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Abstract. Typically, excitatory synaptic coupling is thought of as an influence that accelerates and propagates
firing in neuronal networks. This paper reviews recent results explaining how, contrary to these expectations, the
presence of excitatory synaptic coupling can drastically slow oscillations in a network and how localized, sustained
activity can arise in a network with purely excitatory coupling, without sustained inputs. These two effects stem
from interactions of excitatory coupling with two different forms of intrinsic neuronal dynamics, and both serve to
highlight the fact that the influence of synaptic coupling in a network depends strongly on the intrinsic properties
of cells in the network.
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1. Introduction

A fact that is well known in the computational neu-
roscience community, but important enough to re-
emphasize here, is that synaptic coupling has far dif-
ferent implications than diffusive coupling for pattern
formation. Synaptic coupling, driven by neurotransmit-
ters, can act over a variety of timescales, possibly af-
ter some initial delay, and neurotransmitters’ effects
may far outlast the events that elicit their release (e.g.,
Abbott and Regehr, 2004). Further, synaptic coupling
is generally non-local, with a broad range of spatial
connection patterns observed across different neuronal
systems. These features allow synapses to influence
the dynamics of neuronal networks in a wide variety of
ways, many of which are complex to analyze.

To gauge the effects of synaptic coupling on the dy-
namics of a network with a given coupling architecture,
it is natural to consider the behavior of the network
with all coupling blocked and then to ask how the in-
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troduction of synaptic coupling changes the activity
of the cells in the network. Of course, the answer to
this question depends on how strong a coupling is in-
troduced, which can be made precise by specifying a
value for the maximal synaptic conductance or weight
associated with each synapse. The effects induced on
any subset of cells within a network by the introduction
of synaptic coupling can be broadly classified as effects
on firing rates alone versus effects on firing patterns.
Examples of the latter include changes in synchrony,
more general changes in the temporal relations of firing
times, and switches between modes of activity such as
silence, bursting, and tonic spiking.

Many particular examples of the effects of synap-
tic coupling have been elucidated theoretically, some
of which are intuitive and some less so, some consid-
ered in the context of models for particular neuronal
networks and some in abstract models. A full review
of computational work on pattern formation driven by
synaptic coupling in neuronal networks would require
volumes. In this article, I will review some specific, re-
cent results on surprising effects that can be induced
by excitatory synaptic coupling, which is generally
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expected to accelerate and promote firing. The first
finding that I will discuss is that synaptic excitation,
particularly with a slow decay constant, can yield a
drastic slowing of tonic spiking or burst firing in cer-
tain types of networks (Drover et al., 2005), typified
by a network of classical Hodgkin-Huxley neurons
(Hodgkin and Huxley, 1952). The mechanism under-
lying this slowing relates to canards, which are solu-
tions to systems of differential equations that spend a
prolonged time near structures that are unstable in the
corresponding phase space (Diener, 1984; Szmolyan
and Wechselberger, 2001). The second result that I will
present is that a network of intrinsically silent cells,
with distance-dependent excitatory synaptic coupling
and no inhibitory coupling, can support sustained, lo-
calized activity in the absence of sustained external
input (Rubin and Bose, 2004). The existence of such
solutions requires a mechanism by which the network
dynamics generates spatial variations in the level of
synaptic excitation, such that there is enough excita-
tion available to maintain activity in one area but not
enough to recruit cells from other areas, despite the
fact that the coupling architecture is spatially homoge-
neous. Taken together, these results highlight the fact
that cells’ intrinsic dynamics can be crucial in deter-
mining the activity patterns that arise when synaptic
coupling between the cells is introduced.

2. Basics of Dynamic Synaptic Excitation

A wide variety of conventions have been used to model
neurons and synapses in computational analyses of
neuronal networks. Let us consider ordinary differen-
tial equation representations of single neurons, which
under the inclusion of synaptic coupling become

v′ = f (v, w) + Isyn
(1)

w′ = g(v, w),

where v denotes some measure of the activity or ex-
citability of the cell, ′ denotes differentiation with re-
spect to time t , w is a vector of auxiliary variables,
and Isyn corresponds to some measure of synaptic in-
put. For concreteness, the remainder of this discus-
sion focuses on the case where v in Eq. (1) denotes
the voltage across the cell membrane, such as in the
Hodgkin-Huxley (HH) or conductance-based formal-
ism, although similar concepts apply in other models.
In this case, Isyn is the total synaptic current to the
cell, and both terms in the right hand side of the v-

equation incorporate scaling by the reciprocal of the
membrane capacitance, henceforth normalized to 1 and
omitted.

