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Deriving Information about Architecture from Activity Patterns in Coupled Cell
Systems∗
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Abstract. In coupled networks, the properties of the constituent elements (cells), their interactions, and the
coupling architecture combine to determine the possible coherent states that may arise. In this work,
we examine what can be said about the coupling architecture of a network based on an observed
polysynchronous activity pattern, in which cells form multiple synchronized clusters. Specifically,
we derive a linear relation, the solutions of which are precisely those coupling architectures that
are robustly compatible with a given polysynchronous state. We analyze this relation under the
assumption that the network consists of either a ring of identical cells or a double ring of two
interacting cell populations. Comparison of these cases shows that coupling of an “observed” layer
of cells to a second “hidden” layer can significantly broaden the range of architectures that support
certain clustering patterns in the observed cells.
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1. Introduction. The phenomenon of spontaneous synchronization in networks of coupled
systems is ubiquitous in nature and has been studied in a variety of settings [20, 25]. Many
of the theoretical studies of the phenomenon start by postulating models for the individual
systems and their interactions in the network. The collective behavior of the network is then
analyzed after a particular pattern of connections, or coupling architecture, has been specified.
The properties of the individual systems, their interactions, and the coupling architecture are
all important in determining the features of the coherent states that appear in such networks.

The present work provides a different approach to the analysis of synchrony in networks.
Rather than specifying the properties of the network at the outset, we assume that a particular
activity pattern has been observed in the network, but little else is known. The question
we begin to address is the following: Can one infer anything about the network’s coupling
architecture from the fact that it supports the observed mode of activity? More specifically,
we ask how a network’s capability to produce a particular activity pattern constrains the
possible coupling architectures that may be present in the network.

The problem of constructing a network architecture that produces a certain activity pat-
tern has been considered, for instance, to construct networks that can serve as central pattern
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generators for the various gaits observed in quadrupeds [12, 11]. The approach used in these
studies was based on the analysis of the symmetries of the system, which lead to the spa-
tiotemporal patterns of activity corresponding to different gaits. In the present work, we
study polysynchronous states, featuring multiple synchronized clusters that may be out of
synch with each other. Although polysynchronous states may result from the symmetries of
a network, as studied, for example, by Pogromsky, Santoboni, and Nijmeijer [21], such states
may not have the full symmetries of the network, and they may also appear in networks that
do not possess any symmetries. In general, while it is clear that there is a connection between
patterns of synchrony in a network and the network architecture, the relation between the
two has, up to this point, been poorly understood.

In contrast to [12, 11, 21], the mathematical methods introduced in this paper rely on
local information about architecture and can thus be used to analyze states that do not result
from global symmetries of the network. We apply these methods to fully analyze which
architectures are compatible with specified polysynchronous states. Examples of synchronous
patterns that are not due to symmetry have also been discussed in [10], and we provide a
general framework for analyzing the networks that can support such patterns. One direct
consequence of this analysis is the result that the presence of a “hidden” layer of cells can
strongly impact the range of network architectures that can support a given activity pattern
in an “observed” layer of cells.

A significant motivation for studying architectural implications of coherent activity states
derives from the field of neuroscience. Experimental and computational evidence suggests
that synchronized activity of synaptically interconnected neuronal ensembles contributes to a
variety of cognitive tasks, such as attending to regions in the receptive field [9] and recogniz-
ing learned spatiotemporal patterns [15, 16]. Moreover, the power of synchronized neuronal
oscillations at various frequencies is augmented during certain periods or states, as in cortical
gamma rhythms during epochs of attentiveness associated with successful learning [9, 17],
thalamic spindle and delta rhythms during periods of sleep [7, 8], and subthalamopallidal
oscillations in parkinsonian states (reviewed in [3]). Note that synchronized states relevant to
the above examples include states of polysynchrony.

Through biophysically based computational modeling of neuronal networks, one can at-
tempt to assess the contributions of various features of intrinsic and synaptic dynamics to
the occurrence of synchronized states. Computational results also highlight the crucial role
that the synaptic architecture, or pattern of synaptic connections between neurons, can play
in shaping network behavior (e.g., [26]); indeed, changes in synaptic architecture alone can
induce significant changes in firing patterns within a model neuronal network. Unfortunately,
experimental information about synaptic architectures, particularly the architecture of effec-
tive synapses in a network, is sketchy in many cases. In particular, while it may be possible
to ascertain that two general brain areas are synaptically connected (e.g., from viral injection
studies [14]), it is much more difficult to establish details about synaptic density, reciprocity,
or patterning. Given these difficulties, a theoretical means to infer information about the
synaptic architecture of a network from the nature of experimentally observed activity pat-
terns in a network would represent a valuable tool in the analysis and computational modeling
of neuronal networks. Importantly, such an inverse approach could also be used to constrain
the range of synaptic architectures to be considered in simulations of a network known to
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generate certain dynamics.

In this work, we take an abstract, model independent approach to the inverse problem
of using a network’s activity patterns to constrain its coupling architecture. Although we
consider only states of exact polysynchrony, the conclusions we obtain are not restricted to
any particular type of system. While all patterns of synchrony can be observed in an all-to-all
coupled network, we will seek to specify all of the architectures that can robustly yield given
activity patterns. Here, robustness refers to the fact that with these architectures, changes
in the intrinsic dynamics of its components will not destroy the specified patterns (as long
as the changes are made so that cells in the network which are assumed to be equal remain
equal). To focus our investigation, we will assume that the network coupling architecture
features ZN symmetry (for arbitrary fixed population size N). This means that if we index
the cells by the integers 0, . . . , N−1, and then shift all indices up by the same positive integer
(mod N − 1), then for any i, j ∈ {0, . . . , N − 1}, the number of connections from cell i to
cell j is not changed by this shift. Networks with this symmetry are typically referred to as
rings, and we will generally think of the cells in the network as forming a ring for convenient
visualization in the figures. This is the approach taken in many computational studies of
waves, localized activity, and other organized activity patterns in discrete models of neuronal
networks as well. Note, however, that the actual spatial arrangement of cells in a network
under study is irrelevant, as the symmetry here relates only to the coupling architecture, and
that the methods we present will apply in the absence of ZN symmetry as well.

We emphasize that we consider the mathematical ideal of synchrony: If x0 and x1 are the
state variables of two systems, then the systems are synchronous only if x0 = x1. Implicitly,
we will make an even stronger assumption. Given a system of N cells described by internal
variables x0, . . . , xN−1, each evolving in state space Rm, two systems xi and xj will be able
to exhibit synchronous behavior only if the manifold Si,j = {(x0, . . . , xN−1) ∈ Rm : xi = xj}
contains an invariant submanifold. This is a strong assumption, which may not cover all
situations of interest in practice. However, such an assumption is desirable, because if invariant
manifolds corresponding to synchronous behavior exist and are stable in an appropriate sense,1

then the synchronous states persist under small perturbations away from synchrony.

An example of the type of solution we seek is given in Figure 1. Here, a polysynchronous
state is specified by coloring the cells according to their cluster membership; i.e., cells sharing
the same color are synchronous. Our results yield constraints on the set of all inputs to each
cell in the network. When these constraints are satisfied, the input sets for different cells of the
same color are equivalent. This means that all cells of the same color receive the same number
of inputs from cells in different clusters. We refer to a coloring of a network with this property
as a balanced coloring and define it mathematically in section 2.2 below. Figure 1 illustrates
an architecture that achieves a balanced coloring, although it is not the only such architecture.
We will show that, without assuming the existence of a layer of I cells (the rectangular cells in
the figure), only a network with all-to-all coupling can support the 2-cluster polysynchronous
pattern in the E cells shown in Figure 1. Therefore, the existence of a “hidden” layer of cells
allows for a much sparser network architecture, such as that shown in Figure 1.

