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Guo Y, Rubin JE, McIntyre CC, Vitek JL, Terman D. Thalamo-
cortical relay fidelity varies across subthalamic nucleus deep brain
stimulation protocols in a data-driven computational model. J
Neurophysiol 99: 1477–1492, 2008. First published January 2,
2008; doi:10.1152/jn.01080.2007. The therapeutic effectiveness of
deep brain stimulation (DBS) of the subthalamic nucleus (STN) may
arise through its effects on inhibitory basal ganglia outputs, including
those from the internal segment of the globus pallidus (GPi). Changes
in GPi activity will impact its thalamic targets, representing a possible
pathway for STN-DBS to modulate basal ganglia-thalamocortical
processing. To study the effect of STN-DBS on thalamic activity, we
examined thalamocortical (TC) relay cell responses to an excitatory
input train under a variety of inhibitory signals, using a computational
model. The inhibitory signals were obtained from single-unit GPi
recordings from normal monkeys and from monkeys rendered par-
kinsonian through arterial 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine injection. The parkinsonian GPi data were collected in the
absence of STN-DBS, under sub-therapeutic STN-DBS, and under
therapeutic STN-DBS. Our simulations show that inhibition from
parkinsonian GPi activity recorded without DBS-compromised TC
relay of excitatory inputs compared with the normal case, whereas TC
relay fidelity improved significantly under inhibition from therapeutic,
but not sub-therapeutic, STN-DBS GPi activity. In a heterogeneous
model TC cell population, response failures to the same input oc-
curred across multiple TC cells significantly more often without DBS
than in the therapeutic DBS case and in the normal case. Inhibitory
signals preceding successful TC relay were relatively constant,
whereas those before failures changed more rapidly. Computationally
generated inhibitory inputs yielded similar effects on TC relay. These
results support the hypothesis that STN-DBS alters parkinsonian GPi
activity in a way that may improve TC relay fidelity.

I N T R O D U C T I O N

The delivery of high-frequency stimulation to the subtha-
lamic nucleus (STN) or other target areas, through a surgically
implanted electrode, has become a widely used therapeutic
option for the treatment of Parkinson’s disease (PD) and other
neurological disorders (Benabid et al. 2006). The mechanisms
underlying the effectiveness of deep brain stimulation (DBS),
however, remain unclear and under debate. Multiple studies
have shown that pathological rhythmicity emerges in certain
subsets of cells within the basal ganglia in parkinsonism
(Bergman et al. 1994; Brown et al. 2001; Hurtado et al. 1999,
2005; Levy et al. 2003; Magnin et al. 2000; Nini et al. 1995;
Raz et al. 2000). Therefore DBS for PD may work by elimi-

nating or modifying such pathological signals. Initial attempts
to address this concept focused on the possibility that DBS
blocks neural activity, creating a physiologic lesion (Beurrier
et al. 2001; Filali et al. 2004; Magarinos-Ascone et al. 2002;
Tai et al. 2003; Welter et al. 2004). According to this theory,
suppression of thalamic firing by inhibition from basal ganglia
output areas, such as the pallidum, is reduced by DBS, and
through this reduction DBS restores the capability of the
thalamus to engage in appropriate movement-related activity
(Benabid et al. 2001; Benazzouz et al. 2000; Obeso et al. 2000;
Olanow and Brin 2001; Olanow et al. 2000).

Recent experimental and computational results, however,
suggest that neurons directly downstream from stimulated
regions may in fact be activated by DBS (Anderson et al.
2003; Hashimoto et al. 2003; Hershey et al. 2003; Jech et al.
2001; McIntyre et al. 2004; Miocinovic et al. 2006; Paul
et al. 2000; Windels et al. 2000, 2003). These results support
the alternative idea that DBS works by replacing pathological
rhythms with regularized firing activity (Foffani and Priori
2006; Foffani et al. 2003; Garcia et al. 2005; Grill et al. 2004;
Meissner et al. 2005; Montgomery and Baker 2000; Vitek
2002). In past theoretical work, we offered a computational
implementation of this idea (Rubin and Terman 2004). We
used Hodgkin-Huxley-type models of cells in the indirect
pathway of the basal ganglia (Terman et al. 2002) to generate
inhibitory output trains, which served as synaptic inputs to a
model thalamocortical (TC) relay cell. In this previous model
system, we assessed TC cell activity under stereotyped repre-
sentations of normal, parkinsonian, and DBS conditions. Our
simulations and analysis demonstrated and explained a mech-
anism by which pathological oscillatory or bursty inhibition
from the internal segment of the globus pallidus (GPi) to TC
cells could compromise the fidelity of TC relay of excitatory
signals, whereas elimination of the oscillations within this
inhibition, even at levels that are elevated relative to normal
conditions, could restore TC cells’ relay capabilities (Rubin
and Terman 2004).

In this study, we use GPi spike trains recorded from normal
control monkeys and from parkinsonian monkeys (Hashimoto
et al. 2003), with or without DBS of the STN region, as the
source of inhibitory inputs to our model TC cells. By doing so,
we circumvent the controversy surrounding the effects of DBS
at the stimulation site. Within this theoretical framework, we
are able to test how biologically observed changes in GPi
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neuronal activity affect TC signal transmission, both in a
single-model TC cell and in a heterogenous population of
model TC cells. TC relay fidelity is evaluated using a train of
external excitatory stimuli applied to the same model TC cells
that receive the recorded inhibitory synaptic inputs from GPi.
Our results show that there is a significant decline in the ability
of the TC cells to relay the excitatory stimuli when they are
exposed to GPi signals recorded under parkinsonian conditions
in the absence of DBS or with sub-therapeutic DBS, defined by
its failure to induce a therapeutic effect on motor symptoms,
relative to GPi data recorded from normal monkeys. Moreover,
relay effectiveness is restored to nonparkinsonian levels by GPi
signals recorded under parkinsonian conditions in the presence
of therapeutic DBS, which induced a measurable improvement
in motor symptoms. Interestingly, while response failures
across a population of TC cells tend to occur on similar trials
in the parkinsonian and sub-therapeutic cases, failures occur
asynchronously under therapeutic STN DBS as well as under
normal conditions, which would moderate their downstream
effect. Finally, to extend these results, we harness a purely
computational approach that allows us to systematically vary
the rhythmicity and degree of correlation within the in-
hibitory inputs that TC cells receive. Our results show that
moderately increasing the burstiness and correlation of inhib-
itory spike trains, as might be expected in a transition from
normal to parkinsonian conditions, leads to a gradual loss of
relay fidelity, while a further transition to tonic high-frequency,
highly correlated inhibitory signals, as may occur in clinically
effective DBS (Hashimoto et al. 2003), leads to significant
restoration of effective relay.

M E T H O D S

Proposed mechanism for DBS effectiveness

In awake states, TC cells serve to relay excitatory inputs (Steriade
et al. 1997). The TC population targeted by GPi cells likely is
involved in the relay of excitatory inputs between cortical areas

(Guillery and Sherman 2002a,b; Haber 2003). The basic idea being
explored in this paper is that changes in inhibitory output from the GPi
to its target TC cell population affect the relay reliability of these TC
cells, defined in terms of the generation of TC activity patterns that
match the inputs to TC cells. Specifically, parkinsonian conditions
induce oscillations, burstiness, and enhanced correlations in GPi
outputs, and these effects are hypothesized to compromise relay
fidelity. We further hypothesize that the effectiveness of DBS is due
to the replacement of pathological GPi firing patterns with more
regular activity. While this regular activity may in fact be overly
regular, and may occur at a higher frequency, relative to the activity
that occurs in nonparkinsonian states, it nonetheless restores thalamo-
cortical relay reliability. This concept is illustrated schematically in
Fig. 1.

These effects on TC relay in parkinsonian and DBS conditions
remain to be demonstrated experimentally, but they were shown to
arise in a previous, purely computational study (Rubin and Terman
2004) where a possible dynamical mechanism that could yield these
results was also explained. The fundamental hypothesis from our
original study was that DBS leads to tonic, regular inhibitory input to
the TC cells, and this allows the activation and inactivation levels of
TC cell membrane ionic currents to equilibrate, such that reliable relay
can occur, as long as excitatory inputs are not excessively rapid.
During parkinsonian conditions, the inhibitory output of GPi features
synchronized oscillations with bursting activity. When a significant
increase in the level of inhibition of TC cells associated with such
oscillations occurs, a period of re-equilibration of the TC ionic
currents ensues. During this time, it is difficult for the TC cells to
reliably respond to excitation (Jahnsen and Llinas 1984a). Further,
after currents have equilibrated to a high level of inhibition, a
relatively abrupt decrease in inhibition can lead to an excessive or
bursty TC response to excitation due to increased availability of
spike-generating and -sustaining currents (Jahnsen and Llinas
1984a,b). We propose that therapeutic DBS reduces this oscillatory
activity in GPi and TC cells, thereby improving the ability of TC cells
to relay information.

