
ARTICLE  IN  PRESS
Neural Networks ( ) –

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2009 Special Issue

Modulation of LTP/LTD balance in STDP by an activity-dependent
feedback mechanism
Shigeru Kubota a,b,∗, Jonathan Rubin b, Tatsuo Kitajima c
a Department of Biomedical Information Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
b Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA
c Department of Bio-System Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan

a r t i c l e i n f o

Article history:
Received 6 May 2009
Received in revised form 25 May 2009
Accepted 25 June 2009

Keywords:
Plasticity
STDP
Synaptic competition
Cortex
Activity-dependent feedback

a b s t r a c t

Spike-timing-dependent plasticity (STDP) has been suggested to play a role in the development of
functional neuronal connections. However, for STDP to contribute to the synaptic organization, its
learning curve should satisfy a requirement that the magnitude of long-term potentiation (LTP) is
approximately the same as that of long-term depression (LTD). Without such balance between LTP
and LTD, all the synapses are potentiated toward the upper limit or depressed toward the lower limit.
Therefore, in this study, we explore the mechanisms by which the LTP/LTD balance in STDP can be
modulated adequately. We examine a plasticity model that incorporates an activity-dependent feedback
(ADFB) mechanism, wherein LTP induction is suppressed by higher postsynaptic activity. In this model,
strengthening an ADFB function gradually decreases the temporal average of the ratio of themagnitude of
LTP to that of LTD, whereas enhancing background inhibition augments this ratio. Additionally, correlated
inputs can be strengthened or weakened depending on whether the correlation time is shorter or longer
than a threshold value, respectively, suggesting that STDP may lead to either Hebbian or anti-Hebbian
plasticity outcomes. At an intermediate range of correlation times, the reversal between the two distinct
plasticity regimes can occur by changing the level of ADFB modulation and inhibition, providing a
physiological mechanism for neurons to select from functionally different forms of learning rules.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Activity-dependent modification of synaptic transmission,
including long-term potentiation (LTP) and long-term depression
(LTD), has been widely thought to underlie learning and memory
(Bi & Poo, 2001). Although there are various forms of plasticity,
recent experiments have revealed that the induction of both LTP
and LTD can depend on the relative timing of pre and postsynaptic
spikes (Abbott & Nelson, 2000; Bi & Poo, 1998; Caporale & Dan,
2008; Feldman, 2000; Froemke, Poo, & Dan, 2005). In the spike-
timing-dependent plasticity (STDP) observed in the neocortical
cells, LTP is induced when the presynaptic spike occurs before
the postsynaptic spike, while the reversed spike order elicits LTD
(Feldman, 2000; Froemke et al., 2005).
An STDP learning rule has been suggested to solve a funda-

mental problem of unbounded synaptic strengthening in Hebbian
learning (Song & Abbott, 2001; Song, Miller, & Abbott, 2000). A
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Hebbian plasticity rule contributes to the formation of functional
circuits and has been used in many neural network studies (Bi-
enenstock, Cooper, & Munro, 1982; Miller, Keller, & Stryker, 1989;
von derMalsburg, 1973). However, this plasticity rule predicts that
when presynaptic inputs are strengthened, the resulting increased
postsynaptic activity further strengthens the inputs. Such posi-
tive feedback will lead to unlimited growth of synapses, producing
instability in the learning dynamics (Miller, 1996). An advantage
of STDP is that it can automatically introduce competitive inter-
action among inputs to stabilize the postsynaptic activity, while
maintaining the basic properties of the Hebbian learning (Abbott
& Nelson, 2000; Song et al., 2000). Such competition arises from
STDP because the inputs that contribute to rapidly evoking the
postsynaptic spikes are potentiated, while the others that do not
contribute to it are depressed. However, to achieve such competi-
tive function, LTP and LTD should be approximately balanced in the
STDP learning curve such that the maximum level of LTP becomes
slightly smaller than that of LTD (Song et al., 2000). When LTP ex-
ceeds LTD, all the synapses are potentiated. Conversely, if LTD ex-
ceeds LTP to a certain degree, then all the synapses are depressed.
The fact that synaptic modification dynamics is quite sensitive to
the change in the balance between LTP and LTD (Rubin, Lee, & Som-
polinsky, 2001; Song et al., 2000) may suggest that STDP should be
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accompanied by an additional mechanism that controls this bal-
ance within an adequate range.
Therefore, in this study, we construct a simplified cortical pyra-

midal neuron model and examine the possible mechanism by
which the balance between LTP and LTD in the STDP learning
rule can be regulated. Based on the evidence that LTP in STDP de-
pends on postsynaptic NMDA receptors (NMDARs) (Bender, Ben-
der, Brasier, & Feldman, 2006; Egger, Feldmeyer, & Sakmann, 1999;
Nevian & Sakmann, 2006), which desensitize via the activity-
dependent elevation of intracellular Ca2+ (Legendre, Rosenmund,
& Westbrook, 1993; Medina, Leinekugel, & Ben-Ari, 1999; Rosen-
mund, Feltz, & Westbrook, 1995), we examine an STDP model,
wherein the magnitude of LTP is dynamically modified by such
activity-dependent feedback (ADFB) mechanism (Kubota & Kita-
jima, 2009; Tegnér & Kepecs, 2002). We show that in this model,
the temporal average of the LTP/LTD ratio can be gradually in-
creased or decreased by enhancing the background inhibition or
strengthening the feedback function, respectively. In addition, we
demonstrate that in the presence of the ADFB function, but not in
the absence, input correlations function to potentiate or depress a
group of correlated inputs depending on the time scale of the input
correlation. Furthermore, in an intermediate range of correlation
time, the modulation of the strength of ADFB as well as of inhibi-
tion can regulate whether the correlated inputs become strength-
ened or weakened by STDP, providing neurons with the ability to
govern the direction of the input correlation-based plasticity.

