T cell contribute as well.
We performed one more simulation to investigate this idea further. For each category from

the above numerical experiment, we took the average value of gL for the intrinsically quiescent
cells together with the average value of gNaP for those cells, to form an average intrinsically
quiescent cell. Similarly, we formed an average intrinsically tonic cell for that category. Then
we performed the simulation from section 4.2.

We found that in several cases the results from the intrinsically quiescent and intrinsically
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Figure 24. An illustration of which pairs of (Q,T) cells give rise to two classes of synchrony outcomes.
The top row shows two examples from Figure 21. In the bottom row, dots corresponding to quiescent cells are
blue, and dots corresponding to tonic cells are black. In each panel, the dots for each intrinsically quiescent
and intrinsically tonic pair are connected if, using the procedure discussed in section 4.2, this pair generated a
synchrony diagram like the one in the panel above.

tonic pair generated with the averaged parameters did not match those generated from the
individual pairs that were averaged. While this result may initially seem surprising, it reflects
the fact that there may be multiple clusters of pairings that produce each configuration,
whereas the average across all relevant pairs may lie outside all such clusters.
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