Model TC cells

The model used for the TC cells is a slightly modified version of
that used in our earlier study (Rubin and Terman 2004), which is itself

FIG. 1. Hypothesized mechanism for deep brain stimulation
(DBS) effectiveness. In each of the 3 cases shown, the target
thalamocortical (TC) cell receives inhibitory inputs from the
internal segment of the globus pallidus (GPi), which affects its
relay of an excitatory drive. In the normal case, the inhibition
is irregular and relatively weak due to low correlation levels
(represented by 1), and the TC cell successfully relays its
inputs. In the parkinsonian case, inhibition is more bursty and
stronger (■ ) due to enhanced correlations. During each inhibi-
tory burst, the TC cell fails to respond to its drive (i.e., misses),
while its response is excessive (i.e., bad) between bursts. In the
case of supraclinical or therapeutic DBS, inhibition is strong
but quite regular. Despite the strength of the inhibition, suc-
cessful TC relay is restored.
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a simplification of an earlier formulation (Sohal and Huguenard 2002;
Sohal et al. 2000). In this model, the current-balance and ionic
activation equations take the form

Cmv� � � IL � INa � IK � IT � IGi3Th � IE � Iext � �

h� � �h��v� � h�/�h�v�

r� � ��r��v� � r��/�r�v� (1)

In the preceding equations, the terms IL � gL[v � EL], INa �
gNam�

3 (v)h[v � ENa], and IK � gK[0.75(1 � h)]4[v � EK] are leak,
sodium, and potassium spiking currents, respectively, with square
brackets denoting multiplication. Note that we use a standard reduc-
tion in our expression for the potassium current, which decreases the
dimensionality of the model by one variable (Rinzel 1985). The
current IT � gTp�

2 (v)r[v � ET] is a low-threshold calcium current. For
these intrinsic currents, the forms of the functions and the values of
the parameters used appear in Table 1. Note that reversal potentials
are given in mV, conductances in mS/cm2, and time constants in ms.
Further, we have scaled the parameters such that the capacitance is
Cm � 1 �F/cm2. Finally, the resting potential, spike threshold, and
responsiveness of the model TC cell, in the absence of inputs, are
robust to changes of ionic conductances in the model. Durations of
rebound bursts, after release from hyperpolarizing input, may jump
abruptly by tens of milliseconds as gT is varied, however, when an
additional spike is appended to the burst. As is typical for conduc-
tance-based models, the model is less robust to changes in the
threshold and slope constants within its nonlinear terms; however, its
robustness is comparable to other models of this type.

Additional terms in Eq. 1 refer to inputs to the TC cell model. The
equations and parameter values relevant to these terms are summa-
rized in Table 2 with the same units used as in Table 1. Iext

corresponds to a constant background input, chosen at Iext � 0.44
nA/cm2 to yield a firing rate of roughly 12 Hz in the absence of other
inputs and held fixed at this level throughout all simulations. The
value chosen places the model TC cell near transition from silent to
spontaneously oscillatory in the absence of synaptic inputs. Similar

results were obtained whether the model TC cell was intrinsically
silent or oscillatory. By choosing Iext near the transition point, we
achieved wide variations in TC cell behaviors when we introduced
variability into the set of model TC cell parameters as discussed in the
following text. IGi3Th denotes the inhibitory input current from the
GPi and will also be discussed in the following text. IE represents
simulated excitatory synaptic signals to the TC cell. We assume that
these are sufficiently strong to induce a spike (in the absence of
inhibition) and therefore may represent synchronized inputs from
multiple presynaptic cells. In the model, IE takes the form gEs[v � vE]
where gE � 0.05 �S/cm2, so that maximal input is super-threshold,
where vE � 0 mV, and where

s� � ��1 � s�exc�t� � �s (2)

In Eq. 2, � � 0.8 ms�1 and � � 0.25 ms�1. Because we do not
have an explicit representation of a presynaptic neuron in the model,
we use the function exc(t) to control whether the excitatory input is on
or off. Specifically, exc(t) � 1 during each excitatory input, whereas
exc(t) � 0 between excitatory inputs. We used two general forms of
time course for the binary signal exc(t), namely periodic and stochas-
tic, as done in past work (Rubin and Terman 2004). In the periodic
case

exc�t� � H �sin �2	t/p� � �1 � H	sin �2	�t � d�/p � 
 �

where the period p � 50 ms and duration d � 5 ms, and where H(x)
is the Heaviside step function, such that H(x) � 0 if x � 0 and H(x) �
1 if x � 0. That is, exc(t) � 1 from time 0 up to time d, from time p
up to time p  d, from time 2p up to time 2pd, and so on. A baseline
input frequency of 20 Hz is consistent with the high-pass filtering of
corticothalamic inputs observed in vivo (Castro-Alamancos and Cal-
cagnotto 2001); at this input rate, the model TC cells rarely recover
and fire spontaneous spikes between inputs, which simplifies our
analysis. In the stochastic case, input times are selected from a
Poisson distribution, with an enforced pause of 20 ms between inputs
to avoid excessive firing, with the same input duration and amplitude
as in the periodic case and with a mean input frequency of 20 Hz. In
simulations done with stochastic inputs, results shown represent
averages over five simulations, each with a different random input
pattern. The use of a stochastic excitatory input provides one measure
of the robustness of our results to noise. In some simulations, a
small-amplitude white-noise term � is also included in the voltage
equation.

The choice of gE was motivated by the conjecture that strong inputs
would represent important signals and that differences in TC relay of
strong inputs would have the most significant impact on downstream
processing. At the same time, it is unlikely that even strong inputs
would be perfectly synchronized. The values of the rate parameters �,
�, and d were selected based on corticothalamic excitatory inputs
recorded in vivo (Castro-Alamancos and Calcagnotto 2001), assuming
that IE represents a set of temporally proximal, but imperfectly
aligned, cortical inputs to a TC cell. Our qualitative results are robust
to variations in these parameters.

In one set of simulations, we feed the same input currents IGi3Th

and IE into all members of a heterogeneous population of model TC

TABLE 2. Inputs to the TC cell

Background current: Iext � 0.44
Excitatory signal: IE � gEs(v � vE)

s� � �(1 � s) exc(t) � �s
exc(t) � H[sin(2	t/p)](1 � H{sin[2	(t  d)/p]})
gE � 0.05, vE � 0, � � 0.5, � � 0.22, p � 50, d � 5

GPi synaptic input: IGi3Th � gsyn�sj(v � Esyn)
sj
� � ��jsj between spikes

sj
� � 1 after a spike

gsyn � 0.066, Esyn � �85, �j � 0.04
Poisson processes:

Burst duration: minimum: 10 ms
mean: 25 ms

Burst rate: rb 
 [.002, .02]
Minimum interburst interval: 10 ms
Spike rate in bursts: mean 200 Hz
No minimum interspike interval

TABLE 1. TC cell model functions and parameters

Current Activation Inactivation Parameters

IL gL � .05, EL � �70
INa m�(v) � 1/{1  exp[�(v  37)/7]} h�(v) � 1/{1  exp[(v  41)/4]} gNa � 3, ENa � 50

�h(v) � 1/[a1(v)  b1(v)], a1(v) � .128exp[�(v  46)/18], b1(v) � 4/{1  exp[�(v  23)/5]}
IK gK � 5, EK � �90
IT p�(v) � 1/{1  exp[�(v  60)/6.2]} r�(v) � 1/{1  exp[(v  84)/4]} gT � 5, ET � 0

�r(v) � 0.4{28  exp[�(v  25)/10.5]}

TC, thalamocortical.
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cells. In the absence of experimental data on the variability of
particular conductances within TC cells, we chose to form the hetero-
geneous population by selecting gNa, gL, and gT from normal distri-
butions with means given by the values in Table 1 and with SDs given
by 20% of these values, which were sufficiently large to yield a wide
variation in intrinsic TC spike frequencies in the absence of inputs,
without major changes in most other spike-related characteristics, as
discussed in the text following Eq. 1.