In the next section, we give a more thorough introduction of the notation and terminology,

1In fact, normal hyperbolicity is necessary and sufficient.
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Figure 1. An example of a balanced coloring with E cell clusters of sizes 3 and 4, and I cell clusters of
sizes 2 and 5, achieved within a double ring. The connection pattern shown repeats for all cells in the network,
such that each red E cell receives inputs from 2 blue I cells and 3 yellow I cells; each white E cell receives inputs
from 1 blue I cell and 4 yellow I cells; each blue I cell receives inputs from 2 red E cells and 1 white E cell;
and each yellow I cell receives inputs from 1 red E cell and 2 white E cells.

such as the notions of an input set and a balanced coloring. Further, we derive the general
mathematical formulation of the architectural specification problem that we will consider. In
section 3, we state and prove our first main result, on architectures that support 2-cluster
solutions on a ring. We also present an example of the application of our result to a particular
solution and ring, and we discuss general ways to check the connectedness of architectures. In
section 4, we state and prove our second main result, on polysynchronous solutions in rings
of two cell types, providing an example of how the presence of a second cell type can weaken
strict architectural constraints that would be required for certain activity patterns to arise in
a ring of just one cell type. We conclude with a discussion in section 5.

2. Notation and mathematical description of the problem. The main idea of our ap-
proach is to translate the problem of constructing an architecture that allows for certain
patterns of polysynchrony into the problem of finding integer solutions to a set of linear
equations. In this section, we introduce notation and illustrate our approach in a simple
example.

2.1. Polysynchrony in a small example network. For simplicity, we first consider net-
works of identical cells, so that each cell evolves in the same phase space as the others. The
connectivity matrix A of the network is a matrix of nonnegative integers, where an entry ai,j
denotes the number of connections from cell j to cell i. We assume that the connections
between the cells in the network are identical to avoid introducing multiple connectivity ma-
trices. Figure 2 provides an example of a six cell network, with Z6 symmetry, along with its
connectivity matrix. Note that due to the Z6 symmetry, if we increment (mod 6) all cell labels
in Figure 2 by a fixed positive integer, then the connection matrix A will not change.

The structure of a network has to be reflected in the equations that are used to model
it. In particular, if the internal states of the cells in the network of Figure 2 are denoted by
xi ∈ Rk for i = 0, . . . , 5, and we set x = (x0, x1, x2, x3, x4, x5), then a differential equation
modeling the evolution of this network must have the form
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0 1

2

4 3

5
A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 2 1
1 1 1 0 0 2
2 1 1 1 0 0
0 2 1 1 1 0
0 0 2 1 1 1
1 0 0 2 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 2. An example of a network of six identical cells and its connectivity matrix.

x′0 = f(x0, x1, x4, x4, x5), x′3 = f(x3, x4, x1, x1, x2),

x′1 = f(x1, x2, x5, x5, x0), x′4 = f(x4, x5, x2, x2, x3),

x′2 = f(x2, x3, x0, x0, x1), x′5 = f(x5, x0, x3, x3, x4).(2.1)

To obtain system (2.1), we assume that for any fixed j ∈ {0, . . . , 5}, the effect of the input from
cell i + j (mod 5) to cell i, i = 0, . . . , 5, is independent of i (see [13] for a formal treatment).

It can be checked by direct substitution that the linear submanifolds X = {x : xi = xj
for all i and j} and Y = {x : x0 = x2 = x4 and x1 = x3 = x5} are invariant under the
evolution of system (2.1); i.e., solutions with initial conditions in X and Y remain in X and Y,
respectively, for all time. Therefore, any differential equation model of the network given in
Figure 2 supports both the fully synchronous state x = (x(t), x(t), x(t), x(t), x(t), x(t)) and
the polysynchronous state x = (x0(t), x1(t), x0(t), x1(t), x0(t), x1(t)).

We note that the existence of these states is a consequence only of the assumed network
architecture (in this case, the ZN symmetry of the network). Other features, such as the
stability of the synchronous states, depend on the details of the model’s dynamics.

2.2. Polysynchronous states in general networks. It is natural to ask what polysyn-
chronous states a given network architecture can support. This problem has been explored
in detail in [24, 13]. Our present goal is to provide a general approach to answering the in-
verse question: Given a particular polysynchronous state, what are the network architectures
that can support it? In this section we introduce the notation we use to describe a general
polysynchronous state and the conditions on the network architecture that allow the network
to support such states.

To describe a pattern of polysynchrony in a network of N cells, we first number the
cells in the network. To do so, we assign integer indices i = 0, 1, . . . , N − 1 to the cells.
We start with 0 here and throughout the paper for convenience in calculations using modular
arithmetic. Each cell is then assigned a vector ci ∈ Rm, where m is the number of synchronous
clusters that appear in the polysynchronous solution of interest. Each ci will be a unit vector
from the standard basis {e0, . . . , em−1} for Rm, and the position of the nonzero element of
the vector will denote which group of synchronous cells the cell i belongs to. Therefore, cell i
is synchronous with cell j if and only if ci = cj = el for some l ∈ {0, . . . ,m− 1}.

Let Ci = {i0, . . . , ik−1} and Cj = {j0, . . . , jl−1} be the collections of cells that provide
inputs to cells i and j, respectively, or their input sets. If a single cell provides n inputs to
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cell i, it is listed n times in Ci. It is shown in [24, 13] that two cells in a network can be
expected to display robust synchrony, such that synchrony persists under small changes in
cellular dynamics that preserve network architecture, only if their input sets are identical.
More precisely, the cells i and j can be expected to be robustly synchronous only if there
exists a bijection φ : Ci → Cj such that if φ(ir) = jq, then cir = cjq ; under this condition,
φ maps input cells from any fixed synchronous group to input cells from the same synchronous
group.

The existence of the bijection φ between the input sets of two cells means that the two
cells receive the same number of inputs from each of the synchronous clusters. Suppose we
color all cells in a network, such that all cells in a synchronous cluster share the same color,
with different colors for different clusters. If for every pair of cells in the same cluster, i.e.,
of the same color, there exists such a bijection, then such a coloring is referred to as balanced
[24, 13]. A balanced coloring ensures that polysynchronous states are robust, in the sense
described above, as stated in the following result.

Theorem 2.1 (see [24, 13]). A coloring is balanced if and only if the corresponding polysyn-
chronous state is robust.

This observation can be translated into an equation by using the notation established
above. Let

∑N−1
k=0 ai,kck = Ri, so that Ri is the m-vector whose lth entry is equal to the

number of inputs cell i receives from the synchronous cluster l. The requirement that the cells
i and j have the same input set is equivalent to the requirement that

N−1∑
k=0

ai,kck = Ri = Rj =

N−1∑
k=0

aj,kck.(2.2)

Remark 2.1. In the mathematical neuroscience literature, the architectures assumed for
the analytical study of polysynchronous states are generally relatively simple and do yield
balanced colorings. An interesting example appears in [26], where a balanced coloring is
achieved with the architecture that yields robust polysynchrony of clusters in an E-I network,
the so-called structured, sparsely connected architecture.

Now, set c = [c0, . . . , cN−1]
T ∈ RmN , representing a pattern of synchrony. Using (2.2),

the problem of finding an architecture such that the coloring associated with the specified
polysynchronous m-cluster state is balanced becomes the problem of finding a connectivity
matrix A ∈ RN×N and a vector R = [R0, . . . , RN−1]

T ∈ RmN , both with nonnegative integer
entries, such that

(A⊗ Im)c = R.(2.3)

In (2.3), Im is the m by m identity matrix and ⊗ denotes the tensor product.

A more geometric interpretation of this condition is the following: Let Rc be the linear
subspace of RmN defined by Rc = {R = (R0, R2, . . . , RN−1) ∈ RmN : Ri = Rj whenever
ci = cj}. Equation (2.3) implies that the problem of finding a network architecture that
supports a given pattern of synchrony c is equivalent to finding a matrix A that maps the
given pattern of synchrony c to a point in Rc with nonnegative integer components. Note
that Rc has dimension m2 since each of the m synchronous clusters is characterized by a
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corresponding m-vector. Note further that it does not matter which point in Rc is attained;
the important point is to find an A such that (A⊗ Im)c is in Rc.

