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Synchronized Activity and Loss of Synchrony Among Heterogeneous Conditional
Oscillators∗

Jonathan Rubin† and David Terman‡

Abstract. The inspiratory phase of the respiratory rhythm involves the synchronized bursting of a network of
neurons in the brain stem. This paper considers activity patterns in a reduced model for this network,
namely, a system of conductance-based ordinary differential equations with excitatory synaptic
coupling, incorporating heterogeneities across cells. The model cells are relaxation oscillators; that
is, no spikes are included. In the continuum limit, under assumptions based on the disparate
time scales in the model, we derive consistency conditions sufficient to give tightly synchronized
oscillations; when these hold, we solve a fixed point equation to find a unique synchronized periodic
solution. This solution is stable within a certain solution class, and we provide a general sufficient
condition for its stability. Allowing oscillations that are less cohesive but still synchronized, we
derive an ordinary differential equation boundary value problem that we solve numerically to find a
corresponding periodic solution. These results help explain how heterogeneities among synaptically
coupled oscillators can enhance the tendency toward synchronization of their activity. Finally, we
consider conditions for synchrony to break down.
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1. Introduction. The inspiratory phase of the respiratory rhythm may originate in a
network of interacting cells in a region of the brain stem called the pre-Bötzinger complex
(pre-BötC) [17]. Within the pre-BötC, when coupling among cells is blocked, there are silent
cells, cells that spike repeatedly, and intrinsically bursting cells that generate groups of spikes
separated by pauses [12, 14, 17]. The burst frequencies vary among different bursting cells,
depending on differences both in intrinsic cell properties and in inputs to the cells from other
brain regions. Moreover, cells in all groups seem to be capable of bursting, if provided with
appropriate inputs experimentally; hence they are referred to as conditional pacemakers.

Experiments in brain slices have shown that a coupled network of pre-BötC cells typically
displays synchronized bursting oscillations, even though some uncoupled cells are silent or
repeatedly spiking. Indeed, simulations suggest that with only about 10% of the cells in
the network operating in the intrinsic bursting mode when uncoupled, a model pre-BötC
network can still generate a synchronized population rhythm [3, 6]. Within the synchronized
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cell population, details of the bursting pattern, such as precise onset and offset times, may
differ slightly from cell to cell, presumably relating to the presence of intrinsic and input
heterogeneities. Synchronization can also break down as it is replaced by a more complex
bursting pattern such as a 2:1 or 4:1 rhythm, in which some subset of cells joins in only on 1
out of every 2 or 4 bursts of the rest of the cells [3], or perhaps even chaos [7].

In two papers, Butera and collaborators presented simulation results for models for indi-
vidual cells in the pre-BötC [2] as well as for a network composed of these cells [3]. In the
network, only excitatory coupling was included, as synchronized respiratory rhythms in pre-
BötC persist under experimental blockage of inhibition but not under blockage of excitation
[14]. For the most part, each cell was coupled to all other cells, since qualitatively similar
results were found for sparse and full connectivities [3]. Cells also received tonic external
excitatory input, with input strengths varying across the population.

The simulations in [2] captured the fact that individual neurons in the pre-BötC can be
transformed from silent to bursting to repeated spiking states by varying certain parameters.
When coupled, the simulated cells tended to engage in synchronized oscillations. Interestingly,
while coupling among identical cells increased the range of external input levels over which
synchronized oscillations occurred, relative to the oscillatory range for a single cell, networks
of coupled cells with heterogeneities in certain parameter values displayed the broadest such
dynamic range [3]. Thus heterogeneities in intrinsic cellular parameters and in external input
levels are hypothesized to play key roles in enhancing the robustness of the respiratory rhythm
and in shaping the details of cellular activity during these oscillations.

In this paper, we consider a synaptically coupled network of pre-BötC pacemaker cells,
each featuring heterogeneities in certain parameters, with each cell governed by a reduced
version of the conductance-based neuronal model presented in [2]; the model is introduced in
section 2. We treat this system via both simulation and analysis. We perform simulations on
a network of 20 heterogeneous cells with all-to-all excitatory synaptic coupling, with results
presented in section 3. Our simulations, done with XPPAUT (developed by G. B. Ermentrout
[8] and available at http://www.math.pitt.edu/˜bard/xpp/xpp.html), provide a useful tool
for phase space visualization of dynamics of nonidentical coupled oscillators. In particular,
in animations of our results, we display nullclines, which dynamically evolve according to
coupling levels present. For these nullclines, we also show the corresponding curves of knees,
as defined in section 2, which evolve similarly. For oscillatory dynamics, the curves of knees
are crucial in determining which cells are able to oscillate on each cycle of network activity,
and the visualization that we provide gives an extremely clear way to view their role while
network activity is in progress.

For our analytical treatment, we work in the continuum limit, in which the number of
cells in the population is infinite. Our results thus yield a good approximation of network
behavior with large numbers of cells, which is the biologically realistic scenario but for which
direct simulations become difficult. Our analysis, in sections 4 and 5, provides conditions
for the existence of stable synchronized relaxation oscillations in a reduced pre-BötC model.
When these conditions are satisfied, all cells in the network will begin and terminate their
active phases together, although they will do so from a distribution of voltage levels. Our
analysis shows that, when it exists, this synchronized oscillatory solution is unique. It also
yields a formula that pinpoints the location of cells at onset of activity, in an appropriate
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phase space. We prove that this solution is always stable within a certain solution class, and
we provide a general sufficient condition for its stability. Alternatively, for the case of a more
gradual onset of activity, observed in our simulations and in [3] for some parameter values,
we derive in section 6 an ordinary differential equation boundary value problem that can be
solved numerically for the location of the cells at activity onset (or termination). The same
approach can be used to give conditions for synchrony with a gradual termination of activity.
Finally, in section 7, we give a condition under which a cell configuration in phase space will
not generate a synchronized oscillation, and we conclude with a discussion in section 8.

Synchronization of coupled oscillators has received significant attention in past works. In
particular, synchrony is one of many activity patterns considered previously in modeling stud-
ies of networks of synaptically coupled relaxation oscillators (reviewed in [13, 16]). A novel
feature of this paper is the inclusion of the effects of heterogeneity in such a network (see
also [10, 19, 20, 5]). Heterogeneity has been found previously to compromise the robustness
of synchronization in networks of spiking neurons with inhibitory coupling [4, 21]. Our anal-
ysis explains how heterogeneity can actually promote synchrony in a network of relaxation
oscillators with excitatory synaptic coupling, even when some cells in the network would be
unable to oscillate in isolation or with synaptic input only from cells identical to them. Similar
mechanisms are likely to act to promote synchrony in heterogeneous populations of bursting
neurons.

2. Model.

2.1. Single cell. We model each cell by a system of ordinary differential equations of the
form

v′ = f(v, h) + Iapp + Isyn,
h′ = εg(v, h).(2.1)

Here v(t) represents the membrane potential of the cell, and h is a channel state variable, as
described below. The parameter Iapp denotes an applied current, and ε > 0 is assumed to
be a small, singular perturbation parameter. The term Isyn encompasses coupling from other
cells; it is described in detail below.

Suppose, for now, that Isyn = 0. We assume that the v-nullclines {f(v, h) + Iapp = 0}
are cubic-shaped for all values of Iapp of interest. Moreover, the h-nullcline {g(v, h) = 0} is a
monotone decreasing curve that intersects each of the v-nullclines at a single point, denoted by
p0 = p0(Iapp); see Figure 1. We further assume that v′ > 0 (< 0) above (below) the v-nullcline
and h′ > 0 (< 0) below (above) the h-nullcline. It follows that, if p0 lies on the middle branch
of the v-nullcline, then (1) exhibits a stable limit cycle for all ε sufficiently small, while, if p0
lies on either the left or right branch of the cubic nullcline, then p0 is a globally stable fixed
point for all ε sufficiently small.