Experimentally obtained GPi data

Single-unit extracellular recordings of neurophysiologically identi-
fied GPi neurons were acquired with glass-coated platinum-iridium
microelectrodes in three rhesus macaques (Macaca mulatta). One
animal was a normal nonparkinsonian control, and two animals were
rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-
ridine (MPTP) via a single injection through the internal carotid artery
(Hashimoto et al. 2003). The parkinsonian animals developed a stable
disease state characterized by contralateral rigidity and bradykinesia
and had a chronic DBS electrode implanted in the STN region
(Hashimoto et al. 2003). The chronic stimulating electrode was
connected to a programmable pulse generator (Itrel II, Medtronic)
implanted subcutaneously in the monkey’s back. The stimulating lead
was a scaled-down version of the chronic stimulation electrode used
in humans (Model 3387, Medtronic). The cylindrical lead consisted of
four metal contacts each with a diameter of 0.75 mm, height of 0.50
mm, and separation between contacts of 0.50 mm. The most effective
pair of electrode contacts in the STN region was chosen for bipolar
stimulation in each animal after evaluation of the clinical effects of the
stimulation (Hashimoto et al. 2003). In both the normal and parkin-
sonian monkeys, spontaneous neuronal activity (with the animal at
rest and the head fixed) of electrophysiologically identified GPi
neurons was recorded. In the parkinsonian monkeys, GPi activity was
also recorded during DBS of the STN region. Stimulation parameters
were selected to address two conditions in each animal: stimulation
parameters that produced therapeutic benefit and stimulation param-
eters subthreshold for a therapeutic effect. The therapeutic effective-
ness of DBS was assessed with two quantitative measures of brady-
kinesia as well as a subjective evaluation of rigidity provided by a
trained rater. In each animal, therapeutic stimulation settings were
determined, and then sub-therapeutic settings were obtained by re-
ducing stimulus amplitude until therapeutic benefit was no longer
detected (Hashimoto et al. 2003). Specifically, DBS was applied at a
frequency 136 Hz with therapeutic benefit obtained at 3.3 or 1.8 V and
a pulse width of 90 or 210 �s, depending on the animal, and
subthreshold stimulation at 2 or 1.4 V, again depending on the animal.
To analyze neural activity during stimulation, a template of the
stimulus artifact was constructed by averaging across all peristimulus
segments. The stimulus artifact template was then subtracted from the
individual traces, and neuronal spikes were detected (Hashimoto et al.
2002, 2003).

Collections of several cells from each of the three animals were
used in the analysis. The cells were selected from a database of
recordings to be representative of the population in the normal,

parkinsonian, sub-therapeutic DBS, and therapeutic DBS cases. Three
general characteristics were used to select the cells. First, the exper-
imental recording had good to excellent isolation of the single unit.
Second, the average firing rate of the unit closely corresponded to the
average population firing rates for GPi cells in the four respective
cases (Hashimoto et al. 2003; Wichmann et al. 2002). Finally, the
coefficient of variation of the firing rate was used to identify cells with
firing patterns representative of the four respective cases. The partic-
ular firing characteristics of the cells used are summarized in Table 3
with relevant values from the literature provided for comparison.

Inhibitory inputs to TC cells, derived from GPi data

In most simulations, we used experimentally recorded data, as
discussed in the preceding text, to represent the GPi spike times. For
systematic exploration of the effects of particular features of the
inhibitory input, however, we used computationally generated GPi
spike times. In both cases, the synaptic inhibition from the GPi to a
single model TC cell in our simulations took the form

IGi3Th � gsyn[�j sj][v � Esyn] (3)

where the summation is over the synaptic activation variables sj of the
presynaptic GPi cells, and where the inhibitory synaptic reversal
potential Esyn � �85 mV (Lavin and Grace 1994) and synaptic
conductance gsyn � 0.066 �S/cm2. At each spike time of the corre-
sponding GPi cell, the variable sj was reset to 1, after which it decayed
via the equation

sj
� � ��inhsj (4)

with �inh � 0.04 ms�1. We used a relatively large synaptic conduc-
tance and a synaptic decay rate that is somewhat slower than that
typically found for GABAA-mediated synaptic transmission to make
our single input train more representative of multiple, imperfectly
synchronized synaptic inputs; this approximation will be improved in
future work as multi-unit GPi data are collected experimentally.

Experimental GPi data were recorded from parkinsonian monkeys
before, during, and after the application of DBS (Hashimoto et al.
2003). When we used non-DBS and DBS recordings from the same
cell, we only used non-DBS recordings from the period before the
application of DBS, not from the period after the cessation of DBS, to
avoid any residual effects of DBS on GPi neuronal activity. Moreover,
we selected data segments by counting back in time from the end of
the DBS period, always stopping �2 s away from the start of DBS to
minimize the possibility of our results being affected by transients
associated with DBS onset.

Error index: a measure of TC relay fidelity

The computations in this paper were performed using customized
codes simulated in XPPAUT (Ermentrout 2002; see www.pitt.edu/
�phase) and Matlab (The MathWorks, Natick, MA).

TABLE 3. Firing characteristics of GPi cells

Condition Firing Frequencies, Hz Respective Coefficients of Variation Literature

Normal 51, 67, 80 0.75, 0.89, 0.68 40–70 Hz in Macaca mulatta (Wichmann et al. 1999)

Parkinsonian 55, 55, 59, 60, 66, 70, 78, 80 1.09, 1.54, 1.73, 1.24, 0.88, 0.64, 0.55, 1.21
63.2 � 17.2 Hz and 70.4 � 27.6 Hz in two subgroups

(Hashimoto et al. 2003)

Sub-therapeutic DBS 55, 81, 93, 106 1.05, 0.86, 1.10, 1.22
No significant change from parkinsonian case seen

(Hashimoto et al. 2003)

Therapeutic DBS 54, 83, 99, 156 1.39, 0.95, 0.78, 0.62
81.7 � 37.0 Hz and 112.0 � 36.8 Hz in two

subgroups (Hashimoto et al. 2003)

GPi, globus pallidus; DBS, deep brain stimulation.
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We compute an error index to measure the fidelity with which the
TC cells respond to excitatory inputs, similar to the error index
described previously (Rubin and Terman 2004). Note that we use
relay fidelity to refer to the faithfulness of relay such that a TC cell
that generates a spike train that is very similar to its input train has
achieved high degree of relay fidelity. We are not using fidelity to
refer to the generation of similar responses to multiple presentations
of the same stimulus, which is a form of reliability considered in some
other studies. In brief, the error index that we use consists of the total
number of errors divided by the total number of excitatory inputs.
Errors can take the form of bad responses or misses. Specifically, for
each excitatory stimulus, we record a miss if no TC spike occurs
within a designated detection time window after the input arrives. If
more than one TC spike occurs during this window, then we record
a bad response. Finally, if exactly one TC spike occurs during the
window, then we record a bad response if there are one or more
additional TC spikes before the next input arrives (see Fig. 1). This
algorithm counts at most one error per input; for example, if a TC
cell fires multiple spikes after a single excitatory input, then this is
just counted as a single bad response. In summary, the error index
is given by

error index � �b � m�/n (5)

where b denotes the number of excitatory inputs leading to bad
responses, m the number of excitatory inputs leading to misses, and n
the total number of excitatory inputs. We use a detection window of
10 ms to allow for delays from threshold crossing to action potential
generation. Thus an error index of 0 results if one TC spike occurs
within 10 ms of each excitatory input and no other TC spikes occur
until the next input, corresponding to optimal relay fidelity. With a
shorter detection window, some formerly successful responses would
be classified as misses. However, we did not observe any bias toward
shorter or longer response latencies in any particular inhibition
regime, and indeed, we obtained qualitatively similar results in sim-
ulations with detection windows of 6 and 12 ms.

In theory, our error index could be susceptible to “false positives,”
in which single spike TC responses occur close in time to excitatory
inputs, but not caused by the excitatory inputs. Thus as mentioned
earlier, we use excitatory input rates that are sufficiently high such that
in normal conditions, TC cells rarely recover and fire spontaneous
spikes between inputs. Finally, note that our error index gives a direct
and straightforward measure of relay success that is well suited for our
computational experiments, in which the simplicity of our simulated
excitatory inputs and of the relay process does not warrant analysis
with more standard, yet more complex and indirect, information
theoretic measures.

Burstiness and correlation of inhibitory GPi signals

Much of our analysis concerns ways in which the error index
depends on the burstiness and correlation of the inhibitory GPi signals
sj. To quantify burstiness, we first perform a simple detection algo-
rithm for high-frequency spiking episodes (HFE). In this approach, we
detect all spikes that are preceded by a silent period of �12 ms. Each
such spike is considered to be the start of an HFE if the next spike
follows it by �8 ms. Each subsequent spike is counted as part of the
HFE if and only if it occurs within 8 ms of its predecessor. The
duration of the HFE is the time from the first spike in the HFE to
the last spike in the HFE; see Fig. 2D. More involved statistical
methods exist to compensate for chance epochs of high-frequency
spikes that fit within a given set of HFE criteria of the type given here
(Legendy and Salcman 1985); however, because all such HFE gen-
erate similar inhibitory inputs to TC cells in our simulations, there is
no reason to try to classify them for the purposes of our study. From
the HFE, we compute the elevated spiking time (EST), which is
simply the fraction of the simulation time during which HFE occur.
Hence, when the EST is zero, the GPi signal consists of low-
frequency isolated spikes, a moderate EST corresponds to a highly
bursty signal, and a signal with a higher EST is dominated by HFE,
corresponding to relatively tonic high-frequency firing.