Commonly,

Isyn = −
∑

j

w j

[ ∑
i

α
(
t − t i

j

)]
(v − vsyn j

),

where w j denotes a synaptic weight from cell j , t i
j is

the firing time of spike i of cell j , the synaptic reversal
potential vsyn j

is a parameter determined by the type
of input sent by cell j , and the α-function α(t) takes
the form tne−kt H (t) where n is a small nonnegative
integer, k > 0 is a parameter, and H (t) is the Heaviside
step function. Richer effects can be observed, however,
by considering dynamic synapses, which we represent
here by

Isyn = −
∑

j

g j s j
(
v − vsynj

)
, (2)

where g j ≥ 0 denotes the maximal synaptic conduc-
tance from cell j and s j satisfies its own differential
equation, typically of the form

s ′
j = a(v j )(1 − s j ) − bs j . (3)

Here, a(v) is an increasing sigmoidal function taking
nonnegative values, such that when the voltage v j of
cell j crosses some threshold, s j grows, while s j decays
when v j is below that threshold, with s j constrained by
its dynamics to lie in [0, 1] for all time. Clearly, such dy-
namic synapses allow for highly variable time courses
of synaptic input, unlike α-functions, with these time
courses shaped by presynaptic cells’ activity patterns.

From Eq. (2), given that g j s j ≥ 0 for all j , it fol-
lows that the sign of each term in Isyn is opposite to that
of v − vsyn j

. If, for some j , v − vsyn j
> 0 over most

physiologically relevant v values, then the synaptic in-
put modelled by the j term in Isyn is called inhibitory.
Similarly, excitatory synaptic inputs are roughly de-
fined as those for which v − vsyn j

< 0 over most rel-
evant values of v. Based on this definition, it is clear
from Eqs. (1) and (2) that excitatory inputs tend to
make v′ more positive. This leads to a natural expecta-
tion that excitatory inputs will tend to depolarize cells,
promoting or accelerating action potential generation.
It is known, however, that depolarization does not al-
ways lead to enhanced spiking; in depolarization block,
for example, a neuron achieves a stable steady state in
which its membrane potential is quite elevated yet its
spike-generated currents are inactivated and spiking is
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eliminated. In the next section, I will discuss some ex-
amples where firing persists but slows in the presence
of synaptic excitation and will in particular examine a
recently elucidated, dynamically more complex mech-
anism through which synaptic excitation can drastically
retard firing, without shutting it down completely.

Before moving to this topic, however, it is impor-
tant to note that synaptic inputs can influence the ac-
tivity pattern across a network of cells, not just firing
rates. A large number of previous papers have shown
that whether the synapses in a network are excitatory
or inhibitory has a dramatic impact on the stability of
synchrony within the network. From an intuitive point
of view, it is not unreasonable to expect that synap-
tic excitation would promote synchrony: if a cell that
fires sends synaptic excitation to another cell, then this
should push the other cell to fire as well, tending to
synchronize the cells. An earlier surprise in the study
of synaptic excitation was that its actual impact on syn-
chrony is much more subtle and in fact depends cru-
cially on the intrinsic dynamics of the cells in the net-
work (the f (v, w) and g(v, w) in Eq. (1)) (Ermentrout,
1996; Hansel et al., 1995; Somers and Kopell, 1993),
with co-existence of stable in-phase and anti-phase so-
lutions even possible (Kopell and Somers, 1995).

3. Low-Frequency Synchronized Firing
with Synaptic Excitation

Previous computational work has shown that synaptic
excitation can diminish the firing frequency of mutu-
ally coupled cells. In the case of a network of identical
Hodgkin-Huxley (HH) neurons with all-to-all coupling
by α-function synapses, Hansel et al. (1993) found such
a drop in firing rate, from an uncoupled rate of about
68 Hz down to frequencies of just above 50 Hz, under
the assumption of weak coupling. The weak coupling
assumption entails supposing that all neurons evolve on
limit cycles and that the effect of each synaptic input
will only be felt during a single excursion around the
cycle (Hoppensteadt and Izhikevich, 1997). Given this
framework, the effects of an excitatory synaptic input
can be expressed as a change in phase relative to the
unperturbed case, encoded in a phase resetting curve
(PRC). The results obtained in Hansel et al. (1993) de-
pend on the fact that the network considered consists of
so-called type II neurons (see e.g. Hansel et al., 1995),
which have negative regions in their PRCs.

Strong synaptic excitation has also been observed
to slow oscillations in a quite different setting, namely

in relaxation oscillators coupled with strong dynamic
synapses of the form (2), (3) (Kopell and Somers,
1995; Butera et al., 1999). Relaxation oscillators are
used to model the burst envelopes of cells firing bursts
of spikes. In terms of Eq. (1), with w scalar for simplic-
ity, a relaxation oscillator can be obtained by assuming
that g(v, w) = εg1(v, w) for 0 < ε � 1, that the v-
nullcline NV = {(v, w) : v′ = 0} can be expressed as
the graph of a cubic function w = N f (v) (see Fig. 1),
and that the w-nullcline NW = {(v, w) : w′ = 0} and
NV intersect only along the middle branch of NV , cor-
responding to an unstable critical point of (1). Under
these conditions, the v-dynamics will quickly drive tra-
jectories of (1) into a small neighborhood ofNV , where
the w-dynamics will dictate the direction and speed of
evolution. Trajectories will jump between the branches
of NV at its local extrema, yielding the oscillation in
Fig. 1A. We will refer to those times when the oscillator
is near the right (left) branch of NV as the oscillator’s
active (silent) phase.