Example. Consider a ring of four cells, denoted by c0, . . . , c3. Suppose that we want to
find an architecture that supports two synchronized clusters, in which cells 0 and 1 share one
color and cells 2 and 3 share another. Following the notation above, we set

c0 = c1 =

[
1
0

]
and c2 = c3 =

[
0
1

]
.

Our assumption that we are dealing with a ring of cells means that the network has
Z4 symmetry when the coloring is not taken into account (see Figure 3). As a consequence,
the matrix A is circulant, so that

A =

⎡
⎢⎢⎣

a0 a1 a2 a3

a3 a0 a1 a2

a2 a3 a0 a1

a1 a2 a3 a0

⎤
⎥⎥⎦.

The condition that the coloring is balanced is equivalent to requiring that the following
equations can be satisfied by some nonnegative integers a0, a1, a2, a3 and 2-vectors of nonneg-
ative integers R and S

a0c0 + a1c1 + a2c2 + a3c3 = R, a2c0 + a3c1 + a0c2 + a1c3 = S,

a3c0 + a0c1 + a1c2 + a2c3 = R, a1c0 + a2c1 + a3c2 + a0c3 = S.(2.4)

Through a simple manipulation of (2.4) we obtain the system of equations

a0 + a1 = R0, a2 + a3 = R1,

a3 + a0 = R0, a1 + a2 = R1
(2.5)

and four more redundant equations. These equations imply a1 = a3, while a0 and a2 are
arbitrary. R and S are determined once the values of a0, a1 = a3, and a2 are set. The value
of a0 describes the coupling of a cell to itself, and can be thought of as one of a cell’s intrinsic
characteristics.

The three possibilities with single arrows between cells, and a0 = 0, are shown in Figure 3.
Note that when a1 = a2 = a3 = 1 we have all-to-all coupling. Since any coloring will be
balanced for such a coupling, this solution is uninteresting. Moreover, when a1 = a3 = 0 and
a2 = 1 (Figure 3C), the network consists of two disconnected subnetworks. We also consider
such solutions uninteresting. Therefore the only nontrivial solution in this example is given
by a1 = a3 = 1, and a2 = 0, as in Figure 3B.

Remark 2.2. To keep the exposition concise, we do not deal with networks in which all
cells and connections are not identical, such as neuronal networks with multiple forms of
neurotransmitters and receptors. The precise relation between the network architecture and
the structure of the system of equations that models the network, as well as the machinery
necessary to analyze this relation, is introduced in [24, 13].
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Figure 3. Three possible architectures with single arrows leading to a balanced coloring in a ring with the
synchrony pattern described in the text. From left to right, (a) a1 = a2 = a3 = 1, (b) a1 = a3 = 1, a2 = 0,
(c) a1 = a3 = 0, a2 = 1. In all cases a0 = 0, corresponding to no self-coupling.

The reader may have noticed that the connectivity matrices for the networks given in
Figures 3B and 3C sum to give the connectivity matrix of the network in Figure 3A. This is
a consequence of the following general result.

Proposition 2.2. The set of matrices Ac = {A ∈ ZN×N : A satisfies (2.3) for some R ∈ Rc}
forms a module over the integers.

Proof. Suppose that A and B satisfy (2.3) for RA ∈ Rc and RB ∈ Rc, respectively, and a
fixed c. If cells i and j are synchronous, then

N−1∑
k=0

ai,kck = RA
i = RA

j =

N−1∑
k=0

aj,kck(2.6)

and similarly for B and RB. Therefore kA+lB satisfies (2.3) with the input vector kRA+lRB.
Since Rc is a linear subspace, it contains kRA + lRB.

Remark 2.3. The subset of the module Ac consisting of matrices with nonnegative entries
is the set of all connectivity matrices that satisfy (2.3) for some R ∈ Rc.

Note that matrix O with all entries equal to 1; i.e., [O]i,j = 1 for all i, j, is in Ac for
any c. Therefore any polysynchronous solution is supported in an all-to-all coupled network.
Suppose that A ∈ Ac represents a network with at most single connections between cells. Then
Ā = O−A is in Ac, and represents another network with at most single connections between
cells. We call Ā the complement of A and refer to the two networks whose connectivities are
given by matrices A and Ā as complementary networks. In particular, the networks given in
Figures 3B and 3C are complementary networks.

2.3. Restrictions on architecture. With no restrictions on the matrix A, the problem of
solving (2.3) for a given pattern of synchrony c is not interesting. Both an all-to-all coupled
network and a network in which all cells are only coupled with themselves support all patterns
of synchrony, and the problem becomes trivial in these cases.

Another type of trivial solution is provided by a disconnected network. Consider the
network shown in Figure 4. This 9-cell network supports a polysynchronous solution with
clusters of 3 and 6 cells. Upon closer inspection (Figure 4B), one can see that this network
is really a union of 3 equal networks of 3 cells. We consider such solutions trivial, since there
are no interactions between the cells in the separate networks, and therefore the synchronous
states cannot be robust.
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2 white,
0 blue

1 white,
1 blue

A) 2 white,
0 blue

1 white,
1 blue

B)

Figure 4. A balanced coloring for a 2-cluster solution in a network of nine cells. The text in this and
subsequent figures indicates the numbers of connections to each cell of each type. On the right, we have used
three different arrow types to emphasize that this architecture consists of three disconnected components.

In contrast to these trivial architectures, naturally occurring networks are frequently ob-
served or assumed to have a certain nontrivial but patterned structure, which is reflected in
the coupled cell systems used to model them. If we assume certain reasonable restrictions on
the structure of the networks under consideration, the problem of constructing an architecture
that supports a given pattern of synchrony becomes more interesting and informative. As dis-
cussed in the introduction, ring architectures are ubiquitous in models of neuronal networks,
as well as models of other systems. Therefore, in the following, as in the example above, we
consider networks of cells with ZN symmetry.

The approach we describe here can be directly extended beyond this case. It is impor-
tant, however, to specify a class of architectures at the outset, to avoid an overabundance
of solutions. A restriction on architecture can be given by imposing a certain symmetry of
the architecture, as we have done, or it could be made more general [24, 13]. The constraint
used here translates into a constraint on the connectivity matrix A. With this constraint, the
problem consists of finding solutions of (2.2) within the specified class of connectivity matrices
given a particular polysynchronous pattern.

In section 3, we will consider 2-cluster polysynchronous solutions in rings of one cell type.
We will assume that the members of any fixed cluster are adjacent in the network (with
adjacency defined in terms of connections, not necessarily spatial location). In section 4, we
consider multicluster solutions in a pair of interacting rings, exemplified by a network in which
cells of two types are interleaved. Although the framework and ideas used in the two sections
are similar, the double ring structure will require more careful analysis.

In the neuronal context, interactions of cells of two distinct, spatially intermingled types
are of particular interest because local neuronal circuits in vivo commonly consist of interacting
excitatory (E) and inhibitory (I) populations, such as thalamocortical relay (E) and thalamic
reticular (I) cells in the thalamus, the subthalamic nucleus (E) and the globus pallidus (I) in
the basal ganglia, and pyramidal cells (E) and interneurons (I) in most cortical areas. Note
that the theory we develop, even in the case of rings of one cell type, allows for different types
of connections, such as excitatory and inhibitory or fast and slow, between cells, as long as
connections emanating from all cells within a single cluster are of the same type.
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In terms of the coupled cell formalism that we employ, the fact that a network consists of
multiple cell types means that the cells of different type cannot belong to the same synchronous
cluster and therefore cannot share the same color. While the same conditions could be obtained
by restricting the patterns of synchrony that can occur in such networks, it is conceptually
simpler to postulate the existence of different types of cells.

One interesting result that arises from our approach is that, in some cases where rings of
identical cells can only support patterns of synchrony if the network is equipped with a trivial
(uncoupled or all-to-all coupled) architecture, the presence of two types of cells (such as the
E and I cells discussed above) can greatly broaden the range of architectures that support
polysynchronous states.