FIG. 2. Examples of inputs from GPi cells to TC cells. A–C: examples of the high-frequency burst portions from computationally generated GPi signals.
A: a low burst rate rb and no overlaps (shared wij) were used to generate these signals, and correspondingly, there are relatively few bursts, leading to a mean
elevated spiking time (EST) of 0.14 across the 2 cells. Moreover, the amount of time during which the traces simultaneously exhibit high-frequency firing is small,
yielding a small correlation time of 0.082. B: a moderate burst rate rb and 2 overlaps were used to generate these signals, and correspondingly, each GPi trace
shows high-frequency oscillations for about half of the total simulation time, with a mean EST of 0.61. Although the times at which these occur are somewhat
correlated, due to the overlaps and chance, the fraction of the total simulation time during which the traces simultaneously exhibit high-frequency firing is �1/2
with a correlation time of 0.45. C: with a high rb and 2 overlaps, each trace exhibits high-frequency oscillations for most of the simulation time, yielding an EST
of 0.85, and the fraction of time during which the traces simultaneously show high-frequency activity is much closer to 1, yielding a correlation time of 0.73.
D: illustration of the algorithm for detection of coincident high-frequency episodes (HFE), applied to experimental data. The times at which HFE occur are read
off of GPi spike trains (top 2 panels; HFE times are indicated with thick black segments in all panels). Next, HFE times are compared and times when both cells
are engaged in HFE are captured (bottom panel).
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The aspect of the correlation between pairs of GPi signals that is
most relevant for our study is the temporal relationship of the HFE
across the two signals. To obtain a single number that represents this
relationship over a simulation of duration T ms, we simply sum the
durations of all epochs during which both GPi cells are engaged in
high-frequency spiking simultaneously and divide by T, yielding a
number between 0 and 1 (Fig. 2D).

Event-triggered averaging, sorted by TC cell responses

An additional computational procedure that we performed on GPi
data was event-triggered averaging. In this procedure, we classified
excitatory inputs into those that were immediately followed by a
missed, a bad, or a successful (i.e., neither missed nor bad) TC
response. For each excitatory input that led to a missed response, we
extracted a 25-ms segment of the GPi input signal to the TC cell,
extending from 20 ms before the start of the excitatory input to 5 ms
after its start. The entire time course of each signal was normalized by
subtracting off the signal’s initial amplitude. We summed these
normalized, “miss-triggered” GPi signals and divided by the number
of missed responses to generate a miss-triggered average GPi signal.
Next we repeated this procedure for bad responses and successful
responses to generate a bad-triggered average GPi signal and a
success-triggered average GPi signal, respectively. In this averaging
process, we combined inhibitory signals leading to the same type of
response from all four inhibitory input regimes (nonparkinsonian,
parkinsonian without DBS, parkinsonian with sub-therapeutic DBS,
and parkinsonian with therapeutic DBS), after verifying that similar
signals emerged in all cases. In total, 40 blocks of GPi data, each of
5-s duration, were used. These yielded 280 bad responses, 667 missed
responses, and 2,223 successful responses, all of which were included
in the averages computed.

Plots of average GPi signals do not include error bars. We chose to
omit them because the error bars for averages of GPi signals could be
large, despite a very high degree of qualitative similarity, such as
when each signal showed an abrupt increase at some time within a
given time window, but the precise increase times were rather diverse.
A similar issue arises in averaging the action potential responses of a
neuron over multiple stimulus presentations or in multi-unit record-
ings, in averaging over action potentials generated by different cells in
response to the same stimulus (e.g., Kapfer et al. 2007). Following the
procedure used by Kapfer et al. (2007), instead of plotting error bars,
we complement plots of average signals with data from a sample of
individual signals that contributed to the averages, selected com-
pletely at random.

Jittered inputs

Note that the experimental GPi data used in this study consist of
single-unit recordings acquired with a single electrode. Therefore it
was not possible to use this data directly to explore how correlations
among multiple GPi inputs to TC cells contribute to the TC cell relay
fidelity. Because we did not have this option, in some simulations, we
used the single-unit GPi recordings to generate multiple GPi signals to
each TC cell. To do this, we first formed N identical copies of a single
GPi spike train. We indexed the spike times within this train as {t1,
t2,. . ., tp}. Next, we introduced jitter by selecting values �ij, i � 1,. . .,
N, j � 1,. . ., p, from a normal distribution with amplitude � (see
RESULTS for � values used). These were used to form the new spike
trains {t11, t12,. . ., t1p},. . .,{tN1, tN2,. . ., tNp} with tij � tj  �ij. After
some experimentation, we found that the qualitative trends induced by
this jittering process are already apparent with N � 2. Given this
observation, we restrict our results to the case of N � 2, and we also
turn to simulated GPi inputs to explore more thoroughly the effects of
different activity patterns and different levels of correlations among
inhibitory signals.

Computational GPi inputs and their burstiness
and correlation

By using purely computational GPi input signals, we were able to
explore systematically how changes in input ESTs and the degree of
correlation between inputs affect TC relay. For simulated GPi inputs,
each signal sj, j � 1,2, in Eq. 2 was formed using a computational
procedure, rather than using experimental data, based on a combina-
tion of five independent point processes, wij, i � 1,. . ., 5; see Fig. 7.
Each point process wij was produced by a set of four Poisson
processes. One Poisson process (p1) was used to generate isolated
spike times. A set of three additional Poisson processes were used to
generate bursts of high-frequency activity that were superimposed on
the isolated spikes. Specifically, a primary Poisson process (p2)
selected HFE onset times with rate rb, while within bursting HFEs, a
secondary process (p3) produced spike times, at high frequencies.
Finally, HFE durations were selected randomly from a third, indepen-
dent Poisson process (p4), with a minimum duration of 10 ms and a
mean duration of 25 ms, for all rb. For each GPi cell in the compu-
tational case, the EST was computed as the sum of the durations of all
HFEs for the point processes used to form the signal sj for that cell.
This approach is computationally simpler than basing the EST on
particular spike times and interspike intervals within each HFE, as
was done in the experimental case, although it yields EST values that
are systematically larger than those obtained in the experimental case.

The five point processes wij were used to generate a single contin-
uous time input signal sj(t) (see Figs. 2 and 3). Specifically, at each
spike time within any of the wij, the variable sj(t) was reset to 1, after
which it decayed continuously via Eq. 4. This approach, of generating
a continuous time signal sj(t) from a collection of point processes wij,
allows for parametric control of the degree of burstiness and the spike
rate of each wij, and hence of each sj(t) (Tateno and Robinson 2006).
The reason that we used multiple signals wij for each sj(t) is that this
allowed us to control the correlation across the sj by using some of the
same signals wij for different j (Galan et al. 2006; see Fig. 7). We refer
to the number of signals wij shared by two GPi cells as the number of
overlaps between them.

To form the total synaptic input conductance to the TC cell as a
function of time, the signals s1(t), s2(t) were summed, as indicated in
Eq. 3, and multiplied by gsyn � 0.04 �S/cm2. This maximal synaptic
conductance value is smaller than was used in the experimental case
to compensate for the replacement of a single experimental GPi signal
with a pair of computational ones.

R E S U L T S

With experimentally obtained GPi inputs, clinically effective
DBS improves TC relay fidelity

We generated GPi inputs to our model TC cell using GPi
spike trains obtained from experimental recordings from a
normal monkey as well as from two parkinsonian monkeys in
the absence of DBS, during sub-therapeutic DBS, and during
therapeutic DBS (Hashimoto et al. 2003), as described in
METHODS. In each simulation, a single GPi train was used, and
hence the sum �j sj in Eq. 3, became simply s1. Figure 3 (top
traces in each panel) shows typical examples of the experi-
mentally recorded GPi spike times and the resulting GPi signal
s1 from each regime. The pattern of GPi activity recorded in
parkinsonian conditions in the absence of DBS led to a GPi
signal (Fig. 3B, top trace) that is much more phasic, featuring
jumps between high and low states, than the relatively constant
signal that appeared when therapeutic DBS was present (Fig.
3D, top trace) or in nonparkinsonian conditions (Fig. 3A, top
trace). In each case, an excitatory input train was delivered
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(Fig. 3, bottom traces) and the effectiveness of the TC cell at
relaying this train was assessed.

If perfect relay fidelity were achieved, the TC cell would
exhibit one voltage spike for each input pulse, possibly with a
short lag due to the delay between threshold crossing and
actual spiking. In the absence of DBS and with subclinical
DBS, however, the TC cell failed to respond to many of the
inputs and generated bursts of multiple spikes to other inputs
(Fig. 3, B and C, middle traces). These results contrast strongly
with the normal and therapeutic DBS cases, which show a
near-perfect relay performance (Fig. 3, A and D, middle
traces).