Let s = ∑
j g j s j denote the total synaptic conduc-

tance to a cell, and assume that vsyn j
in Eq. (2) is inde-

pendent of j , corresponding to the case that all inputs to
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Figure 1. Nullclines for a relaxation oscillator. The cubic curves
labelled with 0 represent NV (0), with f > 0 ( f < 0) above (be-
low) the curve, while those labelled with E represent NV (s) for some
maximal s > 0. (A) The sigmoidal curve denotes NW , with g > 0
(g < 0) below (above) the curve. The dashed curve, marked with ar-
rows on fast jumps between branches ofNV (0), is a periodic solution
called a relaxation oscillation. (B) The baseline relaxation oscilla-
tion (dashed) is modulated by an excitatory synaptic input with very
fast onset (received when the cell lies at the location marked by the
upper left arrow), which wears off while the cell is in the active phase
(lower right arrow), shortening the oscillation (solid). (C) An input
of longer duration extends the active phase. (D) Two synchronized
cells send each other synaptic excitation, and thus follow the E curve,
while they are in the active phase. Synaptic excitation decays, and the
cells return the 0 curve, in the silent phase. The period of oscillation
has been increased relative to (A).
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a cell are of the same type. Due to the Isyn term in (1), the
v-nullcline is actually parametrized by s, and we hence-
forth denote it byNV (s) correspondingly. In Fig. 1B–D,
NV (0) is labelled with 0. Since Isyn > 0, increasing s
from 0 moves NV (s) into regions where f (v, w) < 0,
which leads to a lowering of NV (s) as s increases.
Through this lowering effect, an excitatory synpatic
input with rapid onset can speed up the entry into the
active phase of the cell that receives it (the postsynaptic
cell), as shown in Fig. 1B. Now, if the cell that provided
the input (the presynaptic cell) leaves the active phase,
then the synaptic input to the postsynaptic cell begins
to decay, as in Fig. 1B, and the overall oscillation of the
postsynaptic cell encompasses a smaller extent in phase
space, typically corresponding to a shorter time dura-
tion. Alternatively, if the cells are close to synchrony,
then the presynaptic cell will remain active along with
the postsynaptic cell, and thus the synaptic input will
remain elevated. This can prolong the active phase of
the postsynaptic cell, as shown in Fig. 1C, such that
overall, synaptic excitation may shorten or prolong the
oscillation period. Finally, if the cells are reciprocally
connected by synaptic excitation and synchronize, as is
possible for relaxation oscillators (Somers and Kopell,
1993), then they can together experience prolonged os-
cillations, relative to the uncoupled case, as shown in
Fig. 1D.

In contrast to the weak coupling case, where the
delay is induced by the onset of excitation and is of
limited magnitude, and the relaxation oscillator case,
where the delay results from an extended active phase,
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Figure 2. (A) The firing of a reduced, self-coupled HH model neuron is drastically slowed by synaptic excitation, which is introduced after
100 msec. (B) The same experiment shown in (A) is simulated but with Gaussian white noise introduced additively into the v and h equations
of system (4), starting at 200 msec. Due to noise, firing frequency slightly increases but the cell’s activity remains qualitatively similar to the
determinstic case, with significant slowing maintained.

Fig. 2A shows the time course of the membrane po-
tential of an HH neuron, reduced to a system of two
intrinsic equations (Rinzel, 1985) and coupled to itself
with synaptic excitation. The equations simulated here,
using XPPAUT (Runge-Kutta with dt = 0.05 msec in
this example) (Ermentrout, 2002), are

cv′ = −gL(v − vL) − gKn4(h)(v − vK)

− gNam3
∞(v)h(v − vNa) + I − gsyns(v − vsyn)

h′ = (h∞(v) − h)/τh(v)

s ′ = a(v)(1 − s) − s/τsyn (4)

with n(h) = max(.801 − 1.03h, 0), with x∞(v) =
αx (v)/(αx (v) + βx (v)) for x = m or h, and with
αh(v) = .07 exp(−(v + 65)/20), βh(v) = 1/(1 +
exp(−(v + 35)/10)), αm(v) = 0.1(v + 40)/(1 −
exp(−(v + 40)/10)), βm(v) = 4 exp(−(v + 65)/18),
a(v) = 2/(1+exp(−v/5)). Parameter values are taken
to be vNa = 50, vK = −77, vL = −54.4, gNa = 120,
gK = 36, gL = 0.3, c = 1, I = 13, and vsyn = 0, with
units of mV for voltages, mS/cm2 for conductances, and
µA/cm2 for current. In the simulation, τsyn = 5 msec
and the maximal synaptic conductance gsyn begins at
zero; when this is instantaneously switched up to 2, the
oscillation frequency drastically slows. Much more ex-
treme slowing can be achieved by increasing τsyn, and
similar slowing occurs in response to the introduction
of synaptic excitation into a network of all-to-all cou-
pled HH cells. The mechanism underlying the slowing
shown here entails an extreme extension of the silent
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Figure 3. The bifurcation diagram for (4) with s taken as a bifurca-
tion parameter, with a trajectory of (4) superimposed. The thin curve
across the lower portion of the plot, near v = −60 mV, is a curve
of equilibria, NV (s) ∩ NH . These points destabilize in a subcritical
Hopf bifurcation as s decreases through sHB. In this bifurcation,
a family of unstable periodic orbits appears; the open circles here
denote the maximal and minimal v-values along these orbits. This
family coalesces in a saddle-node bifurcation with a larger ampli-
tude family of stable periodic orbits, denoted here by asterisks, as s
increases. The thicker solid curve is a trajectory of (4), which illus-
trates the delay in escape from the branch of equilibria until s decays
to values well below sHB.