Example. Consider a ring of 7 E cells shown in Figure 1. It follows from Corollary 3.3,
proved in the next section, that solutions with synchronous clusters of 2 and 5 cells, or of 3
and 4 cells, require all-to-all coupling.

Suppose that we instead consider a ring consisting of alternating E and I cells. While the
dynamics of the I cells may or may not be of interest in their own right, we shall see that it
is important to take their presence into account when analyzing E cell activity.

In a network of 7 E cells alternating with 7 I cells, it is possible to produce a nontrivial
balanced coloring of four colors with clusters of sizes 3 and 4 (E cell clusters) and 2 and 5
(I cell clusters); see Figure 1 for an example. This balance is achieved by an architecture in
which each E cell sends connections to its nearest neighbors (which are I cells) and to the I cell
directly across the ring from itself, while each I cell sends connections to its nearest neighbors
(which are E cells), to its next-nearest neighbor E cells, and to the E cell directly across the
ring. This result does not require any E-E or I-I connections but will be preserved under the
inclusion of all-to-all E-E and/or I-I connections, based on Corollary 3.3.

Thus, the presence of a “hidden” layer of cells can allow for particular polysynchronous
solutions to emerge in an “observed” layer of cells, even though it would not be possible
to obtain these same patterns with a nontrivial architecture in a ring of just a single cell
type. We emphasize that, although there are no E-E or I-I connections, this architecture is
nontrivial due to the connections between the cells of different types. Although the E cells do
not interact directly in such a network, their activity is shaped by their indirect interactions
through the I cells.

3. Rings of cells with two synchronous clusters. In this section we assume that the
architecture of a network of N identical cells has ZN symmetry, so that the cells form a ring.
We assume that two groups of adjacent cells form synchronous clusters and we answer the
question: What architectures support the given pattern of synchrony?

The assumption of ZN symmetry implies that the connectivity matrix A is circulant. We
could refer to the well-studied properties of circulant matrices to slightly shorten the discussion
that follows [6]. In fact, using the particular structure of the equations, a trick can be used to
solve them directly, as will be shown in the proof of Theorem 4.1. However, we take a more
general approach because the ideas used will also apply whenever the network is assumed to
be Γ symmetric,2 for an abelian group Γ. In this situation the irreducible representations of Γ

2We hope that similar ideas are also applicable when “symmetries” of the system are given by a groupoid,
rather than a group [24]. Unfortunately, a representation theory of groupoids that would be applicable to such
examples does not seem to have been developed yet.



DERIVING ARCHITECTURE FROM ACTIVITY PATTERNS 63

can be used to diagonalize the connectivity matrix A in the way illustrated below.

3.1. Setup and main result. Consider a ring of N cells that is separated into two groups
of adjacent cells of sizes k and N − k. The k cells in the first group are numbered 0 through
k− 1, while cells in the second group are numbered k through N − 1. Following the notation
introduced in section 2.2, we have c0 = · · · = ck−1 = [ 1

0 ] and ck = · · · = cN−1 = [ 0
1 ].

As shown in section 2.2, the problem of finding an architecture that supports this pattern
of synchrony reduces to finding a connectivity matrix A that satisfies (2.3) with m = 2. Under
the assumption that the cells form a ring, (2.3) has the form

a0 + a1 + · · · + ak−1 = R0 ak + ak+1 + · · · + aN−1 = R1

aN−1 + a0 + · · · + ak−2 = R0 ak−1 + ak + · · · + aN−2 = R1

. . . . . .

aN−k+1 + aN−k+2 + · · · + a0 = R0 a1 + a2 + · · · + aN−k = R1

aN−k + aN−k+1 + · · · + aN−1 = S0 a0 + a1 + · · · + aN−k−1 = S1

aN−k−1 + aN−k + · · · + aN−2 = S0 aN + a0 + · · · + aN−k−2 = S1

. . . . . .

a1 + a2 + · · · + ak = S0 ak+1 + ak+2 + · · · + a0 = S1.

(3.1)

It is straightforward to check, by subtracting successive equations, that the equations
in the left and right columns of (3.1) are equivalent. We will therefore deal only with the
equations in the left column. To simplify computations, we reorder these equations, putting
the first equation first, and then following with the last equation up to the second equation,
although this step is not essential.

Once reordered, these equations can be written as

Ma = R,(3.2)

where a = (a0, a1, . . . , aN−1)
T and

R = (R0, S0, . . . , S0︸ ︷︷ ︸
N−k times

, R0, . . . , R0)
T .

Here

M =

⎡
⎢⎢⎢⎢⎣

1 1 1 . . . 1 0 0 . . . 0 0
0 1 1 . . . 1 1 0 . . . 0 0
0 0 1 . . . 1 1 1 . . . 0 0

. . . . . .
1 1 1 . . . 0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎦,(3.3)

where each row contains N − k zero entries.
Since we are not fixing the value of R (rather, it is determined after the coefficients in a

are set), the problem of interest is equivalent to finding all vectors of positive integers a such
that

Ma ∈ V,(3.4)
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where

V = R0w1 ⊕ S0w2
def
= R0(1, 1, 1, . . . , 1)T ⊕ S0(1, 0, 0, . . . , 0, 1, 1, . . . , 1)T .

This problem is solved in the proof of the following theorem. Note that henceforth, we
use the notation M = circ(m0,m1, . . . ,mN−1) to denote a circulant matrix with first row
(m0,m1, . . . ,mN−1).

Theorem 3.1. Suppose that a network of N cells has ZN symmetry. The only architectures
that support two synchronous clusters of adjacent cells of sizes k and N − k are described by
coupling matrices of the form

A = circ(β0, α1, . . . , αG−1, α0, α1, . . . , αG−1, . . . , α0, α1, . . . , αG−1),(3.5)

where β0, α0, . . . αG−1 ∈ N ∪ {0} and G = gcd(k,N).
Proof. If Γ is an abelian group and M commutes with Γ, then M can be diagonalized

using the irreducible subspaces associated with the action of Γ as a basis. When Γ = ZN ,
these subspaces can be computed directly and are given in complex coordinates as Vi =
C(1, ξi, ξ2i, . . . , ξ(N−1)i), where ξ = exp(2πi/N) is the Nth root of unity and C is the field of
complex numbers. We can therefore diagonalize M to obtain M̃ = C−1MC, where

C =

⎡
⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 ξ ξ2 . . . ξN−1

1 ξ2 ξ4 . . . ξ2(N−1)

. . .

1 ξN−1 ξ2(N−1) . . . ξ(N−1)2

⎤
⎥⎥⎥⎥⎦.

It is straightforward to compute

C−1 =
1

N

⎡
⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 ξ−1 ξ−2 . . . ξ−(N−1)

1 ξ−2 ξ−4 . . . ξ−2(N−1)

. . .

1 ξ−(N−1) ξ−2(N−1) . . . ξ−(N−1)2

⎤
⎥⎥⎥⎥⎦ .

Note that our original problem (3.4) is equivalent to

[C−1MC]C−1a = M̃C−1a ∈ C−1V,(3.6)

where the fact that M̃ is diagonal will simplify subsequent calculations. Direct computation
gives

C−1MC = M̃ = diag

(
N−1∑
i=0

mi,

N−1∑
i=0

miξ
i,

N−1∑
i=0

miξ
2i, . . . ,

N−1∑
i=0

miξ
(N−1)i

)
.

In particular, if the circulant matrix in our example has the form M = circ(m0,m1, . . . ,mN−1)
= circ(1, 1, . . . , 1, 0, 0, . . . , 0), where the first k entries are 1’s, then we have

M̃ = diag

(
k−1∑
i=0

mi,

k−1∑
i=0

miξ
i,

k−1∑
i=0

miξ
2i, . . . ,

k−1∑
i=0

miξ
(N−1)i

)
(3.7)

= diag(λ0, λ1, . . . , λN−1).(3.8)
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The following proposition is easy to check from this form.
Proposition 3.2. The matrix M has zero eigenvalues only when G = gcd(k,N) �= 1. If this

condition holds, then

λ lN
G

=

k−1∑
i=0

ξ
lNi
G = 0 for l = 1, 2, . . . , G− 1.