We calculated the error index based on the computational
TC cell’s relay performance for each of the four cases, namely
control, PD (no DBS), sub-therapeutic DBS, and therapeutic
DBS, both for periodic excitation and for stochastically timed
excitation. Results are shown in Fig. 3, E (periodic) and F
(stochastic), where each data point represents 5 s of simulation
time, with nonoverlapping 5-s GPi data segments used, and is

plotted as a function of the EST of the GPi input signal,
computed as described in METHODS. It is important to note that
for the GPi recordings involved, all available data were used;
that is, we did not select out particular simulation periods based
the resulting error indices. The values of the error index show
that TC cell relay success depends strongly on which form of
inhibitory input the cell receives. Indeed, in both the periodic
and the stochastic excitation cases, the mean performances
across the four regimes were statistically significantly different
(ANOVA, P � 0.0001), and a posteriori pairwise comparisons
yielded significant differences across all pairs of regimes in
both cases as well (Tukey’s honestly significant difference,
P � 0.01 for all pairs), except no significant difference was
found between therapeutic DBS and normal cases either with
periodic excitation or with stochastic excitation. Similar results
were obtained with variations in the rise and decay times of the
excitatory input signals and in the detection window used to
define successful TC responses as well as with the introduction
of small noise as shown in Eq. 1. Once rise times dropped by

FIG. 3. TC relay fidelity improves with clinically effective DBS. A–D: the central trace in each plot shows voltage vs. time for the model TC cell. The voltage
scale on each plot applies to this trace. Offset above each such trace, experimentally recorded GPi spike times (discrete events) are shown along with the
inhibitory signal s1 that these spike times are used to generate (continuous curve, above the spike times, shows s1, with amplitude scaled 100-fold for visibility).
Offset below each TC voltage trace, simulated excitatory input signals are shown (scaled by a factor of 3 for visibility). Note that the same excitatory input signals
were used for all examples shown here and that TC spikes may lag excitatory input times by a few milliseconds, corresponding to delays from threshold crossing
to spike generation. A: control (nonparkinsonian); EST � 0.05. B: parkinsonian without DBS; EST � 0.15. C: parkinsonian with sub-therapeutic DBS; EST �
0.27. D: parkinsonian with therapeutic DBS; EST � 0.55. E and F: error index against EST calculated from simulations of 5-s blocks of data from all 4 cases.
In these plots, results for the different cases are color coded (purple: normal, 2 blocks from each of 3 cells; blue: parkinsonian without DBS, 3 blocks from each
of 3 cells and 4 blocks from 1 cell; green: parkinsonian with sub-therapeutic DBS, 6 blocks from 1 cell and 2 blocks from 1 cell; red: parkinsonian with therapeutic
DBS, 6 blocks from 1 cell and 5 blocks from another cell). Across the 3 parkinsonian cases, each symbol corresponds to the use of data from a particular GPi
cell. For example, results indicated by a blue diamond and a red diamond were obtained using data from the same GPi cell, recorded in the absence of DBS and
with therapeutic DBS, respectively. E: results from 20-Hz periodic excitatory inputs. F: results from excitatory inputs generated by a Poisson process with a
minimum time interval of 20 ms imposed between inputs.
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�20%, the statistical significance of the differences in error
index values between some cases, particularly sub-therapeutic
DBS/normal, began to degrade; however, the qualitative dis-
tinctions between these values remained.

Differences in GPi signals precede different TC
cell responses

As described in METHODS, the TC cell response to each
excitatory input was classified as a miss if the TC cell failed to
spike within a prescribed time window following the input, a
bad response if the TC cell generated multiple spikes in
response to the input, or a successful response. Misses and bad
responses raised the error index, while successful responses did
not. All three types of responses were found, in differing
proportions, in the four scenarios of normal and of parkinso-
nian with no DBS, with sub-therapeutic DBS, and with thera-
peutic DBS. To analyze further the way in which the inhibitory
signal to the TC cell contributed to its responses, we performed
the averaging procedure described in METHODS on the same GPi
input signals used to compute the error index scores (Fig. 3, E
and F). We observed important differences across the resulting
miss-, bad-, and success-triggered GPi signals (Fig. 4; n � 667
miss, n � 220 bad, n � 2223 success). GPi inputs that
preceded TC cell misses showed a substantial rise in strength
over the 25-ms time interval considered. In the face of such a
rise in inhibition, the TC cell would require additional deinac-
tivation of its spike-generating currents, namely INa and IT in
the TC model (1), relative to their resting levels, to respond to
an incoming excitatory stimulus (Rubin and Josic 2007; Rubin
and Terman 2004). This deinactivation occurs relatively
slowly, however, and thus would typically require more than
the 25 ms available here.

Conversely, GPi inputs that preceded bad TC cell responses
showed a substantial decline in strength over the 25-ms interval
considered. Recall that what we classify as bad responses
consist of multiple spikes fired in response to single excitatory

inputs because such responses do not reflect the content of the
input signals. In the presence of a strong inhibitory input,
deinactivation of a TC cell’s spike-generating currents will
occur. The resulting enhanced availability of these currents will
allow for successful responses in the presence of sustained inhi-
bition. When followed by a relatively rapid drop in inhibition,
however, as seen in the bad-averaged signal in Fig. 4, this
additional deinactivation will lead to an excessive response to
excitatory inputs (Rubin and Terman 2004) until it can be negated
by a subsequent slow inactivation of the currents involved.

Finally, GPi inputs that preceded successful TC cell
responses were relatively constant and therefore avoided the
generation of current imbalances. Interestingly, the roughly
constant averaged inhibition level in this case was relatively
high (data not shown). This is consistent with the notion that
DBS of the subthalamic nucleus promotes GPi activity (Hashi-
moto et al. 2003). However, the level of an approximately
constant inhibitory signal has relatively little impact on TC cell
responsiveness to excitatory inputs, after an initial transient
consisting of a few such inputs. This invariance rises because
the inactivation that occurs during each TC spike and the
deinactivation that occurs between TC spikes tend to balance
out over the course of the transient such that the deinactivation
compensates for the inactivation and allows for reliable TC
responses, as long as the excitatory input frequency is not too
high (Rubin and Terman 2004).

DBS leads to dispersion in TC cell failure times

The functional relevance of relay failures in TC cells will
depend on how these failures are distributed across the TC
population. In particular, if one TC cell bursts or fails to
respond to an input but other TC cells in the population
respond to this input appropriately, then the single aber-
rant response is unlikely to have a significant downstream
effect. On the other hand, if multiple TC cells respond
inappropriately to the same input, then this would be more
likely to impact downstream activity.

FIG. 4. Average GPi signals preceding different types of
TC cell responses to excitatory inputs are qualitatively
different. A: the 3 traces shown were formed by averaging
over 25-ms segments of normalized GPi signals s1, span-
ning the arrival times of excitatory inputs to a TC cell. The
signals were aligned such that the excitatory input arrival
times occurred at 20 ms as indicated by the vertical dashed
line in the figure. Signals were averaged separately for
excitatory inputs that produced TC cell misses (n � 667),
bad responses (n � 280), or successful responses (n �
2223). B–D: the values at 0 ms, 20 ms (i.e., excitatory input
arrival time), and 25 ms for a randomly selected sample of
10 normalized miss-triggered (B), bad-triggered (C), or
success-triggered (D) signals, from the sets of signals used
to generate the averages shown in A.
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To test the degree of temporal coincidence of TC response
errors, for each case, we used a representative 3-s segment of
experimental GPi recording to generate an inhibitory signal
that was input to each member of a population of 40 model TC
cells. All TC cells also received an identical excitatory input
train, consisting of 59 pulses delivered at a frequency of 20 Hz.
To enhance the realism of this computational experiment, we
introduced significant heterogeneity into the TC population as
described in METHODS. The parkinsonian and sub-therapeutic
cases in these simulations are characterized by many trials in
which very few TC cells achieve successful relay (Fig. 5). In
contrast, in the normal and therapeutic DBS cases, there are
almost no such trials (Fig. 5). More generally, the frequency
distributions for numbers of TC cells achieving successful
relay vary quite noticeably across the different regimes with a
substantial shift in weight from trials in which most TC cells
exhibit successful relay to trials in which few TC cells relay
effectively and back again as GPi recording conditions switch
from normal to parkinsonian without therapeutic DBS to par-
kinsonian with therapeutic DBS. In particular, there were
statistically significant differences in the frequencies with which
different numbers of TC cells responded successfully between
the therapeutic DBS scenario and the other PD recording
conditions (Kolmogorov-Smirnov test, P � 0.0001 for thera-
peutic DBS/PD as well as for normal/PD, P � 0.01 for
therapeutic DBS/sub-therapeutic DBS) with a statistically

insignificant difference between response frequencies in the
normal and therapeutic DBS cases (P � 0.65).