phase between spikes, during which time the synap-
tic input decays, quite unlike the weak coupling and
relaxation oscillator scenarios.

In keeping with convention, in system (4), the
intrinsic variables are (v, h), rather than (v, w). It can
be shown that for each fixed s, the nullclines NV (s)
and NH intersect in a single point, which corresponds
to a critical point for the (v, h) equations of (4). Indeed,
Fig. 3 shows the bifurcation diagram for this pair of
equations, with s taken as a bifurcation parameter.
The form of this bifurcation diagram, in which the
critical point destabilizes through a subcritical Hopf
bifurcation as s decreases, corresponding to the decay
of synaptic excitation, suggests that the retardation
of firing may result from a delayed escape or delayed
bifurcation phenomenon. In delayed escape, trajec-
tories initially contract toward an attracting curve
of equilibria for a fast subsystem. Here, the (v, h)
equations from (4) would play the role of the fast
subsystem, with the contraction strength quantified by
the real parts of the eigenvalues of the linearization of
the system (dv/ds, dh/ds), derived from (4), about
this curve. Eventually, the O(ε) drift of a slow variable
(here s) pulls trajectories through a subcritical Hopf
bifurcation that destabilizes the equilibrium curve with
respect to the fast subsystem. The trajectories continue

to remain in an O(ε) neighborhood of the now repelling
equilibrium curve for an O(1/ε) time, however, until
the expansion governed by the now positive real parts
of the eigenvalues of the linearization accumulates
sufficiently to counter the earlier contraction. The time
needed to escape from this curve can be calculated
using a way-in way-out function (Diener, 1984;
Neishtadt, 1987, 1988). Interestingly, this delayed es-
cape effect gives rise to elliptic bursting (Rinzel, 1987;
Wang and Rinzel, 1995; Hoppensteadt and Izhikevich,
1997; Rubin and Terman, 2002) when the drift direc-
tion of the slow variable switches after escape and the
periodic orbits born from the Hopf bifurcation have ap-
propriate characteristics (Baer et al., 1989; Izhikevich,
2000; Kuske and Baer, 2002; Su et al., 2004).

Attributing the synaptically-induced slowing in sys-
tem (4) to delayed escape leads to trouble, however.
First, the rate of decay of s is comparable to the rate
of evolution of h, violating the assumptions of the de-
layed escape theory. Further, if this problem is ignored
and the way-in way-out function for (4) is calculated
by treating s as a slow variable, the delay in escape
is significantly underestimated (with an O(1) error as
τsyn → ∞ under the assumption that h′ = εg(v, h)
with ετsyn = O(1)) (Drover et al., 2005).

A more accurate explanation for the extreme slow-
ing in the self-coupled HH neuron is presented in
Drover et al. (2005). As we assumed earlier for re-
laxation oscillators, it turns out here that the equation
v′ = 0 for the v-nullcline NV (s) can be solved to ob-
tain a function h = N f (v, s), which has a unique local
maximum, or left knee, at fairly hyperpolarized v and
a unique local minimum at more depolarized v. The
idea explained in Drover et al. (2005) is that the flow
of (4) in the vicinity of the curve of left knees forms
a vortex structure, the vortex canard, that traps trajec-
tories. To understand the mechanism underlying the
vortex, consider a solution x(t) = (v(t), h(t), s(t)) of
(4), with x(0) = (v0, h0, s0) lying in a small neighbor-
hood of NV (s0). As x(t) evolves, we can compare the
value of h(t) to the evolving value of N f (v(t), s(t)).
In particular, the instantaneous change in the differ-
ence between these h-values is given by H (t) :=
d(h(t) − N f (v(t), s(t)))/dt .

For an appropriate fixed s0, we can partition points
(v, h, s0) in the {s = s0} slice of (v, h, s)-phase space
into those that initially “fall behind” NV (s), corre-
sponding to H (0) < 0, and those that “catch up” to
NV (s), corresponding to H (0) > 0, under (4). Denote
the former set of points by Ã(s). Close to the curve of
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Figure 4. The vortex structure associated with (4) in the (v, h)
plane, near the left knee of NV (s), for fixed s. The region with solid
lines across it is A(s), which includes the h-nullcline NH (dashed
line). The arrows illustrate the directions that representative trajec-
tories will instantaneously move under (4), relative to NV (s), as
described in the text.

left knees, ∂ N f (v, s)/∂v is small relative to the rate of
change of h, and Ã(s) can be approximated for sim-
plicity by

A(s) =
{

(v, h) :
(h∞(v) − h)

τh(v)
<

∂ N f (v, s)

∂s

ds

dt

}
,

(5)

where the term on the left side of the inequality in
Eq. (5) comes from the h equation in (4). An illustration
of this structure in the (v, h) plane is given in Fig. 4.