Proof. Only when the conditions of the proposition are satisfied are the k complex roots
ξmi equidistributed around the unit circle, so that their center of gravity is 0.

It follows from this proposition that the kernel of M has dimension G − 1. Therefore
M−1V , where the inverse is meant in a set theoretic sense, has dimension at most dim(kerM)+
dim(V ) = G + 1.

Next we compute a. Specifically, we use M̃C−1a ∈ C−1V , and our goal is to find the
vectors of natural numbers a that satisfy this relation. It will be easiest to work in CN

to obtain the linear space CM̃C−1V = M−1V and complete the problem by finding the
intersection of this space with the lattice of natural numbers.

Since V is a linear subspace, it is sufficient to proceed in two steps. We start by finding
the kernel of M̃ and the inverse of R0w1, after which we compute the inverse of S0w2.

Let ei be the ith unit vector. Since M̃ is diagonal, a direct computation shows that

M̃−1C−1(Cw1) = Ce0 ⊕
G−1⊕
i=1

Ce iN
G
.(3.9)

The right-hand side of (3.9) is written as a sum, since Ce0 is a vector space that is not in the
kernel, and gets mapped onto Cw1, while the remainder,

⊕G−1
i=1 Ce iN

G
, comes from the kernel

of M̃ .
We next need to find the image of the subspace in (3.9) under C to determine the space

that the coefficients in a can come from. A direct computation gives

CM̃−1C−1(Cw1) =

⎧⎨
⎩
(

G−1∑
i=0

ciξ
0,

G−1∑
i=0

ciξ
iN
G ,

G−1∑
i=0

ciξ
2iN
G , . . . ,

G−1∑
i=0

ciξ
miN
G , . . .

)T

,

where c0, . . . , cG−1 ∈ C

⎫⎬
⎭ .

(3.10)

It can be checked directly that in the vector defined on the right-hand side of (3.10), every
Gth entry is the same. This divides the vector into G equivalence classes. In particular, the
following is true.

CM̃−1C−1(Cw1) ∩ (NN ∪ {0}) = {(α0, α1, . . . , αG−1, α0, α1, . . . , αG−1, α0, . . . , α1, . . . , αG−1)
T ,

where α0, . . . , αG−1 ∈ (N ∪ {0})}.

For the second step, a similar argument can be used to obtain CM̃−1C−1(Cw2), but it is
sufficient to notice that M(Ce0) = Cw2, so that the space that we are missing is just Ce0,
where e0 = (1, 0, 0, . . . , 0)T .
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This completes the computation and shows that

M−1V ∩ (NN ∪ {0}) = {(β0, α1, . . . , αG−1, α0, α1, . . . , αG−1, α0, . . . , α1, . . . , αG−1)
T ,

where β0, α0, . . . , αG−1 ∈ (N ∪ {0})}.

Since we do not allow architectures in which the only coupling is self-coupling, three simple
corollaries follow from this result; the second is a special case of the first.

Corollary 3.3. If gcd(k,N) = 1, then a balanced coloring requires all-to-all coupling.
Corollary 3.4. In a ring of coupled, identical cells, the only way to balance a coloring in

which one cell is of one color and all other cells are of a second color is an all-to-all coupling
scheme, with possible self-coupling.

Corollary 3.5. If the number of connections from any cell to any other cell in a network
is constrained to be 0 or 1, then there are at most 4(2G−1 − 1) architectures and at least
2(2G−1 − 1) architectures that give a nontrivial balanced coloring.

Proof. Theorem 3.1 gives 2G+1 possible connection architectures. Of these, 4 are triv-
ial (fully uncoupled without self-coupling, fully uncoupled with self-coupling, all-to-all cou-
pled without self-coupling, and all-to-all coupled with self-coupling). Finally, for each of the
4(2G−1 − 1) that yields disconnected components within the network, there is another archi-
tecture in the set for which the network is connected, by Proposition 3.8 below.

Remark 3.1. In the proof of Theorem 3.1, M−1V is computed indirectly by looking at
CM̃−1C−1V . As noted in the introduction to this section, and as illustrated in the proof of
Theorem 4.1, it is possible to find M−1V directly using the ZN structure. In the case of a
general abelian group Γ no such tricks are available, and some computation is needed to find
the kernel of M . Finding the kernel is much simpler once this matrix is block diagonalized
using the irreducible representations of Γ, as was done in the proof of Theorem 3.1.

Remark 3.2. The idea of the proof of Theorem 3.1, leading to the simultaneous solution of
a system of linear equations representing relations among numbers of connections, generalizes
to polysynchronous solutions incorporating more than two synchronized clusters. To see this,
recall that the number m of synchronous clusters is arbitrary in the general notation set up
in section 2.2, as can be seen in (2.2) and (2.3). With multiple clusters, multiple connection
matrices can be used to ensure that all matrices are circulant; for example, with three clusters,
separate matrices can be used to consider inputs from cluster 0 to all other cells, inputs from
cluster 1 to all other cells, and inputs from cluster 2 to all other cells, respectively. Thus, the
presence of additional clusters adds additional computations.

3.2. An example and remarks on DN symmetry. In general, the network architectures
we obtain have symmetries that form a subgroup of ZN . Rings of cells that are used as models
of neuronal networks frequently have reflectional symmetry in addition to ZN symmetry.
Such networks are DN symmetric, and the following is an immediate corollary of the results
discussed in the previous section.

Corollary 3.6. Suppose that a network of N cells has DN symmetry. The only architectures
that support two synchronous clusters of adjacent cells of sizes k and N − k are described by
the coupling matrix

A = circ(β0, α1, . . . , αG−1, α0, α1, . . . , αG−1, . . . , α0, α1, . . . , αG−1),
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A) B) C)

Figure 5. Three balanced colorings of 2 clusters in a network of nine cells. In (a), a3 = a6 = 1 and ai = 0
for all other i, such that each blue cell receives 2 white inputs and each white cell receives 1 blue input and
1 white input. Interchanging these values (but keeping a0 = 0, corresponding to the absence of self-coupling)
yields the architecture in (b), where each cell gets inputs from 4 white cells and 2 blue cells. Both of these have
DN symmetry (the networks are symmetric under reflection in the line going through one cell and between the
two cells on the opposite side of the ring), while the architecture in (c) (a1 = a4 = a7 = 1 and ai = 0 for all
other i, such that each cell gets inputs from 2 white cells and 1 blue cell) has only ZN symmetry. Note that in
(b) and (c), connections analogous to those shown are repeated for all cells.

where β0, α0, . . . αG−1 ∈ N ∪ {0}, G = gcd(k,N), and

αG−j = αj , j = 1, . . . , G− 1.

Proof. If A commutes with the elements of DN , then it is circulant and satisfies AT = A.
The result follows immediately.

Example. Consider the case N = 9, k = 3, so that G = 3. If we first assume that the
network has only Z9 symmetry, then Theorem 3.1 implies that

M−1V ∩ (N9 ∪ {0}) = {(β0, α1, α2, α0, α1, α2, α0, α1, α2)
T , where β0, α0, α1, α2 ∈ (N ∪ {0})}.

(3.11)

Therefore, a0 = β0, a1 = a4 = a7 = α1, a2 = a5 = a8 = α2, and a3, a6 = α0. If we also impose
D9 symmetry, then

M−1V ∩ (N9 ∪ {0}) = {(β0, α1, α1, α0, α1, α1, α0, α1, α1)
T , where β0, α0, α1 ∈ (N ∪ {0})}.