Figure 5, A2–D2, summarizes this data in four histograms,
one for each case. In each histogram, results are binned
according to the frequency with which different numbers of
TC cells responded to excitatory inputs. For example, of the
59 excitatory inputs, there were 25 inputs to which zero to
eight TC cells responded successfully in the parkinsonian
case without DBS (Fig. 5B2). Inspection of these plots
reinforces the observation that there are many more in-
stances of coincident TC response failures, across a large
subset of the TC cell population, in the parkinsonian case in
the absence of DBS than with either form of DBS, while the
response failures in the presence of DBS tend to be more
temporally dispersed. Moreover, this trend is a gradual one,
with sub-therapeutic DBS representing an intermediate case
between PD and therapeutic DBS, while the temporal dis-
persion of response failures in the case of therapeutic DBS
resembles that of the normal case. Similar results were
obtained when noise was introduced into the TC model, in
addition to heterogeneity (results not shown).

Burstiness and correlation of GPi inputs both affect
TC cell relay fidelity

EXPERIMENTAL CASE. Experimental results have shown an in-
crease in bursting activity, as well as an increase in correlations

FIG. 5. TC cell failures coincide without DBS and are dispersed with DBS. A1, B1, C1, and D1: numbers of TC cells, from a heterogeneous population of
40 cells, responding successfully to each excitatory input in a train of 59 inputs (numbered 2–60, with input 1 discarded due to spurious transients), delivered
at 20 Hz. For consistency, the same periodic excitatory input train was used in all cases (although we checked to ensure that qualitatively similar results held
for Poisson inputs), while the GPi data used to generate the inhibition was taken either from a nonparkinsonian recording (A1), a parkinsonian recording without
DBS (B1), a parkinsonian recording with sub-therapeutic DBS (C1), or a parkinsonian recording with therapeutic DBS (D1). In all cases, a successful response
was defined as a response without a miss or an extra spike, as discussed in METHODS. A2, B2, C2, and D2: for each scenario, TC responses are collected in a
histogram. To form each histogram, excitatory inputs were binned by the number of TC cells responding successfully to them. Each histogram thus shows the
number of trials in which various numbers of TC cells responded successfully.
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across GPi neurons, in parkinsonian conditions, relative to
normal states (Bergman et al. 1994; Brown et al. 2001; Magnin
et al. 2000; Nini et al. 1995; Raz et al. 2000). However, the
effect of such changes on TC relay capabilities has not been
established. Because our experimental GPi data consisted of
single-cell recordings, we could not use this data to assess the
effect of increased correlations between GPi neurons directly.
In our simulations up to this point, however, we had set gsyn for
IGi3Th sufficiently high so that a single GPi input train could
significantly impact TC firing. Based on this, we reasoned that
the single GPi input train could be thought of as a collection of
more than one, perfectly synchronized GPi signals. Corre-
spondingly, we generated two copies of each GPi input train
and divided the amplitude of the corresponding signal for each
copy in half, and then we proceeded to introduce independent,
normally distributed jitter into the input timing in each copy, as
described in METHODS . We then subjected the TC cell to the
jittered pair of inhibitory signals and considered how TC relay
of periodic excitatory inputs varied with the amplitude of this
jitter. We repeated this experiment in parkinsonian and DBS
conditions, averaging over 40 jittered signals generated from a
single baseline 5-s GPi data set for each case (Fig. 6, A and B).

The introduction of jitter within the therapeutic DBS input
train had little effect on the already good TC response fidelity
(Fig. 6C), although a slight smoothing of the GPi input signal,
and corresponding relay enhancement, did result. Jitter ampli-
tude did have some effect on the proportion of time during
which HFE occurred in the GPi signals, as measured by the
EST, and on the correlation of the pair of GPi signals in the
therapeutic DBS case. However, the EST in the presence of
jitter remained high (�0.35, relative to 0.23 in the PD case
without jitter), indicating that GPi inputs remained in a regime
with high rates of high-frequency spiking (Fig. 6, D).

In contrast, the inclusion of jitter resulted in smoothing of
the GPi input signal and, as jitter amplitude was increased,
eventually yielded significant improvement in TC response
fidelity in the absence of DBS (Fig. 6C). It is important to note
that the introduction and gradual increase in amplitude of jitter
decreased the correlation between the GPi inputs to levels near
zero, but it only diminished the EST in these signals by about
one third, as shown in Fig. 6, D and E, such that significant
HFE remained. Indeed, the EST values for the GPi signals in
the absence of DBS corresponded to bursty inhibitory time
courses, featuring significant epochs with and without high-
frequency spiking, for all levels of jitter. Therefore the fact that
the error index dropped with increased jitter in the PD case, as
can be seen in Fig. 6C, shows that input correlations likely play
a role in the compromise of TC cell relay in the absence of
DBS. At the same time, comparison of the PD and therapeutic
DBS cases (Fig. 6, C–E) shows that the error index for the PD
case remains substantially above that for the DBS case, even as
jitter becomes relatively large. This comparison demonstrates
that the phasic or bursty nature of GPi inputs in PD, indicated
here by moderate EST (Fig. 6D), also contributes significantly
to the loss of TC cell relay fidelity. In summary, based on these
findings, we predict that both significant correlations in GPi
activity and phasic burstiness in GPi activity contribute to the
compromise of TC relay fidelity in parkinsonian conditions.

COMPUTATIONAL CASE. To further explore the effect on TC
responses induced by changes in the rate at which HFE occur
and in input correlation, corresponding to the proportion of
time featuring simultaneous high-frequency spiking of GPi
cells, we performed simulations with computationally gener-
ated GPi input trains, for which we could control these input
characteristics directly, as described in METHODS (Fig. 7). In

FIG. 6. Introducing jitter across multiple
GPi signals reduces but does not eliminate
the distinction between parkinsonian and
DBS relay performance. Note that DBS here
refers to therapeutic deep brain stimulation.
A and B: the top 4 panels show GPi input
signals (top traces), TC cell voltage time
courses (middle traces) and excitatory inputs
(bottom traces). The top 2 panels (A, 1 and
2) correspond to the DBS case, with 0 jitter
on the left and � � 0.05 on the right, while
the bottom 2 (B, 1 and 2) correspond to the
parkinsonian case, with 0 jitter on the left
and � � 0.05 on the right. C: error index as
a function of the level of jitter amplitude �
for DBS (F) and parkinsonian (�) simula-
tions, averaged over 40 instantiations of jit-
ter applied to a single GPi data set for each
case. D: EST vs. jitter amplitude for DBS (F)
and PD (�). While EST drops with increas-
ing jitter for both DBS and parkinsonian
cases, the EST values for DBS stay well
above baseline parkinsonian levels and re-
main at a level corresponding to significant
periods of high-frequency firing, while the
EST values for the parkinsonian case remain
bounded away from zero. E: correlation vs.
jitter amplitude for DBS (F) and parkinso-
nian (�) cases. Note that in the parkinsonian
case, the fraction of time spent with the GPi
cells simultaneously exhibiting HFE drops
almost completely to 0 as jitter is increased.
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brief, we generated two computational GPi signals, each of
which depended on five stochastic spike trains, and in each
spike train, HFE occurred with a rate rb. We refer to the
number of spike trains that were common to both GPi signals
as the number of overlaps in the simulation. For a fixed number
of overlaps, we could achieve a range of correlation times by
varying rb. However, with fewer overlaps, a larger rb would be
required to achieve a fixed correlation level. Hence allowing
different numbers of overlaps allowed us to consider more than
just a one-dimensional curve in the two-dimensional space
corresponding to the EST of, and the correlation between, two
inhibitory input signals.

We performed 3-s simulations with a range of rb values and
different numbers of inhibitory input overlaps. For each sim-
ulation, we counted the number of TC misses and bad spikes
(i.e., bursts or spikes not aligned with excitatory inputs, see
METHODS) and used the results to compute the error index,
according to Eq. 5, resulting from application of a 20 Hz
excitatory input train. The range of error index values produced
in our purely computational simulations was similar to that
obtained in our simulations incorporating experimental data
(compare Figs. 3 and 8), which supports the idea that our
computationally generated GPi signals represent a reasonable

generalization of those generated from experimental record-
ings. For each fixed number of overlaps, the relation between
the error index and the correlation between the inhibitory
inputs (achieved by varying rb) seen in our simulations is
nonmonotonic: starting from small inhibitory input correla-
tions, increases in correlations are associated with more relay
errors, while starting from large correlations, further increases
reduce errors in relay (Fig. 8A). A very similar trend also arises
if error index is plotted against the EST of the inhibitory
signals (see following text). Note also that for a fixed moderate
or large value of correlation, the error index decreases as the
number of overlaps decreases. For a given correlation level to
occur with fewer overlaps, HFE must be present in a higher
proportion of the overall inhibitory input signal; that is, the
EST must be higher. Thus the cases with fewer overlaps are
closer to the case of high-frequency tonic inhibition that was
observed to improve relay fidelity in our other simulations
(e.g., Figs. 3 and 6, therapeutic DBS case).