For each fixed s ∈ [0, smax], where smax is the value
of s at which a trajectory of interest enters a specified
neighborhood of the curve of left knees, let (v̂(s), ĥ(s))
denote bd(A(s)) ∩ NV (s). Further, let

A =
s=smax⋃

s=0

A(s) and NV =
s=smax⋃

s=0

NV (s).

Based on the above structure, it seems reasonable that
trajectories that enter a neighborhood of the curve
(v̂(s), ĥ(s), s) will spiral around (v̂(s), ĥ(s), s) during
their time in the silent phase, in a vortex-like structure
or vortex canard (Drover et al., 2005), under the flow of
(4). More specifically, trajectories lying in A and below
NV will be unable to cross throughNV and will instead
exit A through bd(A), since v′ < 0 below NV . Once
outside of A, they will eventually cross through NV to
enter the region where v′ > 0. Before they can escape
the neighborhood of (v̂(s), ĥ(s), s), however, they re-
enter A and thus may fall below NV , such that v′ < 0
once again. A projection of this motion onto the (v, h)
plane is sketched in Fig. 4; see Drover et al. (2005) for
further discussion.

While this analysis is not precise, with vagueness
in selecting a neighborhood such that ∂ N f (v, s)/∂v

is small, it suggests that the delay in escape can be
estimated by computing a modified way-in way-out
function. Unlike the standard way-in way-out calcu-
lation, which proceeds by linearizing (dv/ds, dh/ds)
about the intersection of NV (s) with NH for each s,
the modified way-in way-out function is derived from
linearization about (v̂(s), ĥ(s)) to capture the vortical
structure there. In Drover et al. (2005), the modified
way-in way-out function is shown to give an accurate
estimate of the duration of delayed escape, and cor-
respondingly of the s-value at which escape occurs,
over a wide range of synaptic decay rates τsyn. Further,
it is demonstrated analytically that for h′ = εg(v, h)
with ετsyn = O(1), the error in the time calculation is
O(1/τsyn), if ∂ N f (v, s)/∂v is small near (v̂(s), ĥ(s)).
Of course, as τsyn grows for ε fixed, |ds/dt | decreases
and bd(A(s)) approaches NH for each s, such that the
modified and standard way-in way-out calculations ap-
proach equivalence. Finally, the same delay effect can
yield bursting solutions, in which multiple spikes are
separated by prolonged interburst intervals. A short in-
terspike interval can arise when the synaptic excitation
s remains below the Hopf bifurcation value sHB after
an initial spike, such that no trapping in the silent phase
results. A burst of spikes can follow as s gradually accu-
mulates, with termination once s > sHB occurs (Drover
et al., 2005).

Recently, Wechselberger (2004) has demonstrated
that the extreme delay discussed here fits the
criteria for a folded node canard in R

3 (Szmolyan and
Wechselberger, 2001). Thus, the “vortex structure” to
which the trapping is ascribed in Drover et al. (2005)
can be rigorously understood in terms of invariant man-
ifolds of the full system (4), which form a multi-layered
trapping region. A nice aspect of the manifold calcu-
lations, given for a FitzHugh-Nagumo model of the
HH equations in Wechselberger (2004), is that they
illustrate the robustness to noise of this delayed es-
cape phenomenon. An example of this robustness is
illustrated in Fig. 2B; more generally, simulations with
τsyn = 5 ms yield a firing rate of 108.65 Hz without cou-
pling, 19.68 Hz with gsyn = 2 mS/cm2 and no noise,
and 35.48 ± 0.92 Hz with gsyn = 2 mS/cm2 and the
same level of noise shown in Fig. 2B, and similar results
arise for different τsyn, gsyn, and I . While noise can push
a trajectory across some layers of the trapping region,
thereby hastening its escape from the silent phase, the
outer layers still provide a trapping effect.
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4. Sustained, Localized Activity
in an Excitatory Network

Through its depolarizing effect, synaptic excitation
pulls silent cells closer to spike threshold, possibly
giving them an opportunity to fire. By this means,
waves of activity can propagate through linear and two-
dimensional networks with appropriately strong synap-
tic excitation, in some cases leaving all cells active in
their wake, as has been detailed in many computational
studies and some experimental work. While synaptic
excitation can sustain spatially extended activity once it
is initiated, the standard recipe for the spatial localiza-
tion of activity has been so-called lateral inhibition or
Mexican hat coupling. In Mexican hat coupling, cells
are connected to nearby cells via excitation and to more
distant cells via inhibition, which can act as a brake on
the spread of activity; many of the works harnessing
this idea draw inspiration from the Wilson and Cowan
(1973) and Amari (1977) models.