(3.12)

To satisfy (3.12) nontrivially, we can let a3 = a6 = 1 and set the rest of the coefficients
in A to 0. This will lead to the coloring shown in Figure 5A. A closer inspection of this
solution shows that this network is not connected and consists of three smaller subnetworks of
three cells, as shown in Figure 4. The other nontrivial balanced coloring that satisfies (3.12)
comes from the complementary network a1 = a4 = a7 = 1 and a2 = a5 = a8 = 1, with
a0 = a3 = a6 = 0; see Figure 5B. The only other option that satisfies (3.12) is an all-to-all
coupled network. There are several options that satisfy (3.11) but not (3.12), corresponding
to ZN but not DN symmetry. An example appears in Figure 5C.
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3.3. Connected networks. As shown in both preceding examples, certain solutions to the
given problem are trivial, since they result in networks that contain disconnected components.
A network will be connected if and only if its connectivity matrix A is irreducible. Since
A ≥ 0 (that is, all of its elements are nonnegative), the irreducibility of A is equivalent to the
positivity of (I + A)N−1, where I is the N by N identity matrix [19], a condition which can
be checked directly.

It is also useful to think of the directed graph (digraph) associated with the network,
formed by taking each cell as a node and each connection as an edge. Because we consider
coupling architectures with ZN symmetry, the digraph obtained this way is regular, meaning
that each node has the same number of incoming edges as all other nodes; indeed, this follows
from the fact that the connection matrix A is circulant. Since A is circulant, one of its
eigenvalues is given by λ∗ =

∑N−1
j=0 aij = β0 + (N/G− 1)α0 + (N/G)(α1 + · · · + αG−1) [6]. A

well-known result from graph theory states that the number of connected components in the
digraph associated with A is exactly the algebraic multiplicity am(λ∗) of the eigenvalue λ∗ [5].
Thus, our network is connected if and only if am(λ∗) = 1.

An alternative derivation of a necessary and sufficient criterion for connectedness comes
from a direct consideration of the network. Recall that in the labeling system we have used,
within connectivity matrix A, the element a0,j , j = 0, . . . , N − 1, denotes the number of
connections to cell 0 from the cell located j places away from it in the ring in an arbitrarily
selected but fixed direction. Similar interpretations hold for ai,j , i �= 0, but we focus on i = 0
since we have assumed ZN symmetry and A is thus circulant. By this ZN symmetry, the
network is connected if there exists j ∈ {0, . . . , N − 1} such that j is relatively prime to N
and a0,j �= 0. This follows immediately from the fact that if j,N are relatively prime, then
the least common multiple of j and N is jN . In terms of the graph of the network, when
such j exists, if we start at cell 0 and follow connections of length j in the specified direction,
we will reach every other cell in the network before returning to cell 0. One special case is
α1 �= 0, corresponding to nearest neighbor coupling, which always fully connects the network,
since j = 1 is relatively prime to every N .

The above criterion is not necessary; for example, in a network of N = 12 cells, full
connectivity is achieved if α0 = 0 = α1 and α2 �= 0 �= α3, although neither 2 nor 3 is relatively
prime to 12. However, this criterion generalizes to the following necessary and sufficient
condition for connectedness.

Proposition 3.7. Assume that a network of N cells has coupling matrix given by A =
circ(a0, a1, . . . , aN−1) and consider a polysynchronous state with clusters of sizes k,N − k,
such that G = gcd(k,N) �= 1. For j = 1, . . . , N − 1, let γj = j if aj �= 0, and let γj = 0 if
aj = 0. The network is connected if and only if there exist nonnegative integer coefficients
n1, . . . , nN−1 such that

N−1∑
i=1

niγi ≡ 1 (mod N).(3.13)

Proof. First, consider whether there exists a path in the network from cell 1 to cell 0. Let
J = {j ∈ 1, . . . , N−1 : aj �= 0}. Note that if a path from cell 1 to cell 0 exists, then it consists
of a sequence of connections of lengths that appear in J . If we choose nj as the number of
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times that a connection of length j appears in this path, for each j ∈ J , then this choice yields
a solution of (3.13), with nj chosen arbitrarily for those j not in J .

Similarly, suppose that (3.13) has a solution (n1, . . . , nN−1). In this case, starting from
cell 1 and following nj paths of length j, for each j ∈ J , yields a path from cell 1 to cell 0
composed of connections that do appear in the network architecture.

In summary, (3.13) has a solution (n1, . . . , nN−1) if and only if there exists a path in the
network from cell 1 to cell 0. Thus, when the network is connected, (3.13) has a solution, and
when (3.13) has a solution, applying the network’s ZN symmetry yields a path from every
other cell in the network to cell 0, such that the network is connected.

Remark 3.3. Note that with ZN symmetry, such that A is given by (3.5), the γj above are
interrelated. In such a case, Proposition 3.7 can of course be rewritten using the elements αj to
define the terms γj . It does not, however, suffice to consider only γ1, . . . , γG−1. For example,
if N = 12 and G = 3, then 2 divides N , but a0,5 = a0,2 = α2, so the condition α2 �= 0 is
enough to ensure that (3.13) can be satisfied. That is, even though 2n �≡ 1 (mod 12) for each
nonnegative integer n, we have 5n ≡ 1 (mod 12) for an appropriate choice of n, such as n = 5.

Finally, we note that while we consider disconnected architectures to be trivial, finding
one is still useful, as the following proposition specifies.

Proposition 3.8. If a pattern of synchrony is supported by a disconnected, but not completely
uncoupled, architecture, then there exists a nontrivial connected architecture that supports it
as well.

Proof. For any choice of {β0, α0, α1, . . . , αG−1} that satisfies (3.5), all complementary
architectures, attained by making all nonzero elements zero and vice versa, also satisfy (3.5).
Since the network has ZN symmetry, it is easy to see that the complement of a disconnected
network is connected. In particular, if a network is disconnected, then a0,N−1 = 0 = ai,i+1

for i = 0, . . . , N − 2. It follows that in the complementary network, a0,N−1 = ai,i+1 = 1, and
since nearest neighbors are coupled, the network must be connected. Similarly, choosing any
nonzero values for a0,N−1 and ai,i+1 yields a connected network. These connected networks
will be nontrivial (i.e., not coupled all-to-all) as long as the original network is not fully
uncoupled.

Remark 3.4. In fact, the complement of a disconnected network is connected in arbitrary
networks, without the assumption of ZN symmetry, by an analogous argument.

4. Rings of cells of two types. We next develop a general theory for synchrony in rings of
cells of two types. As an example, consider the network in Figure 6. There are two alternating
types of cells in this ring; we can think of the round cells as E cells and the rectangular cells
as I cells. The cells are further subdivided into four synchronous groups. We will refer to this
architecture as a double ring. Note that although the cells of different types are shown as being
interleaved in Figure 6, and this arrangement is assumed in our presentation, the results we
obtain below (see Theorem 4.1) apply for any pair of interacting cell groups such that each set
of connections (whether between groups or within a group) features ZN symmetry, regardless
of their actual spatial arrangement.

As discussed previously, all cells in a synchronous group will be referred to as having the
same color. Our goal is to describe the architectures that will support an activity pattern
in which groups of k and N − k adjacent E cells and l and N − l adjacent I cells evolve
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Figure 6. A ring network with two cell types, E and I. Cells of each type are numbered from 0 up to N −1,
increasing in the clockwise direction, and each cell population is subdivided into two clusters, as shown.

synchronously, with adjacency defined relative only to cells of the same type (see Figure 6).
Note that the four clusters of adjacent cells can be located anywhere around the ring; Figure 6
shows one possible cell arrangement with k = 3 and l = 2.

In general, we cannot expect cells to be exactly synchronous unless they are of the same
type. Two E or I cells can be expected to be synchronous only if their input sets are identical
[24, 13]. This situation is a direct generalization of the one described in section 2.2, with the
exception that there are two input sets CE

i and CI
i into each cell, corresponding to the two

types of cells in the networks. Two cells of the same type can exhibit robust synchrony only
when there are bijections φE : CE

i → CE
j and φI : CI

i → CI
j that carry the inputs to cell i from

each synchronous group to inputs to cell j from the same group.