The nonmonotonic dependence of TC relay performance,
measured by the error index, on correlation and EST can also
be illustrated by plotting error index against both correlation
and EST simultaneously (Fig. 8B). Doing so confirms that error
index values peak for moderate inhibitory input EST. As noted
in the preceding text, as the EST increases beyond moderate
levels, the proportion of time during which high-frequency
spikes are present in the inhibitory input trains increases, such
that input trains approach a high-frequency, tonic spiking state
(see Fig. 2) and input currents become relatively constant. In
this regime, error index values decrease significantly, particu-
larly when there are no overlaps (blue circles for large EST),
which is consistent with Fig. 8A. Further, higher error rates are
seen when correlations are higher, at each fixed EST, consis-
tent with the hypothesis that synchronization of bursts of
inhibition enhances their capacity to compromise relay fidelity.

Finally, we decomposed the error index into the fraction of
excitatory inputs for which the TC cell fails to respond (missed
spikes; see Fig. 8C) and the fraction of excitatory inputs to
which the TC cell does respond but does so excessively (bad
spikes; see Fig. 8D). The number of missed spikes rises
significantly from low to moderate inhibitory input EST and
then drops again at high EST. This number depends much
more weakly on correlation, for fixed EST, than on EST itself.

Unlike missed spikes, the number of bad spikes depends
strongly both on correlation and on inhibitory input EST with
the highest bad spike rate occurring for relatively high corre-
lation and moderate EST (corresponding to high burstiness).
For each fixed EST, increased input correlations yield a no-
ticeably higher rate of bad spikes. This trend makes sense
because bad spikes tend to arise via a rebound effect upon the
relatively abrupt withdrawal of inhibition (Rubin and Terman
2004). Such an abrupt withdrawal is more likely to occur with
higher input correlations (also see Fig. 4), whereas lower input
correlations lead to more smeared out input arrival times and
correspondingly less abrupt changes in inhibitory currents.
Similarly, for fixed correlation level, higher EST yield much
lower bad spike rates, likely corresponding to the fact that with
higher EST, the TC cell is subject to significant inhibition from
at least one of its GPi inputs more of the time, making rebound
less likely.

Taken together, the results from our computational model
(Fig. 8) all support three main ideas. First, TC cell relay fidelity

w21 w22

w32

w51

w12w41w31w11

GPi1 GPi2

TC
s1 s2inhibition

excitation

random
signals

overlap

A

B

GPi GPi

FIG. 7. Schematic representation of the numerical generation of GPi spike
times. A: each GPi cell receives and filters a combination of 5 independent
random point processes, wij. An individual point process may belong to the
input set of �1 GPi cell; in this example, there are 2 such overlaps, or shared
wij, with w41 � w42, and w51 � w52. Varying the number of overlaps allows for
control of the correlation across the inhibitory GPi inputs to the TC cell, s1 and
s2 (see Eq. 3), which may affect the TC cell’s responses to incoming excitatory
signals. B: each wij is generated by a set of 4 Poisson processes that determine
the signal’s spike times and degree of burstiness or EST. Specifically, 1
process (p1) selects the times of isolated spikes, a 2nd (p2) selects the burst
onset times or equivalently the times between successive bursts, a 3rd (p3)
selects spike times within bursts, and a 4th (p4) selects burst durations.
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is compromised by inhibitory inputs that display alternations
between the presence and absence of HFE with a significant
correlation, or alignment of HFE, across inputs. This effect
occurs through a combination of increased missed spikes and
increased bad, or excessive, responses. Second, the presence of
a rather tonic, high-frequency inhibitory input train, corre-
sponding to high EST and correlation in our measures, leads to
a relatively constant inhibitory current that reduces both missed
and bad responses and thereby restores TC cell relay fidelity.
Third, both the prevalence of the HFE and the level of the
correlations in the inhibitory input structure contribute to this
effect yet the contributions that these features make are
distinct.

D I S C U S S I O N

The fundamental goal of this study was to quantify how
different patterns of GPi inhibition, generated from experimen-
tal recordings of normal and parkinsonian monkeys with and
without DBS, affect TC relay fidelity. To this end, we sub-
jected a Hodgkin-Huxley-type model TC cell to stereotyped
excitatory signals and evaluated its ability to relay that excita-
tory input while under the influence of experimentally derived
inhibitory pallidal modulation. We also explored a broader
parameter space with computationally generated inhibitory
trains in which the prevalence of high-frequency spiking epi-
sodes and the correlation structure were varied systematically.
Our results show that GPi firing patterns produced in parkin-
sonian conditions without DBS or with sub-therapeutic DBS
and, more generally, rhythmic or bursty inhibitory signals with

correlations in burst timing across cells, tend to compromise
the fidelity of TC cell responses to excitatory signals, relative
to GPi firing patterns arising in normal conditions or in par-
kinsonian conditions with therapeutic DBS. More generally,
improvement in TC relay fidelity was achieved by either
smearing out the arrival times of correlated, bursty inhibitory
signals or by converting inhibitory inputs from bursty to tonic
and high-frequency. Moreover, across a model TC cell popu-
lation, response failures tended to coincide temporally in par-
kinsonian conditions despite heterogeneity in the intrinsic
characteristics of cells in the population, whereas under DBS,
these failures, when they occurred, were temporally dispersed.

Multiple forms of experimental observations suggest that at
least a subset of the excitatory inputs to the pallidal receiving
areas of the thalamus arise from cortical areas (Guillery and
Sherman 2002a–c; Haber 2003). Inputs to thalamic relay cells
have been classified as drivers and modulators, the former of
which act on ionotropic receptors and directly induce firing and
the latter of which are detectable primarily through their
indirect influence on TC responses to driving signals, which
may arise through action on metabotropic receptors (Sherman
and Guillery 1998). Evidence has been amassed that, at least in
certain thalamic areas, the excitatory drivers of thalamic relay
cells represent copies of motor control signals sent from the
cortex. This has led to the idea that a primary function of
thalamocortical relay in the motor thalamus is to help coordi-
nate cortical motor processing by sharing information on both
motor instructions and sensory observations (Guillery and
Sherman 2002b). Inhibitory inputs, on the other hand, have

FIG. 8. The error index rises and then falls again with increasing inhibitory input correlation and EST. A: error index vs. correlation, demonstrating the
dependence of error index and correlation on the number of overlapping signals wij (coded by symbols and color) in the GPi input sets. Results in this and all
other panels are based on simulation epochs of 3 s, with 20-Hz periodic excitation applied; similar results were obtained with Poisson input trains. B: error index
vs. EST and correlation. Different symbols correspond to different numbers of overlaps (circles: 0 overlaps; triangles: 2 overlaps; squares: 4 overlaps; diamonds:
5 overlaps). The error index values are color coded such that warm colors, which occur here for moderate EST/correlation levels, correspond to high error rates
and cool colors, visible here for low and high EST/correlation levels, correspond to low error rates. Note that for moderate EST, GPi firing is bursty, whereas
for high EST, it is high-frequency and more tonic. C and D: the error index is decomposed into missed spikes (C) and bad spikes (D), and the dependence of
each is plotted against EST and correlation. In these plots, the color bars represent the total number of occurrences observed within each 3-s simulation.
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been posited to act as modulatory signals to TC cells (Smith
and Sherman 2002). Our hypothesis about the mechanism
through which parkinsonian conditions and DBS impact motor
performance is consistent with this viewpoint. Specifically, our
computational analysis demonstrates that differing inhibitory
basal ganglia output patterns, as arise in differing nonparkin-
sonian and parkinsonian conditions, lead to significant differ-
ences in the ability of TC cells to relay information transmitted
to these cells from other brain regions. Interestingly, we have
found similar TC relay in nonparkinsonian conditions as in the
parkinsonian case with therapeutic DBS. This finding suggests
a way in which high-frequency stimulation of STN could
restore some measure of “normal” function to the basal gan-
glia-thalamocortical circuit despite its profound impact on GPi
activity patterns. In fact, our error index scores for the thera-
peutic DBS case are even lower than those based on nonpar-
kinsonian data. We are not suggesting, however, that TC relay
in isolation could be a direct measure of expected motor
performance but rather that the impact of GPi firing on TC
relay offers one of what are likely many mechanisms through
which the effects of DBS occur. Moreover, functions that have
been hypothesized to be performed by temporally precise GPi
firing in normal conditions, such as termination of motor
behaviors (Mink 1996; Mink and Thach 1993; Nambu et al.
2002), would presumably be disrupted by DBS, and the im-
pacts of this disruption, as well as relevant compensation
mechanisms, remain to be characterized.