In the simulations that follow, we consider a specific instance of (2.1), namely, the conduct-
ance-based model

Cmv
′ = −gNam∞(v)h(v − vNa)− gL(v − vL) + Isyn + Iapp,

h′ = (h∞(v)− h)/τh(v),
(2.2)
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Figure 1. Numerically generated nullclines for (2.2) in the (v, h)-phase plane, with parameters from the
appendix. (a) Increasing excitatory input Iapp > 0 (from I1 = 10 to I2 = 25) lowers the v-nullcline (here
Isyn = 0). Cells with a range of Iapp values can all be visualized in the same phase plane; an example
representing the position of 15 cells is shown by the dark curve of circles. (b) Excitatory synaptic inputs further
lower nullclines for v < vsyn. The dark curve denoted by asterisks gives a numerical approximation to the left
curve of knees for Isyn = 0 and for Iapp ranging from I1 up to I2. (c) Uncoupled (hLK(Iapp)) and effective left
knees. The solid curve shows the left knee curve from part (b). The other curves show effective knees computed
numerically for gsyn/N = .005 (dotted) and gsyn/N = .01 (dashed) with Isyn computed by assuming that cells
jump up to the active phase in order of decreasing Iapp. Larger gsyn lowers the effective knees, promoting
synchrony.

where h∞,m∞ are monotone decreasing and increasing sigmoidal functions, respectively. The
full functional forms and parameter values used are given in the appendix; these are based on
models in [2, 3] but with sodium and potassium spiking currents blocked. The first equation
in (2.2) describes the evolution of the voltage across a cell’s membrane, with capacitance Cm,
in terms of a persistent sodium current (INaP in [2, 3]), a leak current, and input currents.
The second equation describes the slow inactivation of the persistent sodium current. For
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biophysically relevant parameter values, (2.2) can be considered as singularly perturbed, since
h evolves much more slowly than v.

The v-nullclines of (2.2) for different values of Iapp, with Isyn = 0, are shown in Figure 1a,
along with the h-nullcline. On each nullcline, the left branch corresponds to the silent phase,
where a neuron fires no spikes, and the right branch corresponds to the active phase, where a
neuron is said to be spiking. For all values of Iapp considered, the v-nullcline has two saddle-
node points, or knees, where the branches coalesce; see Figure 1b–c. We refer to these as a
left knee at a smaller value of v and a right knee at a larger value; we denote the left curve
of knees by (vLK , hLK)(Iapp) and the right curve by (vRK , hRK)(Iapp). Let Imax denote the
maximum of the values of Iapp over the cell population, and set hLK = hLK(Imax).

Note from (2.2) that increasing Iapp lowers the v-nullclines. If Iapp is sufficiently small,
then the fixed point p0 lies on the left branch of the v-nullcline, and the system is said to
be excitable. For larger values of Iapp, the fixed point lies on the middle branch of the cubic
nullcline, and the system is oscillatory, with a periodic solution that jumps up from the silent
phase to the active phase and then down from the active phase to the silent phase. Thus this
system captures the conditional pacemaker property of pre-BötC cells.

Simulations in [3] show that the biological effects of heterogeneities among cells in the
pre-BötC are reproduced by introducing heterogeneities in the applied current Iapp and in
the intrinsic parameters vL and gNa in (2.2). The influences of heterogeneities in Iapp and
vL in (2.2) can be combined by defining a new parameter Ĩapp = gLvL + Iapp. For notational
convenience, we will instead, without loss of generality, fix gLvL and restrict variations to Iapp.
In this paper, we will focus on heterogeneities in Iapp, although we mention specific influences
of heterogeneities in gNa in the discussion.

2.2. Synaptic coupling. We now describe Isyn, the coupling between cells. First, consider
a population of N discrete cells, and let the coupling to cell j be given by

Isyn =
gsyn
N

(
N∑
k=1

s∞(vk)

)
(vsyn − vj),(2.3)

where

s∞(v) = 1/(1 + exp((v − θs)/σs)).
Here we are assuming that the coupling is all-to-all and homogeneous. (That is, the form of
s∞ does not depend on the index k.) Note that, if σs is very small, then s∞(v) ≈ H(v − θs),
where H is the Heaviside step function; that is, s∞(v) ≈ 0 if v < θs, and s∞(v) ≈ 1 if v > θs.
In the analysis, we assume that s∞(v) = H(v − θs). The value θs is such that a cell’s voltage
increases through θs as it jumps up to the active phase.

In (2.3), gsyn > 0 represents the maximal synaptic conductance, and vsyn is the synaptic
reversal potential. We will choose vsyn so that vk(t) < vsyn for each k along every solution of
interest. This implies that Isyn is always positive, corresponding to excitatory coupling; see
Figure 1b.

In the analysis, we will consider the continuum limit of infinitely many cells. We assume
that each cell is parameterized by a point x in some domain D. One may view D as some
subset of R

3; however, this is not necessary. We then denote the dependent variables as
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v(x, t) and h(x, t). As before, heterogeneities will be in the applied currents, which we denote
as Iapp(x). We then let

Isyn(x, t) = (gsyn/V ol) (vsyn − v(x, t))
∫
D
s∞(v(x, t))dx,(2.4)

where s∞ is defined as above and V ol =
∫
D dx.

When Isyn = 0, the h-values hLK(Iapp), hRK(Iapp) for the knees of the v-nullcline are
defined by solving the two equations f + Iapp = 0 and ∂f/∂v = 0. Suppose that all cells with
the same value of Iapp are synchronized, such that the parameterization by x is equivalent to
a parameterization by Iapp. For Isyn > 0 given by (2.4), the equations f + Isyn + Iapp = 0
and ∂(f + Isyn)/∂v = 0 then define curves h(Iapp) as well. When solutions exist, we refer to
these as effective knees. The effective knees will be crucial for determining which cells jump
up to the active phase in a network oscillation. An example appears in Figure 1c, based on
the assumption that cells jump up to the active phase in order of decreasing Iapp, such that
Isyn becomes larger for cells with smaller Iapp. The role of the effective knees is illustrated in
the numerical simulations in the next section. Note that, in Figure 1c, the effective curve of
knees may be nonmonotone due to the larger value of Isyn that occurs for smaller Iapp when
cells jump up to the active phase in order of decreasing Iapp.

3. Numerical simulations of network activity. In this section, we present numerical sim-
ulations of (2.2) that illustrate different population rhythms exhibited by the model network.
We consider a population of 20 cells and denote the dependent variables corresponding to cell
i, 1 ≤ i ≤ 20, as (vi(t), hi(t)). We assume that the heterogeneity parameter Iiapp varies in
a uniform linear fashion between Imin = 10 and Imax = 25. Note that, when Iapp = Imin,
system (2.2) with Isyn = 0 is excitable, while, if Iapp = Imax, then (2.2) is oscillatory. We
demonstrate how the population rhythm changes as we vary the parameter ḡsyn = gsyn/20.

First suppose that ḡsyn = .012. Then the cells’ activities are fairly well synchronized. This
is demonstrated in Figure 2a, where we show the evolution of each vi(t). Note that all of the
cells jump up to and down from the active phase at approximately the same times. Further,
ordered jumping up occurs, such that cells with larger values of Iapp jump up before cells with
smaller Iapp, as seen in the simulations in [3].

Perhaps a more illuminating way to present this solution is presented in Figure 3. This
shows the evolution of each (vi(t), hi(t)) in the same (v, h) phase plane, along with the cubic-
shaped v-nullclines (in black for ilow ≡ Imin and in red for ihigh ≡ Imax) and effective
knees corresponding to different levels of applied current and synaptic coupling. The synaptic
coupling level is displayed in the upper-right corner as stot, defined as

∑20
k=1 s∞(vk). Cells are

color-coded according to their Iapp values, with red for largest Iapp and dark blue for smallest
Iapp, and the effective left and right knees for each cell share its coloring. As stot changes,
the effective knee positions move correspondingly. From this animation, we can observe that
the cell with largest Iapp jumps up first. Moreover, since the excitatory coupling lowers the
nullclines and corresponding knees for cells while any cells are in the active phase, we see that
synaptic coupling here prolongs active phases and slows oscillation frequency relative to the
uncoupled case (as a consequence of fast threshold modulation; see [18]). This is similar, but
complementary, to the mechanism by which inhibition can speed up rebound burst frequency
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Figure 2. Voltage versus time for synchronized oscillations of 20 heterogeneous pre-BötC cells. Moving
horizontally across the figure corresponds to picking out different cells in the network. Time evolves downward.
Voltage is coded in greyscale. The range of voltages encoded is limited to −30mV up to −10mV in order to
focus sharply on the active phases of oscillations, which correspond to the dark bands in the figure. Cells with
larger Iapp values are labelled by higher numbers, appearing to the right in the figure. Note that cells with large
Iapp tend to jump up earliest in each cycle. (a) ḡsyn = 0.012 gives a fairly unified jump-up. (b) ḡsyn = 0.009
gives a more gradual jump-up.

in networks [11], and it agrees with the observation in [3] that excitatory synaptic coupling
slows oscillation frequency.