Denote the connectivity matrices between the E cells and the I cells by AEE and AII ,
respectively (these matrices connect cells of equal type). In addition, the matrices AEI and
AIE will represent connections from I to E cells and from E to I cells, respectively. As in the
previous section, if we assume that the network has ZN symmetry, then all of these matrices
are circulant. For example, AEE = circ(aEE

0 , aEE
1 , . . . , aEE

N−1), since there are N E cells. The
cells in the network are numbered by assigning the first cell in the group of k synchronous
E cells the number 0, and proceeding clockwise. The I cells are numbered similarly (see
Figure 6).

Let R0, R1, R2, and R3 be 4-vectors that denote the total number of inputs to each of the
different cell types, where the labels 0, 1, 2, and 3 denote red and white E cells and blue and
yellow I cells respectively. For instance, R0

1 is the total number of inputs to the red E cells from
the white E cells. Similarly, let e0 = · · · = ek−1 = (1, 0, 0, 0)T , ek = · · · = eN−1 = (0, 1, 0, 0)T

and d0 = · · · = dl−1 = (0, 0, 1, 0)T , dl = · · · = dN−1 = (0, 0, 0, 1)T denote the cells in the two
different groups, as in the previous section.

The condition that the input sets of two E cells sharing the same color are equivalent leads
to the set of equations

aEE
0 e0 + · · · + aEE

N−1eN−1 + aEI
0 i0 + · · · + aEI

N−1iN−1 = R0(4.1)

aEE
N−1e0 + · · · + aEE

N−2eN−1 + aEI
N−1i0 + · · · + aEI

N−2iN−1 = R0
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. . .

aEE
1 e0 + · · · + aEE

0 eN−1 + aEI
1 i0 + · · · + aEI

0 iN−1 = R1,

where R0 appears on the right-hand side in the first k equations and R1 appears on the right-
hand side in the next N − k equations. A similar set of equations, involving the matrices AIE

and AII , holds for the I cells.

This set of equations (4.1) splits into two independent groups. Note that for the matrices
AEE and AII we obtain equations that are equivalent to (3.1). This observation follows
directly from the way the problem is set up: the E to E and I to I connections that support
a given pattern of synchrony are determined independently of the other connections in the
network. Therefore Theorem 3.1 can be used directly to determine the structure of these
matrices.

For the connections from the I to the E cells, we obtain from (4.1) the equations

aEI
0 + aEI

1 + · · · + aEI
l−1 = R0

2 aEI
l + · · · + aEI

N−1 = R0
3

. . . . . .

aEI
N−k+1 + aEI

N−k+2 + · · · + aEI
N−k+l = R0

2 aEI
N−k+l+1 + · · · + aEI

N−k = R0
3

aEI
N−k + aEI

N−k+1 + · · · + aEI
N−k+l−1 = R1

2 aEI
N−k+l + · · · + aEI

N−k−1 = R1
3

. . . . . .

aEI
1 + aEI

2 + · · · + aEI
l = R1

2 aEI
l+1 + · · · + aEI

0 = R1
3.(4.2)

As in the case of (3.1), the left and right columns are equivalent. As in section 3.1, we
reorder the equations from the left column and put the first equation first, and then follow
with the last equation up to the second equation. Once reordered, we have

MaEI = R,(4.3)

where

aEI = (aEI
0 , aEI

1 , . . . , aEI
N−1)

T ,(4.4)

R = (R0
2, R

1
2, . . . , R

1
2︸ ︷︷ ︸

N−k times

, R0
2, . . . , R

0
2)

T ,(4.5)

and

M =

⎡
⎢⎢⎢⎢⎣

1 1 1 . . . 1 0 0 . . . 0 0
0 1 1 . . . 1 1 0 . . . 0 0
0 0 1 . . . 1 1 1 . . . 0 0

. . . . . .
1 1 1 . . . 0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎦,(4.6)

where each row contains N − l zero entries. We obtain the same equation for the matrix AIE ,
with the roles of k and l reversed.
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The problem of solving (4.3) is virtually identical to that of solving (3.2) with (3.3). The
difference, which somewhat complicates the calculations, is that in the present case k does
not necessarily equal l.

Theorem 4.1. Suppose that a network composed of N E cells and N I cells forms a double
ring and that groups of k and N − k adjacent E cells and l and N − l adjacent I cells form
synchronous clusters. Let Gk = gcd(k,N) and Gl = gcd(l, N). The connectivity matrices that
can support this form of synchrony between identical cells are given by

AEE = circ(βEE
0 , αEE

1 , . . . , αEE
Gk−1, α

EE
0 , αEE

1 , . . . , αEE
Gk−1, . . . , α

EE
0 , αEE

1 , . . . , αEE
Gk−1),

AII = circ(βII
0 , αII

1 , . . . , αII
Gl−1, α

II
0 , αII

1 , . . . , αII
Gl−1, . . . , α

II
0 , αII

1 , . . . , αII
Gl−1),

where all entries are in N ∪ {0}.
The connectivity matrix AEI has the form

AEI = circ(βEI
0 , αEI

1 , . . . , αEI
Gl−1, β

EI
Gl

, αEI
1 , . . . αEI

Gl−1, β
EI
2Gl

, . . . , βEI
N−Gl

, αEI
1 , . . . , αEI

Gl−1).

If k ≡ 0 (mod Gl), then the coefficients β0, βl, β2l, . . . split into two equivalence classes

βl = β2l = · · · = βN−k,

βN−k+l = βN−k+2l = · · · = β0,(4.7)

where all subscripts are taken modulo N . If k �≡ 0 (mod Gl), then there is only one equivalence
class

βl = β2l = · · · = β0.

The same holds for AIE with the roles of k and l reversed.
Remark 4.1. If k = l, so that the two clusters contain the same number of cells, then,

since N −k+ l = N , the sets of matrix entries in (4.7) are composed of β0 in one class and the
remaining entries in the second. The matrix AEI has, therefore, the same form as AEE and
AII in this case. However, note that the coefficient aEI

0 = βEI
0 gives the number of connections

from the jth I cell to the jth E cell, while aEE
0 and aII0 give the number of self-couplings of

each E and I cell, respectively.
Proof. We need to find solutions to four problems of the form

Ma ∈ V,(4.8)

where

V = Rw1 ⊕ Sw2
def
= R(1, 1, 1, . . . , 1)T ⊕ S(1, 0, 0, . . . , 0, 1, 1, . . . , 1)T .

The number of zeros in a row of M and in w2 both equal N − k and N − l in the cases of
AEE and AII , respectively, and therefore Theorem 3.1 can be applied directly.

In the case of AEI , the matrix M has N − l zero entries, while w2 has N − k zero entries.
Since w1 and M have the same form as in section 3.1, we can proceed as in the proof of
Theorem 3.1 to find CM̃−1C−1(Cw1) and obtain the same result as in (3.10).
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A similar argument can be used to obtain CM̃−1C−1(Cw2), although the calculations are
lengthy. Rather than providing these calculations, we provide a short proof, which uses the
ZN symmetry of the system directly.

We will use the structure of the left column in (4.2), which determines all possible values for
aEI . Suppose that the right-hand sides of two adjacent equations are equal. Then subtracting
the two equations leads to aEI

j = aEI
j−l for some j, where the indices are taken modulo N .

We therefore obtain all equations of the form aEI
j = aEI

j−l, except for two. The two missing
equations are

aEI
0 = aEI

l and aEI
N−k = aEI

N−k+l.(4.9)

If these equalities were included with the remaining N − 2 equalities, the coefficients aEI
j

would form Gl = gcd(l, N) equivalence classes. Each set of equalities defining an equivalence
class would form a “ring,” in the sense that

aEI
j = aEI

j+l = · · · = aEI
j+ lN

Gl

= aEI
j .(4.10)

Therefore, it is necessary to remove more than one equality defining this equivalence class
to split it into two classes. That is, the coefficients β0, βl, β2l, . . . split into two classes, as
described in (4.7), if and only if the equalities in (4.9) both come from the same “ring” of
equations defined by (4.10).