The modulatory impact of GPi inhibition on TC relay in our
model is mediated by the inactivation/deinactivation of spike-
promoting currents, namely a sodium current (INa) and a
low-threshold calcium current (IT) (see also Rubin and Terman
2004). In normal conditions, with a relatively constant inhibi-
tion from the basal ganglia to TC cells, the TC cells act in tonic
mode to relay excitatory inputs, with little IT participation
(Rubin and Terman 2004). In parkinsonian conditions, how-
ever, bursty inhibition leads to two effects that compromise
relay, both of which are evident in Fig. 4. First, relatively
abrupt rises in inhibition lead to failed relay, when excitatory
inputs arrive before INa and IT can deinactivate sufficiently to
overcome the inhibition. Second, subsequent deinactivation of
INa and IT followed by relatively abrupt release from inhibition
leads to activity bursts that do not represent excitatory input
content. Finally, in therapeutic DBS conditions, although the
level of inhibition to TC cells is generally higher than normal,
the lack of inhibitory rhythmicity leaves IT relatively constant
and therefore eliminates most rebound bursts. Moreover, the
added inhibition maintains INa and IT at partially deinactivated
levels, such that the added availability of these currents helps
counter the direct tendency of synaptic inhibition to shunt
spikes, which could otherwise lead to relay failure (Rubin and
Terman 2004).

Within the literature, substantial evidence has been pre-
sented that DBS of the subthalamic nucleus (STN) suppresses
or reduces somatic activity (Beurrier et al. 2001; Filali et al.
2004; Magarinos-Ascone et al. 2002; Meissner et al. 2005; Tai
et al. 2003; Welter et al. 2004). Often this has been interpreted
to mean that the efficacy of DBS stems from such suppression,
through a removal of excessive inhibition from the targets of
basal ganglia outputs (Benabid et al. 2001; Benazzouz et al.
2000; Obeso et al. 2000; Olanow and Brin 2001; Olanow et al.
2000). While this hypothesis is consistent with classical, firing-

rate-based representations of information flow through the
basal ganglia (Albin et al. 1989; Wichmann and DeLong
1996), it is at odds with a variety of studies showing that
DBS activates areas downstream from its target site (Anderson
et al. 2003; Hashimoto et al. 2003; Hershey et al. 2003; Jech
et al. 2001; McIntyre et al. 2004; Miocinovic et al. 2006;
Paul et al. 2000; Windels et al. 2000, 2003). From a rate-based
perspective, the idea that both parkinsonian and DBS condi-
tions lead to increased thalamic inhibition represents a para-
dox. This paradox may be resolved, however, by considering
that DBS changes the pattern, along with the firing rate, of
inhibitory inputs to thalamus (Foffani and Priori 2006; Foffani
et al. 2003; Garcia et al. 2005; Meissner et al. 2005; Mont-
gomery and Baker 2000; Rubin and Terman 2004; Terman
et al. 2002; Vitek 2002). There have been some previous
computational efforts to explore the details of how these
varying firing patterns emerge and depend on a variety of
neuronal and stimulus-related parameters (Grill et al. 2004;
McIntyre et al. 2004). Building on one previous study (Rubin
and Terman 2004), the work presented in this paper fills in
important details of how specific changes in activity patterns
induced downstream from the STN-DBS site can lead to
changes in information processing through the basal ganglia-
thalamocortical loop (Leblois et al. 2006; Rubchinsky et al.
2003), which would likely impact motor behavior. Interest-
ingly, local field potential recordings from the STN of Parkin-
son’s disease patients have shown that movement-related
300-Hz oscillations are restored by levodopa administration
and contribute to related motor improvement (Foffani et al.
2003). These findings have led to the idea that high-frequency
STN DBS could produce clinical benefits not only by disrupt-
ing pathological oscillations but also by driving this rhythm, at
twice stimulation frequency, and thereby supporting motor
processing (Foffani and Priori 2006). Our results tie in nicely
with these ideas, offering one suggestion of how high-fre-
quency oscillations in STN output could be conducive to
normal information flow downstream in the network from the
site of stimulation.

The incorporation of experimentally recorded GPi firing
patterns into our model represents a significant advance in the
computational exploration of the mechanism underlying the
efficacy of DBS. As this work now stands, it represents a
demonstration that in at least some subset of cells, the GPi
firing pattern under parkinsonian conditions could significantly
compromise TC cell relay fidelity, whereas the change in GPi
firing pattern induced by therapeutic DBS could restore relay
fidelity. While alterations in activity undoubtedly vary across
different cells even within the same setting, the existence of
changes of this type in even a subset of cells could be sufficient
to affect downstream processing. One important limitation of
our study, however, was the lack of simultaneous multi-unit
recordings from GPi. While we were able to use computational
techniques to generate simulated multi-unit inputs (Fig. 6) and
to consider the impact of the experimental data on a multi-cell
target population (Fig. 5), future work involving simulta-
neously recorded data will be performed to allow for a more
direct and in-depth consideration of the activity patterns across
the GPi network and the thalamic responses that these patterns
induce.

Another limitation of our study was the use of a relatively
simple TC cell model. We felt that it was appropriate to
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perform our analysis on a model that, while based on
experimental data (Rubin and Terman 2004; Sohal and
Huguenard 2002; Sohal et al. 2000), did not introduce undue
complexity. The promising results of this study lay the
groundwork for future efforts to further evaluate TC relay
fidelity during DBS in more detailed, multi-compartmental
TC cell models (Destexhe et al. 1998; Emri et al. 2000). In
addition, the concepts considered in this work should be
further explored in network models that account for the
interactions of TC cells and the GPi with other brain areas,
such as the thalamic reticular network (Destexhe et al. 1996;
Golomb et al. 1994). In this vein, we have not assigned a
specific source to the excitatory signals to the TC cell in our
model, and we therefore have not considered any source-
specific patterns that might be present in these signals but
rather have used periodic and stochastic excitatory inputs
consistent with past work (Rubin and Terman 2004). A
periodic excitatory signal is nonbiological but provides the
cleanest test of the effect of GPi inhibitory patterns on relay.
For our stochastic excitatory inputs, we felt that, in the
absence of source-specific information, it was reasonable to
select the most widely used and generic form of stochastic
neuronal spike train, namely a Poisson spike train. Our
results do not strongly depend on input period or Poisson
input rate as long as the input frequency is sufficiently high
that there is little intrinsic (i.e., not input-driven) TC firing.
Our results do weaken if individual excitatory input dura-
tions are made to be shorter than a few milliseconds. Thus
in a situation where there is an extremely tight synchroni-
zation of excitatory inputs to a TC cell, relay fidelity
differences between scenarios might be suppressed. We use
a simple error index to quantify TC cell relay fidelity and a
straightforward calculation of elevated spiking time to quan-
tify the burstiness of the inhibitory signals from GPi cells.
While it is possible that a more sophisticated measure would
completely separate all model outputs in a single dimension,
it is rather remarkable that the two simple measures used
here distinguish the normal, parkinsonian, sub-therapeutic
DBS, and therapeutic DBS cases so well (Fig. 3).

As noted in the preceding text, it is highly likely that cortical
areas participate in driving the TC cells targeted by basal
ganglia outputs. It is possible that there could be some rela-
tionship between the cortical input to these TC cells and the
cortical input that enters the basal ganglia through the striatum
or the subthalamic nucleus, which could then be reflected in an
interdependence of the inhibitory and excitatory signals that
the relevant TC cells receive. On the other hand, such a
relationship might be diluted by the multi-synaptic nature of
the cortico-basal-ganglia-thalamic pathway, and if DBS were
applied, its effect would likely be diminished by the strong
DBS signal to the STN. Given the design of our study, we did
not have access to the excitatory inputs to TC cells that were
present when the GPi signals were recorded experimentally.
Thus in our simulations with experimental GPi signals, we
could not consider the effects of any correlations between
cortical signals to TC cells and cortical signals propagating
through the basal ganglia, nor did we find sufficiently precise
experimental characterization of such correlations to justify
including them in our purely computational experiments.
While it is outside the scope of this work, it would be
interesting for future efforts to explore how motor signals

emerging from the basal ganglia and inputs from other sources
interact to shape thalamic firing patterns and how these inter-
actions are modulated by parkinsonian rhythms. Finally, we
have not analyzed the downstream responses to changes in
relay across a TC cell population nor their relevance for motor
performance. Future experimental work to flesh out the details
of the functionally relevant inputs to, and output targets of, the
thalamic cells receiving inhibition from the GPi would prove
useful in pursuing such extensions of this work.
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