Figure 3 clearly demonstrates that each cell, while in the silent (active) phase, lies along
the left (right) branch of the cubic corresponding to the level of applied current and synaptic
input it is receiving. The positions of all of the cells at each fixed time approximates a curve
that evolves in the (v, h) phase plane. We refer to this curve as a snake of synchrony. The
primary goals of this paper are to derive conditions for when such a synchronous solution
exists and to derive an analytic expression for the corresponding evolving snake curve.

Remark 3.1. Generally, a synchronous solution can be defined as one in which all cells
jump up to the active phase on each cycle, and no active cell jumps down until all cells have
jumped up. In our analysis, we will consider different types of synchronous solutions. In one,
cells will jump up at the same moment in time, in an appropriate sense. In another, we allow
cells to jump up at different times, but we require that no active cell jumps down until all of
the other cells are active. In both cases, we assume that cells with Iapp = Imax jump up first
and that cells jump up in order of decreasing Iapp, as observed in simulations.

As we gradually decrease gsyn, and thus ḡsyn, different cells may jump down first, and
then the jump-up may become less unified (Figures 2b and 4). Note from Figure 2b and
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Figure 3. Animation of a simulated synchronized oscillation with unified jumps (ḡsyn = .012). Since all
cells jump up at similar times, they end up fairly close together in the active phase, as shown in this still frame.
Since all cells are in the active phase in the still frame, stot =

∑20

k=1
s∞(vk) = 20.

Figure 4 that the same cell (with I = Imax) jumps up and down first; as gsyn is weakened
and the jump-up becomes more gradual, cells become unable to catch up to the lead cell
with I = Imax in the active phase. Finally, for still smaller gsyn, synchrony is lost, and more
exotic population behaviors arise. For example, suppose that ḡsyn = .00825, and consider
the solution shown in Figures 5a and 6. Note that the entire population breaks up into two
groups. Cells within each group are fairly well synchronized; however, one of the groups jumps
up to the active phase only during every second cycle of the other group. As we decrease gsyn,
solutions become increasingly more complicated. Figures 5b and 7, for instance, show that,
when ḡsyn = .0035, the solution appears to be quite irregular and possibly chaotic. Moreover,
cells with Iapp < Imax may now jump up first on certain cycles, as seen in Figure 7. This can
happen because, when a cell fails to jump up on one cycle, it can end up quite close to its
uncoupled knee in the silent phase after active cells jump down on that cycle. Finally, when
gsyn is sufficiently small, cells behave essentially as if they are uncoupled.

4. Analysis of snakes—preliminaries.

4.1. Introduction. Here and in section 5, we derive an analytic expression for a periodic
solution to (2.1), consisting of a snake of synchrony for which all cells become active on each
cycle of network activity, and conditions for when such a solution exists. In order to derive
the analytic formulas, it will be necessary to make several simplifying assumptions on the
nonlinear functions in (2.1). These assumptions are based on the numerical simulations of

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40323_03.gif
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Figure 4. Animation of a simulated synchronized oscillation with gradual jump-up (ḡsyn = .009). The
gradual jump-up causes cells to be quite spread out in the active phase, as shown in this still frame.

(2.2) discussed above as well as the forms of the nonlinearities in (2.2), as discussed below
and in the appendix. In particular, to derive explicit formulas, we assume that all cells jump
up and down together, in a sense to be made precise below. This is quite accurate for large
gsyn. In section 6, we allow for more gradual jumping. This does not lead to an explicit snake
formula but rather to a single ordinary differential (with respect to Iapp) equation boundary
value problem that can be solved numerically for the periodic solution, expressed as a curve
parameterized by Iapp.

Recall that a snake of synchrony is a curve in the (v, h) phase plane, parameterized by
the position x ∈ D, that evolves in time. For our analysis, it will be more convenient to
parameterize the snakes by the heterogeneity parameter Iapp, which we usually write as simply
I. As noted earlier, this is justified if all of the cells with the same input Iapp are completely
synchronized; that is, if Iapp(x1) = Iapp(x2), then (v(x1, t), h(x1, t)) = (v(x2, t), h(x2, t)) for all
t. Under this assumption, we denote the snake as (v(I, t), h(I, t)) for Imin ≤ I ≤ Imax, where
Imin and Imax are the minimum and maximum values of Iapp for x ∈ D, respectively. (It is
assumed that each of Imin and Imax is attained for some x in D, justifying the notation, and
that both are finite.) We shall refer to either the cells with input I or the position in phase
space of these cells as cell(I).

We assume that, initially, the snake is in the silent phase with one of the cells at a left
knee ready to jump up. This will turn out to be the cell (or cells) with the maximum applied
current Imax, as discussed in the previous section and Remark 3.1. We then follow the snake
around in phase space until it completes one cycle. This cycle consists of four pieces: the

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40323_04.gif
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Figure 5. Voltage versus time for asynchronous rhythms of 20 heterogeneous pre-BötC cells. (a) With
ḡsyn = .00825, three oscillation cycles are shown; in the first and third, several of the cells with small Iapp fail
to become active. (b) With ḡsyn = .0035, participation in the oscillations is irregular, especially for cells on the
edge of the participating and nonparticipating regions of the population.

jump-up, the active phase, the jump-down, and the silent phase. We analyze the evolution
of the snake over each of these pieces in the subsections below. The analytic formula for
the snake is then obtained by assuming that the snake returns after one complete cycle to
precisely the position from which it started. We derive the formula for the position of the
snake at jump-up, although this could be done similarly for the snake position at other stages
in a cycle.

4.2. The silent and active phases. We now derive equations for the evolution of the cells
during the silent and active phases. The first step is to introduce the slow time scale τ = εt
in (2.1). We then set ε = 0 and Itot(x, t) = Iapp + Isyn(x, t) to obtain the reduced equations

0 = f(v, h) + Itot,

h′ = g(v, h),
(4.1)

where differentiation is now with respect to τ . The first equation states that the cells lie along
either the left or right branch of the cubic v-nullcline determined by Itot; we refer to these
nullclines simply as cubics below. We denote these branches as

v = vL(h, Itot) and v = vR(h, Itot),
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Figure 6. Animation of a simulated solution that breaks up (ḡsyn = .00825). This still frame shows the
red and orange cells, with largest Iapp, beginning to jump down, while the darkest blue cells, with smallest Iapp,
have failed to reach their effective knees for jump-up.

respectively. Substituting this into the second equation of (4.1), we find that the slow variables
h satisfy scalar equations of the form

h′ = g(vα(h, Itot), h) ≡ Gα(h, Itot),(4.2)

where α = L or R depending on whether the cell lies in the silent or active phase, respectively.

We next make some simplifying assumptions on the nonlinear functions. These will allow
us to solve the scalar equations (4.2) explicitly. We first consider the active phases, during
which the cells lie along the right branches of certain cubics. For these values of (v, h), we
assume that

h′ = GR(h, Itot) = −ρh(4.3)

for some positive constant ρ. In order to justify this assumption, we consider the biophysical
model (2.2), in which

g(v, h) = (h∞(v)− h)/τh(v).(4.4)

For the parameter values given in the appendix, one finds that h∞(v) is extremely small
and τ(v) is nearly constant while the cells are in their active phases. This then leads to the
approximation (4.3).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40323_06.gif
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Figure 7. Animation of a simulated irregular solution (ḡsyn = .0035). In this still frame, note that cells
with Iapp < Imax have jumped up first in this oscillation cycle. Since only two cells are active in the still frame,
stot = 2.

Now consider the silent phases, during which cells lie along the left branches of the ap-
propriate cubics. We will assume that GL(h, Itot) is linear. More precisely, assume that there
exist positive constants a, b, and c such that

h′ = GL(h, Itot) = −ah− bItot + c.(4.5)

This will be the case if g(v, h) is given by (4.4), h∞(v) is linear, τh(v) is constant, and each
of the left branches is linear. Of course, none of these conditions are precisely satisfied.
However, we demonstrate later that these assumptions lead to a very good approximation of
the synchronized snake.