Since in general a single neuron will release a sin-
gle type of neurotransmitter, a biophysically realistic
incarnation of Mexican hat coupling requires at least
two cell populations, one excitatory (E) and one in-
hibitory (I). Sustained, localized activity, or bumps, can
be achieved in a model network when the synapses from
the E cells target nearby E and I cells, while synapses
from the I cells to the E cells have a greater spatial ex-
tent. A variety of brain areas, including the thalamus
and the indirect pathway of the basal ganglia, appear
to lack E-to-E connections, however. Therefore, the
question of whether alternative architectures can also
support bumps arises. Recent work has shown that post-
inhibitory rebound (PIR), a form of hyperpolarization-
induced firing with delay, can replace E-to-E connec-
tions as a mechanism for sustaining activity (Rubin
et al., 2001). And even in the absence of PIR, appro-
priately scaled E and I connection architectures with
off-center excitation can yield stable bumps, at least in
a simplified one-dimensional continuum model (Rubin
and Troy, 2004).

In all of these models, the spread of activity is
halted by an accumulation of inhibition at some dis-
tance from the core of the active region. In Drover
and Ermentrout (2003) and Rubin and Bose (2004),
however, examples of bumps in purely excitatory net-
works of type II and type I cells, respectively, are pre-
sented. The phenomenon of bumps in an excitatory
network differs from the frequency effects discussed
in Section 3, in that the introduction of excitation here

Figure 5. Sustained, localized activity in a network of 20 cells
governed by (6). The greyscale encodes levels of v, with elevated
v, corresponding to the active phase, represented by pale shades. A
stimulus is applied to the central three cells for a brief period, causing
them to fire at relatively high frequency, and is then removed; despite
its removal, activity persists in the recruited subset of cells.

increases the overall activity in the network, relative to
the uncoupled state. Nonetheless, given the past em-
phasis on Mexican hat coupling as a feature of bump-
supporting networks, and more generally on inhibition
for stemming the spread of activity, the fact that synap-
tic excitation can recruit and maintain the activity of
some intrinsically silent cells in a network and yet not
recruit others, despite uniform coupling architecture
and strength across the network, represents a surprise.

Figure 5 shows an example of a computational ex-
periment, similar to those in Rubin and Bose (2004),
in which a bump is formed by a transient stimulation,
and persists after the end of the stimulation period, in
an excitatory network of 20 cells. The equations simu-
lated, again in XPPAUT (CVODE with time step 0.01
units), are the Morris and Lecar (1981), Rinzel and
Ermentrout (1998) system

v′
i = f (vi , wi ) − ḡsyn[vi − vsyn]

× [
c0si + �

j=3
j=1c j (si− j + si+ j )

]
w′

i = [ω∞(vi ) − wi ]/τw(vi ) (6)

s ′
i = a[1 − si ]H (vi − vθ ) − bsi H (vθ − vi )

for i = 1 . . . 20, where H (x) is the Heaviside step
function and sk = sk+20 for k < 1, sk = sk−20 for
k > 20; see Rubin and Bose (2004) for complete de-
tails. Parameters c0 = 0.02, c1 = 0.022, c2 = 0.006,
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Figure 6. Inputs of similar sizes may or may not recruit a cell, depending on their timing. (A) The cell corresponding to the dashed time course
is recruited by an input of magnitude stot ≈ 0.027, marked by the dotted line. Although stot for the cell with the solid time course exceeds
this level several times, the cell is not recruited. (B) Trajectories of a recruited cell (dashed) and its non-recruited neighbor (solid), under the
dynamics of (6), are projected into the (v, stot) plane. The leftmost dotted curve is the cross-section of the go surface for the recruited cell that is
relevant when it gets recruited. The rightmost dotted curve is a cross-section of the go surface for the non-recruited cell, which corresponds to
the onset of decay for a particular input the cell received; most cross-sections relevant for other inputs lie in a small neighborhood of this one.
Note that the non-recruited cell’s trajectory approaches very close to the recruitment threshold but does not cross it. Both panels are reproduced,
with slight modification, from Rubin and Bose (2004) with the permission of IOP Publishing Limited.

and c3 = 0.001 scale the synaptic coupling to depend
on distance. Note from system (6) that cells are self-
coupled (c0 
= 0). While a cell with self-coupling but
no other inputs will return to rest after stimulation, this
self-coupling does make it easier to maintain activity
than to recruit new cells. Thus, the main question in the
analysis of these bumps is: what allows for the recruit-
ment of some cells, but not others? A subtle point that
arises is that the timing of inputs, not just their mag-
nitudes, determines recruitment, as shown in Fig. 6A.
The key to understanding the bump formation shown
here is to note that in it, synaptic excitation acts in three
different ways:

• it promotes recruitment during the stimulation pe-
riod, since stimulated cells fire at high frequencies,
leading to accumulation of synaptic excitation to suf-
ficient levels to recruit non-stimulated cells within
some neighborhood of the active region (depend-
ing on coupling strength, time constants, and so
on);

• it prevents recruitment of additional cells by desyn-
chronizing active cells after the stimulation period,
such that inactive cells never receive sufficient input
to fire; and,

• it maintains the firing of active cells after the stim-
ulation period, since even with self-coupling, cells
cannot fire persistently when decoupled from the net-
work.