Since N and l are both multiples of Gl, it can now be easily checked that if k �≡ 0 (mod Gl),
then the equality aEI

N−k = aEI
N−k+l is not in the set of equalities defining the equivalence

class of aEI
0 , and there are Gl equivalence classes for the coefficients. On the other hand, if

k ≡ 0 (mod Gl), then removing the two equalities (4.9) breaks the equivalence class of aEI
0

into two in the way described in (4.7).
From the proof of Theorem 4.1, it is clear that Theorem 4.1 holds regardless of where the

l I cells are positioned relative to the k E cells; adjacency of the clusters is not needed. The
lengths of the connections corresponding to the elements of the connection matrix depend on
these positions, however, so application of the theorem implies that different relative cluster
positions will be supported by different coupling architectures.

Example. Consider again the example of N = 7 discussed in section 2.3. In the case of a
double ring of 7 E cells and 7 I cells, Gk = Gl = 1 for any choice of k, l. Thus, AEI is a 7 by 7
matrix of the form AEI = circ(βEI

0 , βEI
1 , . . . , βEI

6 ). Suppose, for example, that k = 3, as in
Figure 1, such that k ≡ 0 (mod Gl) and (4.7) applies. If l = 2, then (4.7) yields

β2 = β4, β6 = β1 = β3 = β5 = β0.(4.11)

Equation (4.11) gives rise to two nontrivial (and complementary) architectures of I to E
connections, each corresponding to setting the elements of one of the equivalence classes of
connections equal to 1 and setting the other class equal to 0. These are displayed in Figure
7A, B; the second of these also appears in Figure 1. Interestingly, if l = N − 2 = 5, then we
get different equivalence classes, namely,

β5 = β3 = β1 = β6 = β4, β2 = β0.(4.12)
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Figure 7. Architectures of I to E connections yielding balanced colorings in a ring of 7 E cells and
7 I cells, grouped in 4 clusters. In each figure, we show only the connections to a particular E cell, but each
E cell receives an analogous pattern of inputs as dictated by ZN symmetry. The text indicates the number
of each connection type received by each E cell in each cluster (all E cells of the same color receive the same
number of each connection type since these are balanced colorings). The top figures correspond to the equivalence
classes for l = 2, given in (4.11), with β2 = β4 = 1, β6 = β1 = β3 = β5 = β0 = 0 in (a) and β2 = β4 = 0,
β6 = β1 = β3 = β5 = β0 = 1 in (b). The bottom figures correspond to the equivalence classes for l = 5, given
in (4.12), with β5 = β3 = β1 = β6 = β4 = 1, β2 = β0 = 0 in (c) and β5 = β3 = β1 = β6 = β4 = 0, β2 = β0 = 1
in (d).

The two corresponding nontrivial architectures of I to E connections derived from (4.12) are
shown in Figure 7C, D.

The case of l = 5 leads to different architectures from those arising in the case of l = 2,
even though 5 = 7 − 2, because the results of Theorem 4.1 are derived by assuming that
the clusters of k E cells and l I cells are aligned as shown in Figure 6. As noted earlier,
analogous results to Theorem 4.1 can be derived for other relative positions of these clusters,
using the same methods. As one of the clusters is moved around the ring, the numbering
changes, and, although one obtains the same solution in terms of coupling matrix coefficients,
the architectures will look different.

Of course, by switching the labels on the cells in this example, we can attain a balanced
coloring with a nontrivial coupling architecture for polysynchronous states with E cell clusters
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of sizes 2 and 5 and I cell clusters of sizes 3 and 4. As noted earlier, E cell clusters of sizes
3 and 4, or of sizes 2 and 5, would only be possible with trivial coupling architectures in a
single ring of 7 E cells, by Corollary 3.3.

5. Discussion. Coupling architecture is frequently crucial in determining the dynamical
behavior of a coupled network. To model a collection of interacting cells, it is therefore neces-
sary to have accurate information about the ways in which the cells interact. Unfortunately,
in areas such as experimental neuroscience, such information may be very difficult to obtain
directly.

The method we presented provides a means of determining possible network architectures
based on observed activity patterns. The architectures obtained using this analysis are the
only ones within their class that can support the given activity patterns robustly, without the
presence of specialized features in the intrinsic dynamics of the cells in the network. Clearly,
this inverse approach is meant to complement, not replace, consideration of details of cellular
and coupling dynamics, which are known to play a very important role in determining the
activity patterns manifested in networks.

In particular, the information we derive could be useful in selecting coupling architec-
tures to use in models of networks known to produce certain activity patterns, in designing
novel networks to produce particular activity patterns, or in deducing the actual architectural
properties of physical networks. Note that in the former two applications, the network size N
would be known or selectable, while in the latter case, knowledge about N would depend on
the particular physical network under consideration.

Without imposing certain assumptions, the architectural constraint problem becomes too
general. It is important to restrict to a general class of architectures to start the process,
in order to narrow the number of possibilities and eliminate trivialities. In the examples
considered, although the network size N could be arbitrary, this restriction was given by the
requirement that the network have ZN or DN symmetry.

Networks of interacting cells with ZN symmetry in the coupling architecture are frequently
used as models of neuronal systems; however, the method we present can be generalized in
many ways. The description of polysynchronous states, given in section 2.2, is valid even in
nonsymmetric networks. The approach given in the proof of Theorem 3.1 can be generalized
to any network whose symmetries are given by an abelian group. We believe that a similar
approach is valid more generally, although current representation theory would have to be
extended to deal with such cases.

It was shown in section 4 that the method can be extended to networks with multiple
types of cells. One result of this extension is that, given a particular network of cells, coupling
a second group of cells to the first can greatly expand the range of architectures that can
balance a particular coloring of the original cells. If a network of one cell type has N cells
with gcd(k,N) = 1, then a 2-cluster state with clusters of sizes k and N−k will be balanced if
and only if the network is uncoupled or all-to-all coupled; however, synchrony is never stable in
uncoupled systems. Our results show that under fairly general conditions (see Theorem 4.1), if
N cells of a second type are coupled to the original cells, then a balanced coloring featuring the
same two clusters in the original cells can be achieved by leaving the original cells uncoupled
but coupling the cell types together in a nontrivial way. Such coupling across types can
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infer stability on synchronized states (e.g., [27, 23, 22, 18]). More generally, the possibility of
connections between two cell types tends to allow for a greater variety of architectures that
support particular polysynchronous states. In addition to multiple cell types, similar ideas
to those presented here can be used to treat networks with multiple arrow types (in which
identical cells may not interact in identical ways) and multiple connections between cells.

In all of the solutions considered, cells in the same cluster are assumed to be adjacent to
each other (relative to other cells of the same type) in the ring. In a particular system, this
adjacency need not correspond to actual physical proximity. In the mammalian visual cortex,
for example, a natural ring structure can be defined in terms of cells’ orientation preferences,
rather than their spatial positions. Our results apply as long as, once the cells are ordered
according to some criterion, the coupling architecture features ZN symmetry. Nonetheless, it
would be of interest to extend our results to clustered solutions with nonadjacent elements,
such as traveling waves on a ring, in which cells a certain wavelength apart in the ring activate
together, followed by their neighbors to one side, and so on, until the pattern repeats.

Finally, although we did not discuss the stability of the invariant subspaces corresponding
to the polysynchronous states that we study, in certain examples the techniques developed in
[1, 2] will be applicable. The invariant subspaces corresponding to different polysynchronous
patterns can be nested, exactly as in the case in which the polysynchronous states in a net-
work are determined by symmetry [4, 1, 2]. The network architecture determines the invariant
subspaces and how they are nested. In this situation, synchrony breaking bifurcations can
occur as a polysynchronous solution bifurcates to another contained in an invariant subspace
of higher dimension (a simple example is the transition from a fully synchronous, i.e., a one
color solution, to a two color solution). Such transitions correspond to symmetry breaking
bifurcations in equivariant bifurcation theory, although in the present case neither the bifur-
cating nor the resulting solutions need to be symmetric. Stability of polysynchronous states
derived from symmetry considerations is also considered in [21], where the specific assumption
of diffusive coupling allows for the use of a control theoretic framework in the derivation of
stability conditions.
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