Remark 4.1. Recall that hLK = hLK(Imax), the h-value of the left knee of the v-nullcline for
Iapp = Imax. Since we assume that there is no fixed point on the left branch of the v-nullcline
for Iapp = Imax, we have

− ahLK − bImax + c > 0.(4.6)

4.3. Jumping up. In section 5, we will consider synchronous snakes with the property
that all of the cells jump up together, with respect to the slow time scale. In section 6,
we consider snakes that jump up more gradually. The reason why simultaneous jump-up is
possible is that, when one cell jumps up, the synaptic inputs to all of the other cells increase.
This lowers the cubics associated with the other cells. If one of the other cells lies above the left

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40323_07.gif
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knee of its lowered cubic (i.e., above its effective left knee), then that cell will also jump up to
the active phase, leading to the further lowering of the cubics. Since the jump-up takes place
on the fast time scale and the Heaviside synaptic variables s∞(v) respond instantaneously, it
is possible for all of the cells to jump up together with respect to the slow time variable τ .

We now derive an expression for when the cells do jump up together as described above.
Cells with Iapp = Imax jump up when they reach their left knee. Motivated by Remark 3.1,
we assume that the cells that jump up do so in order of decreasing Iapp. Fix I ∈ [Imin, Imax),
and assume that each of the cells with I < Iapp < Imax jumps up at the same moment as
cell(Imax). We wish to determine whether cell(I) must also jump up at that moment, that
is, whether it lies above the left knee of the appropriate cubic.

Let (v(I), h(I)) denote the position of cell(I) in (v, h) phase space, where v(I) = vL(h(I), I),
at the moment when the cells with Iapp > I jump up. From (2.4), it follows that the synaptic
input to cell(I) is

Iusyn(I) ≡ (gsyn/V ol)(vsyn − v(I))µ{x : Iapp(x) > I},(4.7)

where µ is the usual Lebesgue measure and V ol is the same normalization factor given in (2.4).
Essentially, µ{x : Iapp(x) > I} gives the volume of the subset of D on which Iapp(x) > I. We
assume henceforth that Iusyn(I) is a continuously differentiable function of I on (Imin, Imax).
Following the notation introduced in the preceding section, we find that cell(I) will jump up
if

h(I) > hLK(I + Iusyn(I)).(4.8)

Hence, if this last condition is satisfied for all I ∈ [Imin, Imax], then all of the cells will jump
up together. In subsection 5.2, we demonstrate how this leads to an explicit condition on
parameters and nonlinear functions in (2.2) for the existence of a snake of synchrony.

4.4. Jumping down. For the solutions under consideration in sections 5 and 6, all cells
jump down at the same time with respect to τ , from right knees hRK(I) which depend on I.
This is possible through a mechanism analogous to that described above for synchronous jump-
up. Jump-down is initiated when cell(Id) reaches its right knee for some Id ∈ [Imin, Imax].
Once this occurs, then, for each I �= Id, the loss of synaptic input to cell(I) from the jumping
down of other cells raises the effective right knee of cell(I) sufficiently high that h(I) < hRK(I+
Isyn(I)) for the appropriate value of Isyn(I), and cell(I) jumps down. Since any cell(Id)
may initiate the jump-down, writing an expression analogous to (4.7) for Isyn(I) at jump-
down becomes complicated (although, for special cases, we can derive a jump-down condition
analogous to (4.8)). Instead, we simply assume that all cells jump down together. This
assumption is based on numerics showing unified jump-down for all synchronous solutions.
Moreover, while no cells have critical points on their right branches, all cells’ right knees come
close to h∞(v) in the active phase for the parameter values in the appendix. Thus, based
on (4.4), all cells become compressed toward their right knees in the active phase, promoting
unified jump-down.
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5. Linear snakes: Cells jump up and jump down together.

5.1. Snake formula. We assume throughout this section that all of the cells jump up and
jump down together, with respect to the slow time scale. Although this condition may not
hold, in general, we will demonstrate that, for strong coupling, it does lead to a very good
approximation for the snake. We shall derive an explicit formula for the initial (jump-up)
position h(I) ≡ h(I, 0) of a periodic snake of synchrony. It will follow that h(I) must be
linear in the case of synchronized jumps.

Suppose that the first cell to jump down is cell(Id) and this cell jumps down at the right
knee, whose position we denote by hdRK . (Note that it is possible that Id �= Imax.) Then the
time that cells spend in the active phase after they jump up is the time for cell(Id) to evolve
from hd ≡ h(Id) to hdRK under (4.3), namely, TA = 1

ρ ln(hd/h
d
RK). At this jump-down time,

each cell has a position given by h(I, TA) = h(I)h
d
RK/hd.

We next consider when the cells are in the silent phase after they jump down. During this
time, Isyn = 0. Hence each cell evolves according to (4.5) with Itot = I and initial position
h(I, TA). It follows that, while in the silent phase,

h(I, τ) = h(I)
hdRK

hd
ea(TA−τ) + ΛI(1− ea(TA−τ)),(5.1)

where we set

ΛI = (c− bI)/a,(5.2)

which is the value of the critical point of (4.5) for Isyn = 0. One cycle is completed when
cell(Imax) returns to its left knee, hLK ≡ hLK(Imax). If this is at time T , then, setting
TS = T − TA, (5.1) yields

h(I, T ) = h(I)
hdRK

hd
e−aTS + ΛI(1− e−aTS ) ≡M(h(I)).(5.3)

Now a periodic snake of synchrony corresponds to a fixed point of the operator M(h(I)).
In particular, for I = Imax, setting ΛI = ΛM ≡ ΛImax in (5.3) gives

hLK = hLK
hdRK

hd
e−aTS + ΛM (1− e−aTS ).

Multiplying through by h(I)/hLK gives

h(I) = h(I)
hdRK

hd
e−aTS +

ΛMh(I)

hLK
(1− e−aTS ).(5.4)

We now have expressions for M(h(I)), from the right-hand side of (5.3), and h(I), from (5.4).
The corresponding fixed point equation M(h(I)) = h(I) has a unique solution, given by the
analytic expression

h(I) = hLK

(
ΛI

ΛM

)
= hLK

(
c− bI
c− bImax

)
.(5.5)
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Note that the value of h(I) given in (5.5) is attainable by the evolution of (4.5), since it
lies below the critical point of (4.5) for each I. This holds since hLK < ΛM by (4.6), while the
critical point of the h-equation for fixed I is ΛI . In Figure 8, the fixed point snake position
at jump-up predicted by (5.5) is compared to the snake position at jump-up from numerical
simulations of the pre-BötC network (2.2), with 20 cells, for gsyn/20 = .012, which leads to
relatively simultaneous jumps (see Figures 2a and 3).
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Figure 8. Fixed point snake positions at jump-up. The dashed curve shows the estimate from formula (5.5),
and the solid curve shows the result from numerical simulations of (2.2), with 20 cells, both for gsyn/20 = .012.

Remark 5.1. Interestingly, formula (5.5) for the snake does not depend on any parameter
associated with the active phase or the synaptic coupling between cells. Such parameters may
affect whether or not cells all jump up together, but if this does happen, then (5.5) gives the
position of the snake of synchrony at jump-up.

5.2. Jump-up condition. When deriving the snake formula, we assumed that all of the
cells jumped up together. Here we use (4.8) to derive conditions on the parameters for when
this must be the case. For simultaneous jump-up, the left-hand side of (4.8) is given by the
snake formula given in (5.5). It remains, therefore, to estimate terms on the right-hand side
of (4.8).

Choose λ1 so that, if (v, h) lies in the silent phase (with Isyn = 0), then

vsyn − v > λ1.(5.6)

We assume that there exists λ2 > 0 such that

µ{x : Iapp(x) > I} ≥ λ2(Imax − I)(5.7)

for all I ∈ [Imin, Imax]. The existence of a strictly positive λ2 such that (5.7) holds requires
that the distribution of I values does not have an exponentially decaying “tail” near Imax.
Such a tail would lead to a gradual jump-up, which is discussed in section 6.
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Now let Iusyn(I) be as in (4.7), and set λ0 = λ1λ2. It then follows from (4.7), (5.6), and
(5.7) that

Iusyn(I) > gsynλ0(Imax − I).(5.8)

Finally, we assume that we can bound hLK(I) between two linear functions of I; that is, there
exist positive constants m1 and m2 such that

m1(Imax − I) < hLK(I)− hLK < m2(Imax − I)(5.9)

for all I ∈ [Imin, Imax]. (Recall that hLK ≡ hLK(Imax).) Together with (5.8), this implies
that

hLK(I + Iusyn) < hLK +m2(Imax − I)(1− gsynλ0).(5.10)

A straightforward calculation, combining (4.8), (5.5), and (5.10), then demonstrates that (4.8)
is satisfied if

gsyn >
1

λ0

(
1− bhLK

am2ΛM

)
,(5.11)

that is, if the synaptic coupling is sufficiently large.