In fact, desynchronization contributes to this last effect
as well, together with slow decay of excitation, by en-
suring that there are no periods when all synaptic inputs
to an active cell have decayed away. Given the crucial
role of desynchronization in localizing and sustaining
activity, the mechanism for bumps here clearly depends
on the fact that the neurons in the network are type I
cells, which are driven to an asynchronous state by ex-
citation (Ermentrout, 1996); the bumps in the type II
cells in Drover and Ermentrout (2003) must therefore
result from a different mechanism, which remains to
be fully elucidated.

The analysis in Rubin and Bose (2004) provides
a framework that can be used to determine precisely
which input is responsible for recruiting an activated
cell. The idea is to consider the equations for a poten-
tial recruit, cell i , at a moment when the voltage of
the cell itself, as well as the voltages of all of the cells
that provide it with synaptic input, satisfy v < vθ . Let
stoti = ḡsyn[c0si + ∑ j=3

j=1 c(si− j + si+ j )]. The relevant
equations then become

v′
i = f (vi , wi ) − stoti [vi − vsyn]

w′
i = [ω∞(vi ) − wi ]/τw(vi ) (7)

s ′
toti = −bstoti ,

which have exactly three critical points, namely a sta-
ble node (vl , wl , 0) and unstable equilibria (vm, wm, 0)
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Figure 7. An illustration of the go surface (Ws , solid). Under the
flow of (7), trajectories evolve toward {stot = 0}, as suggested by the
arrows; nullclines for stot = 0 are dashed, as are arrows for trajec-
tories off of Ws . The stable manifold Ws of (vm , wm , 0) partitions
trajectories of (7) into those that can enter the active phase (in C2)
and those that cannot (in C1). Adapted from Rubin and Bose (2004)
with the permission of IOP Publishing Limited.

and (vu, wu, 0), with vl < vm < vu . The critical point
(vm, wm, 0) has a two-dimensional stable manifold W s

that separates {(v, w, s) in R
3 : w < wu} into two dis-

connected components. One component, call it C1, con-
sists of trajectories that converge directly to (vl , wl , 0)
without entering the vicinity of the right branch of the
v-nullcline, while the other, call it C2, consists of trajec-
tories that do enter this active phase before converging
to (vl , wl , 0). See Fig. 7.

Suppose that the trajectory of the potential recruit,
cell i , lies in C1 and that it gets a synaptic input, say
from cell j . Because cell j is active, (vi , wi ) evolve
according to the full system (6) until the moment, say
t j , when v j falls below vθ . At time t j , assuming that
no other presynaptic cells have fired in the meantime,
system (7) becomes relevant, and we check whether
(vi (t j ), wi (t j ), stoti (t j )) lies in C1 or C2. In the former
case, since W s is invariant (and w′ < 0 at w = wu

in C1), (vi (t), wi (t), stoti (t)) remains in C1 until a future
input to cell i arrives. In the latter case, again since
W s is invariant and since any future inputs will be
excitatory, it is guaranteed that cell i will fire, even if it
receives no future inputs. Thus, we refer to W s as the
go surface.

Note that, due to the curvature of W s induced by
the dynamics of (7), different points with the same
value of stot may lie in different Ci , depending on
their v and w components. Thus, the total input stot

needed for recruitment is different in different cells, as
in Fig. 6A, and is also different for the same cell at
different times. Further, the level of stot itself differs
over different inputs to the same cell, as is also ap-

parent in Figs. 6A and B. Given (vi (t j ), wi (t j ), stot(t j ))
as above, whether recruitment occurs or not can be
checked in the (v, stot) plane by comparing the loca-
tion of (vi (t j ), wi (t j ), stot(t j )) to the cross-section of
W s taken at w = wi (t j ), as in Fig. 6B.

Because recruitment depends so strongly on the
abrupt threshold formed by W s , the localized activ-
ity in this network is sensitive to noise and to small
variations in parameters. It remains possible that short-
term dynamics can add robustness to this network; see
Rubin and Bose (2004) for a discussion of the impact
of short-term depression on the network. Alternatively,
it is possible that while inhibition is clearly not a neces-
sary ingredient for the existence of stable bumps in this
type of network, inhibition plays a key role in preserv-
ing localized activity patterns in noisy conditions. Fi-
nally, spatial heterogeneity in coupling may contribute
to the pinning of bumps in certain preferred locations
in an excitatory network, as discussed for other cou-
pling architectures in Renart et al. (2003) and Rubin
and Troy (2004), which would be expected to enhance
the robustness of the selected patterns.