When deriving the snake formula, we also assumed that cell(Imax) is the first to jump up.
This will be the case if

h(I) = hLK
ΛI

ΛM
< hLK(I)

for all I < Imax. Using the left-hand side of (5.9), the definition of ΛI from (5.2), and the
notation ΛM := ΛImax , we find that this holds if

m1 >
bhLK
aΛM

,(5.12)

that is, if the curve of left knees is sufficiently steep.

Remark 5.2. In the simulations throughout this paper, the right-hand side of (5.12) is
considerably smaller than m1. This fits nicely with the fact that cell(Imax) jumps up first in
all of the synchronized solutions that we observe.

Remark 5.3. In a similar manner to the above, we can derive conditions for which a cell
hits its right knee first and for whether all cells jump down together when this occurs. Note,
however, that the jump-down is in general observed to be well synchronized in our simulations,
in full model simulations [3], and in experiments [12]. In the appendix, we also discuss how
the parameters in (5.11) and (5.12) can be easily approximated from system (2.2), giving a
means to predict whether system (2.2) can be expected to support synchronized oscillations
with unified jump-up for particular parameter values. In the next section, we derive a more
general formula for the snake in which we do not assume that all of the cells jump up at the
same time on the fast time scale.
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5.3. Stability of the fixed point snake of synchrony. In this subsection, we consider
stability of the fixed point (5.5) representing the snake of synchrony, from two perspectives.
The map given in (5.3) is nonlocal since the term h(Id) appears explicitly in it for all I, and
this complicates stability analysis. We start by considering the class of linear snakes. That
is, we restrict ourselves to snakes that satisfy initial conditions of the form

h(I, 0) = h(I) = hLK + α(Imax − I)(5.13)

at jump-up for an arbitrary parameter α. It is easy to check that a solution of (4.3) and (4.5),
with simultaneous jumps between phases, remains linear if it satisfies (5.13) at jump-up. We
derive a map on slopes α defined for linear snakes, with a fixed point corresponding to (5.5),
and use this to prove that the snake of synchrony is stable within the class of linear snakes.
After this, we derive a sufficient condition for this snake of synchrony to be nonlinearly stable,
without restriction of solution class.

Because solutions with initial conditions that are linear functions of I remain linear for
all time, the initial condition (5.13) evolves after one cycle into another linear function of I,
possibly with a different slope. We write this as

h(I, T ) = hLK + π(α)(Imax − I).

Here T is the cycle duration. This naturally gives rise to a real map α → π(α). We wish to
derive a formula for this map, find the fixed point corresponding to (5.5), and determine its
stability.

Recall that h′ = −ρh in the active phase. Consistent with our earlier notation, we fix Id
such that cell(Id) jumps down first. As previously, let hd = h(Id, 0), let h

d
RK denote the value

of h at the right knee for I = Id, and recall that TA denotes the time spent by all cells in the
active phase. Then (4.5) yields

h(I, TA) = (hLK + α(Imax − I)) e−ρTA ,(5.14)

where

e−ρTA =
hdRK

hd
.(5.15)

As previously, in the silent phase, h′ = −ah − bI + c, and ΛI = (c − bI)/a. Solving this
silent phase equation with initial condition (5.14) yields that, for TA < τ < T ,

h(I, τ) = h(I, TA)e
a(TA−τ) + ΛI(1− ea(TA−τ))

or, letting TS = T − TA,

h(I, T ) = (hLK + α(Imax − I)) e−ρTAe−aTS + ΛI(1− e−aTS ).(5.16)

Note that h(Imax, T ) = hLK . Hence, for ΛM := ΛImax , as previously,

hLK = hLKe
−ρTAe−aTS + ΛM (1− e−aTS ).(5.17)
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We use this last equation along with (5.16) to conclude that

h(I, T ) = hLK + α(Imax − I)e−ρTAe−aTS + (ΛI − ΛM )(1− e−aTS )

or

h(I, T ) = hLK + (Imax − I)
(
αe−ρTAe−aTS +

b

a
(1− e−aTS )

)
.

It follows that

π(α) = αe−ρTAe−aTS +
b

a
(1− e−aTS ).(5.18)

To rewrite (5.18), note that, from (5.17),

e−ρTAe−aTS = 1− ΛM

hLK
(1− e−aTS ),(5.19)

which implies, after some rearrangement, that

π(α) = α+

(
b

a
− α ΛM

hLK

)
(1− e−aTS ).(5.20)

Finally, solving π(α0) = α0 yields an expression for the fixed point α0, namely,

b

a
− α0

ΛM

hLK
= 0 or α0 =

b

a

hLK
ΛM

.(5.21)

Remark 5.4. Note that the slope specified in (5.21) is exactly that of the fixed point snake
(5.5), and so our two calculations are consistent. However, the calculation here is not as
general as the earlier one in subsection 5.1, which, in theory, allowed for the possibility of
nonlinear fixed points.

Next we consider the stability of the fixed point. We differentiate (5.20) to find that

π′(α) = 1− ΛM

hLK
(1− e−aTS ) +

(
b

a
− α ΛM

hLK

)
ae−aTS

dTS
dα
.(5.22)

The last term is zero for α = α0 because of (5.21). Hence

π′(α0) = 1− ΛM

hLK
(1− e−aTS ).(5.23)

In order to make sense of this, we substitute (5.15) into (5.17) to find that

hLK = h∗e−aTS + ΛM (1− e−aTS ),

where

h∗ ≡ hLK h
d
RK

hd
.(5.24)
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Hence

e−aTS =
ΛM − hLK
ΛM − h∗ .(5.25)

Apply this in (5.23), and use (5.24) to find

π′(α0) = 1− ΛM
hLK

(hLK−h∗)
(ΛM−h∗)

= 1− ΛM


 1−hd

RK
hd

ΛM−hLK

hd
RK
hd


 .(5.26)

The last term in (5.26) is positive because hdRK < hd and hLK < ΛM from (4.6). Therefore,
we wish to prove that it is less than 2. We will, in fact, show that this last term is less than
1, and, therefore, 0 < π′(α0) < 1. This follows if

ΛM − ΛM
hdRK

hd
< ΛM − hLK h

d
RK

hd
,

which is true because hLK < ΛM . Thus the snake of synchrony is stable within the class of
linear snakes.

Remark 5.5. When Id = Imax, the map in (5.3) no longer depends on an unknown hd ≡
h(Id, 0) since, by construction, h(Imax, 0) = hLK . Thus (5.3) becomes linear in h and can be
differentiated directly with respect to h. The derivative of the map is exactly the expression
given in (5.26). Thus, for Id = Imax, the fixed point snake of synchrony is always stable.
However, this calculation is not possible for Id �= Imax.

To consider stability without restriction to the class of linear snakes or to Id = Imax,
we consider perturbations sufficiently small such that they do not change which cells jump
down first (i.e., the value of Id). Clearly such perturbations exist; as an example, recall from
section 3 that there is a range of gsyn values that gives a snake of synchrony for which cells
with I = Imax jump down first. For such a snake, a perturbation that retards the other cells
slightly and is sufficiently small to preserve synchrony conserves Id.

Let h(I) denote the snake of synchrony, and let p(I) = h(I)+ε(I) denote a perturbation of
h(I) at jump-up. We will measure distance under the supremum norm ||f(I)|| = sup{|f(I)| :
I ∈ [Imin, Imax]}. We will derive a condition under which, for M(h(I)) defined in (5.3), we
have ||M(p)−M(h)|| ≤ L||p− h|| for a constant 0 < L < 1. Equation (5.3) gives

||M(p)−M(h)|| = ||h(I)hdRKe
−aTS/hd − p(I)hdRKe

−aT̃S/pd − ΛI(e
−aTS − e−aT̃S )||,

where e−aTS is given by (5.25), pd = p(Id), and T̃S is the value of TS obtained by substituting
pd for hd in h∗ = hLKhdRK/hd. Some algebraic manipulation yields, for εd = ε(Id),

||M(p)−M(h)|| ≤ (ΛM − hLK)

∣∣∣∣∣
∣∣∣∣∣p(I)h

d
RK − ΛI(hd + εd)

K − ΛM εd
− h(I)hdRK − ΛIhd

K

∣∣∣∣∣
∣∣∣∣∣ ,(5.27)

where K = hLKh
d
RK − ΛMhd is independent of I. Note that K < 0 since ΛM > hLK and

hd > h
d
RK .
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Expand the right-hand side of (5.27) in εd, and note that |εd| ≤ ||ε|| to obtain

||M(p)−M(h)|| ≤
(
(ΛM − hLK)||ε||

|K|
)(
hdRK +

∣∣∣∣∣
∣∣∣∣∣ΛM (p hdRK − ΛIhd)− ΛIK

K

∣∣∣∣∣
∣∣∣∣∣
)
+O(ε2).

For ε sufficiently small, the higher order terms can be neglected, and application of the defi-
nition of K yields

||M(p)−M(h)|| ≤
(
(ΛM − hLK)hdRK ||ε||

|K|

)(
1 +

∣∣∣∣
∣∣∣∣pΛM − ΛIhLK

K

∣∣∣∣
∣∣∣∣
)
.(5.28)

Let S denote supI(p(I)ΛM − ΛIhLK), the difference of two positive terms. It remains to
estimate S. Suppose that S > 0. Then the two relations p(I) ≤ ΛI and ΛImin = maxI(ΛI),
which follow from (5.2), and ΛM > hLK from (4.6) give S ≤ ΛImin(ΛM − hLK). Suppose
instead that S < 0. For concreteness, we assume that p(I) ≥ hLK for all I, which holds for
sufficiently small perturbations. Then |S| ≤ hLK(ΛImin −ΛM ). Thus |S| ≤ max{ΛImin(ΛM −
hLK), hLK(ΛImin − ΛM )} ≡ S̄.

For this S̄, (5.28) implies that, if the condition

(ΛM − hLK)hdRK

|K|

(
1 +

S̄

|K|

)
< 1

holds, then the snake of synchrony is stable with respect to sufficiently small perturbations.
This condition holds for a variety of numerical examples that we have considered. Note that
it certainly holds when hLK lies near the fixed point ΛM , since K is bounded away from zero
as hLK → ΛM , as long as the h-values on the curves of left and right knees remain separate.

6. Nonlinear snakes. In the previous section, we assumed that the cells jump up and jump
down together on the slow time scale. This will be the case if gsyn, the synaptic strength,
is sufficiently strong. Numerical simulations demonstrate that, for smaller gsyn, the jump-up
and jump-down processes are more gradual, as shown in Figures 2b and 4. Each cell jumps
up or down when it reaches the left or right knee of its effective cubic. In the analysis here, we
allow the cells to jump up at different times on the slow time scale, but we still assume that
the cells jump down at the same time. We shall derive a nonlinear boundary value problem
for the periodic snake of synchrony. An analogous derivation leads to a similar formula if
there is a gradual jump-down.

We denote the position of the snake as h(I, τ). It will be convenient to choose the trans-
lation now so that τ = 0 corresponds to the moment when all of the cells jump down. In
addition to assuming that all of the cells jump down together, we will further assume that the
jump-down process begins when cell(Imax) reaches its right knee at h = hRK , consistent with
numerical simulations of the gradual jump-up case (section 3). Let h0(I) ≡ h(I, 0) denote the
corresponding initial position of the snake.

We assume that the first cells to jump up are cell(Imax). Moreover, the cells jump up in
order of decreasing I. As before, let TS be the time for cell(Imax) to evolve under (4.5) from
hRK up to hLK . We let hµ(I) ≡ h(I, TS) denote the position of the snake when cell(Imax)
jumps up. We then let ∆(I) denote the delay in the jump-up of cell(I) relative to cell(Imax).
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That is, ∆(Imax) = 0, and cell(I) jumps up at τ = TS+∆(I). We shall derive three equations
for the three unknown functions h0(I), hµ(I), and ∆(I).

First, we consider the cells while all are in the silent phase. The cells then evolve according
to (4.5) from their initial position h0(I) to hµ(I) at time TS . Solving (4.5), we find that

h0(I) = (hµ(I)− ΛI)e
aTS + ΛI .

Substitution of the formula for eaTS (see (5.25)) yields the first equation,

h0(I) = (hµ(I)− ΛI)

(
hRK − ΛM

hLK − ΛM

)
+ ΛI .(6.1)

We next follow the cells forward after they jump up. Denote the position of the left knee
at which cell(I) jumps up as

(veffLK , h
eff
LK )(I) ≡ (vLK , hLK)(I + Iusyn(I)).

Recall that this is found by solving f + I + Iusyn(I) = 0, where Iusyn(I) is given by (4.7)
and implicitly depends on v, for v = vL(h, I), and then solving ∂(f + Iusyn(I))/∂v = 0 for

(veffLK (I), heffLK (I)) on this curve. Since cells jump up at different times but jump down together,
they spend different amounts of time in the active phase. We again use h′ = −ρh for evolution
in the active phase, as indicated in (4.3). We saw earlier that, according to this equation,
cell(Imax) spends time TA = (1/ρ) ln(hLK/hRK) in the active phase. Each cell with I < Imax

spends time TA −∆(I) in the active phase, starting from initial condition heffLK (I) and ending
at its jump-down position h0(I). Using this to solve (4.3) yields the second equation,

h0(I) = h
eff
LK (I)

(
hRK

hLK

)
eρ∆(I).(6.2)

To obtain the third equation, we follow each cell(I) in the silent phase from τ = TS until
cell(I) jumps up. First, we need to introduce some notation. Let Isyn(τ) denote the synaptic
input at time τ . We earlier let Iusyn(I) be the synaptic input when cell(I) jumps up. Since
cell(I) jumps up when τ = TS+∆(I), it follows that Iusyn(I) = Isyn(TS+∆(I)), where Iusyn(I)

is given by (4.7) with v(I) = veffLK (I).
Now each cell(I) satisfies (4.5) with Itot = I + Isyn(τ). Moreover, h(I, TS) = hµ(I), and

cell(I) jumps up at heffLK (I), the left knee of its effective cubic, when τ = TS +∆(I). Solving
(4.5) with these boundary conditions, we find that

heffLK (I) = (hµ(I)− ΛI)e
−a∆(I) + ΛI − be−aTSe−a∆(I)

∫ TS+∆(I)

TS

Isyn(τ)e
aτ dτ.(6.3)

Equations (6.1), (6.2), and (6.3) constitute a system of three equations in the three un-
knowns h0(I), hµ(I), and ∆(I). From (6.2), ∆(I) can be expressed as a function of h0(I).
Equations (6.1) and (6.3) are easily converted into formulas for hµ(I). Equating these formulas
gives, after minor rearrangement,

h0(I) = ΛI + Γ

(
(heffLK (I)− ΛI)e

a∆(I) + be−aTS

∫ TS+∆(I)

TS

Isyn(τ)e
aτ dτ

)
,(6.4)
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where ∆(I) is now a function of h0(I) and where Γ = (hRK − ΛM )/(hLK − ΛM ).
To solve (6.4) for h0(I), we first differentiate with respect to I to obtain

h′0(I) = Λ′
I + Γ((heffLK )′(I)− Λ′

I)e
a∆(I)

+ aΓ(heffLK (I)− ΛI)∆
′(I)ea∆(I)

+ bΓIsyn(TS +∆(I))∆′(I)ea∆(I).(6.5)

Recall that Isyn(TS + ∆(I)) = Iusyn(I), where I
u
syn(I) is given by (4.7) with v(I) = veffLK (I).

Moreover, we can use (6.2) to solve for ∆(I) and ∆′(I). In fact, if we let

Φ(I) ≡ eρ∆(I) =

(
hLK
hRK

)
h0(I)

heffLK (I)
,(6.6)

then a straightforward calculation starting from (6.2) demonstrates that

∆′(I)ea∆(I) =
1

ρ
Φ′(I)Φ(a−ρ)/ρ.