5. Conclusion

The effects of synaptic excitation on a model neuronal
network depend on the intrinsic dynamics of cells in
the network as well as the strength and temporal char-
acteristics of the synaptic signal. Under the right con-
ditions, some specialized and some general, synaptic
excitation can speed up, slow down, synchronize, or
desynchronize network activity, and it can propagate
activity throughout a network or sustain activity in a
localized subregion within a network.
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generation in the pre-Bötzinger complex. II. Populations of cou-
pled pacemaker neurons. J. Neurophysiol. 81: 398–415.

Diener M (1984) The canard unchained or how fast/slow dynamical
systems bifurcate. Math. Intell. 6(3): 38–49.

Drover JD, Ermentrout B (2003) Nonlinear coupling near a degen-
erate Hopf (Bautin) bifurcation. SIAM J. Appl. Math. 63: 1627–
1647.

Drover J, Rubin J, Su J, Ermentrout B (2005) Analysis of a canard
mechanism by which excitatory synaptic coupling can synchro-
nize neurons at low firing frequencies. SIAM J. Appl. Math. 65:
65–92.

Ermentrout B (1996) Type I membranes, phase resetting curves, and
synchrony. Neural Comput. 8: 979–1001.

Ermentrout B (2002) Simulating, Analyzing, and Animating Dynam-
ical Systems: A Guide to XPPAUT for Researchers and Students.
SIAM, Philadelphia.

Hansel D, Mato G, Meunier C (1993) Phase dynamics for weakly
coupled Hodgkin-Huxley neurons. Europhys. Lett. 23: 367.

Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural
networks. Neural Comput. 7: 307–337.

Hodgkin AL, Huxley AF (1952) A quantitative description of the
membrane current and its application to conduction and excitation
in nerves. J. Physiol (Lond.) 117: 500–544.

Hoppensteadt FC, Izhikevich EM (1997) Weakly Connected Neural
Networks. Springer-Verlag, New York, NY.

Izhikevich E (2000). Subcritical elliptic bursting of Bautin type.
SIAM J. Appl. Math. 60: 503–535.

Kopell N, Somers D (1995) Anti-phase solutions in relaxation oscil-
lators coupled through excitatory interactions. J. Math. Biol. 33:
261–280.

Kuske R, Baer S (2002) Asymptotic analysis of noise sensitivity in
a neuronal burster. Bull. Math. Biol. 64: 447–481.

Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant
muscle fiber. Biophys. J. 35: 193–213.

Neishtadt AI (1987) On delayed stability loss under dynamical bi-
furcations I. J. Diff. Eqn. 23: 1385–1390.

Neishtadt AI (1988) On delayed stability loss under dynamical bi-
furcations II. J. Diff. Eqn. 24: 171–176.

Renart A, Song P, Wang X-J (2003) Robust spatial working memory
through homeostatic synaptic scaling in heterogeneous cortical
networks. Neuron 38: 473–485.

Rinzel J (1985) Excitation dynamics: Insights from simplified mem-
brane models. Fed. Proc. 44: 2944–2946.

Rinzel J (1987) A formal classification of bursting mechanisms in
excitable systems. In: AM Gleason, ed. Proceedings of the In-
ternational Congress of Mathematicians. AMS, Providence, RI,
pp. 1578–1593.

Rinzel J, Ermentrout GB (1998) Analysis of neural excitability and
oscillations. In: C Koch, I Segev, eds. Methods in Neuronal Mod-
eling: From Ions to Networks, second edition. MIT Press, Cam-
bridge, MA, pp. 251–291.

Rubin J, Bose A (2004) Localized activity patterns in excita-
tory neuronal networks. Network: Comp. Neural Sys. 15: 133–
158.

Rubin J, Terman D (2002) Geometric singular perturbation analysis
of neuronal dynamics. In: B. Fiedler, ed. Handbook of Dynamical
Systems, Vol. 2 Elsevier, Amsterdam, pp. 93–146.

Rubin J, Terman D, Chow C (2001) Localized bumps of activity
sustained by inhibition in a two-layer thalamic network. J. Comp.
Neurosci. 10: 313–331.

Rubin JE, Troy WC (2004) Sustained spatial patterns of activity in
neuronal populations without recurrent excitation. SIAM J. Appl.
Math 64: 1609–1635.

Somers D, Kopell N (1993) Rapid synchronization through fast
threshold modulation. Biol. Cybern. 68: 393–407.

Su J, Rubin J, Terman D (2004) Effects of noise on elliptic bursters.
Nonlinearity 17: 133–157.

Szmolyan P, Wechselberger M (2001) Canards in R
3. J. Diff. Eqn.

177: 419–453.
Wang X-J, Rinzel J (1995) Oscillatory and bursting properties of

neurons. In: MA Arbib, ed. Handbook of Brain Theory and Neural
Networks. MIT Press, Cambridge, MA, pp. 689–691.

Wechselberger M (2004) Existence and bifurcation of canards in R
3

in the case of a folded node. Preprint.
Wilson HR, Cowan JD (1973) A mathematical theory of the func-

tional dynamics of cortical and thalamic nervous tissue. Kyber-
netic 13: 55–80.