Substituting this into (6.5), we find that

h′0(I) = Λ′
I + Γ((heffLK )′(I)− Λ′

I)Φ
a/ρ(I)

+
a

ρ
Γ(heffLK (I)− ΛI)Φ

′(I)Φ(a−ρ)/ρ(I)

+
b

ρ
ΓIusyn(I)Φ

′(I)Φ(a−ρ)/ρ.(6.7)

We can use (6.6) to write Φ(I) and Φ′(I) in terms of h0(I) and h′0(I). Equation (6.7)
then gives an ordinary differential equation for h0(I), the initial (jump-down) position of the
periodic snake. Note that the solution must satisfy the boundary condition h(Imax) = hRK .
Solving the resulting boundary value problem numerically with XPPAUT gives an estimate
of h0(I). We can compute hµ(I), the position of the snake when cell(Imax) is ready to jump
up, directly from this, using (6.1). Figure 9 compares the resulting hµ(I) (dotted curve) with
the snake position from a full numerical simulation of the pre-BötC model network (solid
curve) and with the linear snake formula (5.5), all for gsyn/20 = .009, which corresponds to
gradual jump-up (see Figures 2b and 4). For the nonlinear and linear curves, parameters were
estimated from the pre-BötC model without simulations, using the methods discussed below
in the appendix. Because it takes gradual jump-up into account, the nonlinear result gives
a better approximation of the snake position than does the linear formula, in the gradual
jump-up case.

Remark 6.1. We can perform analogous calculations to derive an ordinary differential equa-
tion boundary value problem for the jump-up snake of synchrony hµ(I) in the case of gradual
jump-down and simultaneous jump-up. The resulting ordinary differential equation analogous
to (6.7) is simpler because there is one fewer unknown: hµ(I) and h

eff
LK (I) collapse to the same

curve. The ordinary differential equation in that case is explicitly nonlocal, however, in that
Γ depends on hµ(Imin), such that the right-hand side depends on Imin for all I; nonetheless,
it can be solved numerically with XPPAUT without a problem.
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Figure 9. Snake of synchrony at the moment when leading cells jump up. The plot shows curves for
gsyn/20 = .009, corresponding to gradual jump-up.

7. Loss of synchrony.

7.1. Break-up conditions. The analysis in section 5 shows that there is only one possible
fixed point snake for the case in which all cells jump up and jump down together. Suppose
that condition (4.8) fails for some I values, so that this solution does not exist and not all
cells jump up together. In section 6, we consider another form of synchronized oscillation in
which cells jump up more gradually until all are in the active phase. In this subsection, we
find a sufficient condition for break-up of the synchronized solution by computing a condition
under which not all cells reach jump-up before the leading cells, with I = Imax, jump down
from the active phase. This computation can also lead to an estimate for the I value at which
the snake will break.

First, we assume that cells with I = Imax jump down first on every oscillation cycle. For
fixed intrinsic cellular parameters, this corresponds to taking gsyn small enough. This is quite
natural for the consideration of loss of synchrony since a large synaptic coupling strength
promotes synchronization.

We start at time τ = 0 with cells at h(I, 0), a position for which cells with I = Imax are
about to jump up. To derive a break-up condition, we now compute a condition under which
not all cells can evolve in the silent phase from h(I, 0) to their effective knees before cells with
I = Imax jump down. Since we aim for a sufficient condition for break-up, we assume the
fastest possible silent phase evolution corresponding to Isyn = 0. Specifically, we solve

h′ = −ah− bI + c,
h(0) = h(I, 0)

(7.1)

for h(I, τ), up until time TA = 1
ρ ln

hLK
hRK

, when the active cells jump down; this easily can be
done analytically. The break-up condition is that, for some Ib ∈ (Imin, Imax),

h(Ib, TA) = hLK(Ib + I
u
syn(Ib)),(7.2)
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where hLK(Ib+I
u
syn(Ib)) denotes the effective knee for I = Ib. If we restrict ourselves to snake

configurations for which cells jump up in order of decreasing I, then all cells with I < Ib fail
to jump up at all during the oscillation; see Figure 10.
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Figure 10. Numerical illustration of the break-up of a snake. The network was simulated with gsyn/20 =
.00825, as in Figures 5a and 6 in section 3. The cells gradually jump up, until cell(Imax = 25) jump down,
after which no other cells jump up. The plot shows the silent phase positions of the cells that fail to jump up, at
the moment when cell(Imax) jumps down, as a function of Iapp. Note that the nonjumping cells lie below their
numerically computed effective left knees, with cell position intersecting the effective knee curve at the break
point of the snake.

Equation (7.2) can allow us to solve for the Ib at which a break occurs (if such an I value
exists). If we wish just to check whether or not a break occurs, again assuming jump-up in
order of decreasing I, we simply need to compare h(Imin, TA) to hLK(Imin+I

u
syn(Imin)). That

is, break-up occurs for some I ≥ Imin if

h(Imin, TA) < hLK(Imin + Iusyn(Imin)).(7.3)

As an example, we can compute h(Imin, TA) for the fixed point snake configuration derived
earlier by solving (7.1), with h(0) = hLK(c−bImin)/(c−bImax) from (5.5), for time TA, which
yields

h(Imin, TA) = ΛImin

[
1 +

(
hRK

hLK

)a/ρ (hLK
ΛM

− 1

)]
< ΛImin .

Since Imin is the minimum value of Iapp, for most Iapp distributions, (4.7) gives Iusyn(Imin) ≈
gsyn(vsyn−v(Imin)). From the appendix, we thus have Iusyn(Imin) ≈ gsyn(vsyn−(Imin/gL+vL)).
Hence all of the parameters needed to check inequality (7.3) can be estimated, as discussed
in the appendix.

8. Discussion. We have considered a reduced model for a network of conditional pace-
maker cells in the pre-BötC of the brain stem. In this model, each cell is represented by a
pair of ordinary differential equations, with excitatory synaptic coupling between the cells.
The network is heterogeneous in that cells take values of a parameter Iapp from a distribution.
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Heterogeneities in Iapp represent different levels of applied current (including sustained exci-
tatory inputs from other brain regions) and different leak reversal potentials among different
cells.

We analyze this system in the continuum limit for which the coupling terms become
integrals. We consider oscillatory solutions for which each cell undergoes sustained silent and
active phases, with occasional rapid jumps between the two, but we do not consider individual
spikes within the active phases. This leads to a natural further reduction of the model, such
that each cell is governed by the scalar equations (4.5) and (4.3) for the evolution of the slow
variable h in the silent and active phases, respectively.

With these simplifications, we treat two forms of periodic, synchronized solutions, or
“snakes”: solutions for which all cells jump up and down simultaneously (on a slow time scale),
and solutions which feature gradual jumps. Indeed, a key point here is that heterogeneous
networks of synaptically coupled oscillating cells can support periodic, synchronized solutions
with a continuum of phase shifts between jump times of different cells. This allows for a richer
range of dynamics than has been observed for a homogeneous network of relaxation oscillators
[16] or a network of oscillators with dynamics and coupling based on phases [22, 15, 9, 1].

We provide natural geometric conditions for the case of simultaneous jumps to occur.
When these hold, we prove the existence of a unique periodic snake, characterized by a simple
formula. This formula does not depend on any of the parameters associated with the active
phase or synaptic coupling; however, these do appear in the conditions for simultaneous
jumping. We also show that this snake is linearly stable to certain small perturbations, and
we provide a general nonlinear stability condition. We note that our analysis of simultaneous
jump solutions generalizes immediately to any finite population of oscillators; the continuum
limit is not required here. In particular, with a finite number of oscillators, the effective left
knee for cells with fixed I is determined by computing the synaptic input that results when
all cells with larger I jump up, now based on the discrete synaptic current (2.3) rather than
the continuum current (2.4).

When the synaptic coupling strength in the network is weakened, the conditions for simul-
taneous jumping may fail. In the case of gradual jumps up from the silent phase to the active
phase, we derive a single nonlinear ordinary differential equation boundary value problem for
the position of the periodic snake in phase space at a certain stage in its oscillatory cycle.
This generalizes naturally to gradual jumps down or gradual jumps in both directions.

For our analysis, although we require that each cell have a cubic v-nullcline when un-
coupled, we do not require that all cells be intrinsic oscillators when uncoupled, which is
consistent with experimental observations. Thus our analysis illustrates how heterogeneities
in a network can lead to robust, stable oscillations by allowing intrinsically active cells to
recruit silent cells via synaptic coupling. We emphasize that such solutions can be periodic
and synchronized in the sense that all cells begin and end their active phases together in time
despite significant heterogeneities. In the synchronized solutions that we consider, cells may
jump up to the active phase by reaching a curve of knees, or saddle-node bifurcation points
of a fast subsystem. Alternately, synaptic coupling may cause cells to suddenly lie above this
curve and therefore to jump up immediately. Based on other studies of bursting (see [16]) and
our own simulations, we expect that the inclusion of spiking currents will not qualitatively
affect the relevant bifurcations and the corresponding knees for jump-up. Since the dynamics
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of the jump-up appears to be the key determinant of how well the network synchronizes, we
therefore posit our results as an explanation for how heterogeneities enhance the tendency for
a network of bursting cells, such as the pre-BötC, to fire synchronized bursts.

For all of our analysis, we assume all-to-all coupling. In the all-to-all case, all cells receive
the same amount of coupling, depending only on the proportion of cells in the population that
are active. Simulations in [3] yielded qualitatively similar network behavior for full and sparse
network connectivities. Other coupling architectures would complicate analysis, however,
especially if nonlocal or random connections were included.

In addition to analysis, we present numerical simulations to illustrate our results. These
include comparisons of snake positions from full network simulations, performed with a discrete
population of 20 cells with a uniform distribution of Iapp, to snake positions computed from
our analysis. To generate the latter, we estimate a variety of parameters, in particular those
appearing in (5.5), (6.6), and (6.7), directly from the network equations (2.2); this can be
done quite easily, as discussed in the appendix. Perhaps the most useful numerical results
presented are animations of full network simulations. These show cells’ positions in phase
space, along with relevant nullclines and curves of knees. The nullclines and knees move as
synaptic coupling strength changes over the course of a simulation. This allows for very clear
visualization of the jumping behavior of individual cells, highlighting its dependence on the
heterogeneity parameter Iapp. We anticipate that such animations will be useful for a wide
variety of studies of systems of coupled oscillators.

As gsyn drops still farther from the gradual jumping case, synchrony may in fact be lost.
We provide a sufficient geometric condition for synchrony to fail. When synchrony breaks
down, interesting periodic or possibly chaotic solutions can arise; we have illustrated two of
these numerically. In general, the population’s activity pattern for fixed parameter values can
be classified according to the population of cells that become active on each cycle. Following
[1], we can distinguish between locking, in which all cells fire on each cycle, partial locking, in
which all cells fire but some cells skip some cycles, partial death, in which some cells never fire,
and death, in which no cells fire. In simulations, we find that, for uniform distributions of Iapp,
with fixed mean Iapp but different distribution widths γ, certain general trends emerge. For
fixed γ, as coupling strength gsyn increases, the tendency to lock increases. Correspondingly,
the population undergoes transitions from partial death, to partial locking, to locking as gsyn
increases. Larger gsyn is required for more unified activity with larger γ, corresponding to a
broader distribution of Iapp; thus the partial locking and partial death regions form positively
sloped bands in (γ, gsyn) parameter space. As the system switches from partial death to
partial locking, there is a decrease in the variance across cells, in terms of the proportion of
cycles during which each cell is active, until finally no variance remains in the locked state.
Nonuniform distributions of Iapp are expected to yield qualitatively similar trends. Work to
analyze asynchronous solutions is in progress.

The heterogeneities that we consider are restricted to the parameter Iapp, which includes
heterogeneities both in the leak current reversal potential vL and in applied current. Earlier
studies have suggested that the biological effects of heterogeneities in pre-BötC cells are cap-
tured by heterogeneities in Iapp (defined to include vL) and gNa [2]. The former, which we
have considered here, is perhaps more relevant to ongoing biological experimentation because
the leak reversal potential can be controlled by manipulation of potassium ion concentration
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in an experimental preparation [6, 7]. Nonetheless, the role of gNa should be explored to gain
a full understanding of pre-BötC behavior.

9. Appendix.

9.1. Model equations and parameter values. In system (2.2), we have, for x = m or h,

x∞(v) = 1/(1 + exp((v − θx)/σx)) and τh(v) = (ε cosh((v − θh)/2σh))−1 .

When we simulate a discrete population of 20 cells, we take

Isyn = gsyn

(
20∑
k=1

s∞(vk)

)
(vsyn − vj)

as the synaptic input to cell j (that is, gsyn is already scaled to take into account the population
size, since we always use 20 cells); vsyn > vj for solutions vj , for the parameter values used.
We further take s∞(vk) = 1/(1 + exp((vk − θs)/σs)).

Parameter values used in simulations are given in Table 1, with units omitted. The
parameter gsyn is varied, as indicated in figure captions. We use 20 cells, and I ranges over
20 equally spaced values, starting with Imin = 10 and ending with Imax = 25. For these
parameters, there is a transition from excitable to oscillatory at around I = 12.5, such that
cells with I < 12.5 will converge to a rest point in the silent phase without synaptic input. Thus
we have cells that intrinsically are silent and cells that intrinsically are oscillators represented
in our simulations. Note that the value of Cm used here is smaller than that in [2, 3, 6]. This
accentuates the relaxation aspect of the oscillations that we study.

Table 1
Basic set of parameter values for the reduced pre-BötC cell model.

Parameter Value Parameter Value Parameter Value Parameter Value

gNa 2.8 vNa 50 θm -37 σm -6

θh -44 σh 6

gL 2.8 vL -65

vsyn 0 θs -43 σs -0.1

Cm 0.21 ε 0.01

9.2. Estimation of parameters for numerics. To generate the snake position numerically,
given (5.5), we need only to estimate the parameters hLK , b, c. Let the point (vLK , hLK) denote
the solution to the two equations F (v, h) = 0 and Fv(v, h) = 0, where F (v, h) denotes the right-
hand side of the v-equation in (2.2) for Isyn = 0 and Iapp = Imax. These easily can be solved
numerically. In particular, they can be solved dynamically through the following procedure,
which was used to generate the knee positions for all Iapp in our animations. First, note
that F (v, h) = 0 can be solved algebraically for h(v). Next, let y′ = φFv(v, h(v)) for a large
constant φ designed to speed up the convergence of y to vLK . Once y converges sufficiently
close to a steady value, then we denote this by vLK , and we read out hLK = h(vLK).

For fixed Iapp, we can estimate the value of v for a solution of (2.2) in the silent phase
when Isyn = 0. To do this, we note that m∞(v) ≈ 0 in the silent phase, such that Cmv

′ ≈
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−gL(v − vL) + Iapp. But the silent phase is defined by v′ = 0. This yields

v ≈ vsil(Iapp) := Iapp/gL + vL,(9.1)

which we use below. Now τh(v) tends to an asymptotic value τ−h as v → −∞, and vsil(Iapp) is
sufficiently negative for parameters considered such that we can take τh(v) ≈ τ−h in the silent
phase. Based on (2.4), (4.3), and (4.4), we thus approximate a ≈ 1/τ−h .

To estimate b and c, note that the function h∞(v) is sigmoidal, with horizontal asymptotes
at 1 as v → −∞ and at 0 as v → ∞. Over the transitional region between these asymptotes,
h∞(v) is approximately linear. Further, since cells with I = Imax are oscillatory, it is likely
that the v values of cells in the silent phase lie in this transitional region. Thus we derive a
least squares linear estimate of h∞(v) over this region. Using v ≈ I/gL+vL in the silent phase
from (9.1) converts the approximation of h∞(v) into a linear function of I, namely, BI + C,
which we substitute into (4.4). With this substitution, a comparison of (4.4) and (4.5) yields
b = aB and c = aC.

For simulation of the nonlinear boundary value problem (6.7), with h(Imax) = hRK ,
several additional parameters are needed. We can approximate ρ, which appears in (4.3), as
ρ ≈ 1/τ+

h , where τ+
h denotes the positive asymptotic value of τh(v). Additionally, we require

expressions for hRK , h
eff
LK (I), and Iusyn(I). The former two can be solved for dynamically at

discrete I values (with I = Imax for hRK), analogously to the estimation of hLK described

above, and the results for heffLK (I) can be interpolated. A specific form must be assumed for
Iusyn(I). Suppose that the I values in the network are distributed uniformly over [Imin, Imax]
and that cells jump down in order of decreasing I, as was the case in our simulations. Then,
for cell(I) in the silent phase, Iusyn(I) ≈ gsyn(vsyn − vsil(I))(Imax − I)/(Imax − Imin).
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