2. Methods

2.1. Neuron model

We used a conductance-based pyramidal neuron model consi-
sting of two compartments representing a soma and a dendrite
(Kubota & Kitajima, submitted for publication). Both the somatic
and dendritic compartments contain voltage-dependent Na+/K+
currents (INa and IK). A voltage-gated Ca2+ current (ICa) and
a Ca2+-dependent potassium current (IAHP ) are incorporated
into the dendrite to reproduce spike frequency adaptation
found in pyramidal cells (Ahmed, Anderson, Douglas, Martin,
& Whitteridge, 1998). The amplitude as well as the kinetic
parameters for the voltage-gated currents and IAHP have been
adjusted such that the model neuron exhibits instantaneous and
adapted f –I curves similar to those of neocortical pyramidal cells
(Kubota & Kitajima, submitted for publication).

2.2. Synaptic currents

The dendritic compartment receives 4000 excitatory (AMPA
andNMDA) and 800 inhibitory (GABA) synapses, each ofwhich fol-
lows the conductance-based model given by Kubota and Kitajima
(2008) (Fig. 1(A)). The level of inhibitory inputs is assumed to de-
pend on a parameter ginh, which represents the peak conductance
of GABA-mediated synaptic currents (Kubota & Kitajima, 2008). All
the synapses are activated by Poisson processes. The use of Poisson
inputs is based on the experimental finding that the spike trains
of in vivo cortical cells are highly irregular (Softky & Koch, 1993).
Excitatory synapses are activated by either uncorrelated spike
trains or two groups of spike trains consisting of correlated and
uncorrelated ones, while inhibitory synapses are activated by un-
correlated spike trains. All the uncorrelated inputs were generated
using independent Poisson spike trains of 3 Hz. Taking into ac-
count a relatively lower success rate of synaptic transmission in
central synapses (∼10%) (Hessler, Shirke, & Mallnow, 1993), this
input rate corresponds to a presynaptic firing rate of∼30Hz,which
is in the physiologically plausible range for the sensory-evoked re-
sponses of cortical neurons. In cases where the input correlation
is considered (Figs. 5 and 6), excitatory synapses are assumed to

A

B

Fig. 1. Components of the computational model. (A) A postsynaptic neuron
receives Poisson inputs from both excitatory and inhibitory synapses. The
excitatory inputs are plastic and their strength is modified by STDP. (B) The
magnitude of LTP in the STDP learning curve is dynamically modulated by feedback
depending on postsynaptic firing rate (fpost ) (Eqs. (1) and (2)).

consist of two equally sized groups (2000 for each group) and one
group of synapses is activated by correlated spike trains, while the
other group is activated by uncorrelated spike trains (Song & Ab-
bott, 2001). The presynaptic firing rates for the correlated inputs
are generated to have a correlation function that decays exponen-
tially with a time constant τc (correlation time) (Song & Abbott,
2001; Song et al., 2000). The mean (temporally-averaged) firing
rate for the correlated inputs is the same as that for the uncorre-
lated inputs (3 Hz).

2.3. Synaptic weight modification by STDP

STDP is assumed to act on all the excitatory (AMPA) synapses.
We denote by 1t = tpost − tpre the time lag between the pre
and postsynaptic events; positive numbers of 1t imply that the
presynaptic event preceded the postsynaptic event. The change in
the synaptic weight1w is described as follows (Song et al., 2000)
(Fig. 1(B)):

1w =

{
A+ exp(−1t/τ+), for1t > 0,
−A− exp(1t/τ−), for1t < 0, (1)

where A+ (>0; see below) and A− (=0.004) determine the
magnitude of synaptic potentiation and depression, respectively,
and τ+ = τ− = 20 ms determines the temporal range over
which synaptic strengthening and weakening occur. The value of
A− corresponds to the relativeweight change of 24%when 60 pairs
of pre and postsynaptic action potentials take place, as in the case
of the physiological experiment of STDP (Froemke et al., 2005).
When a pre or postsynaptic event occurs, the synaptic weights
w are modified stepwise by an additive updating rule of STDP.
The effects of all the pre and postsynaptic spike pairs are linearly
summed. Upper and lower bounds (wmax and 0, respectively) are
imposed on each synaptic weight to stabilize learning dynamics.
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2.4. Activity-dependent modulation of LTP

Recent experiments examining STDP (Bender et al., 2006; Eg-
ger et al., 1999; Nevian & Sakmann, 2006) have revealed that
LTP and LTD involve distinct signaling pathways that may act
as coincidence detectors of pre and postsynaptic events: the acti-
vation of postsynaptic NMDARs for LTP and that of metabotropic
glutamate receptors (mGluRs) for LTD. Further, NMDARs have
been shown to exhibit intracellular Ca2+-dependent desensitiza-
tion (Legendre et al., 1993; Medina et al., 1999; Rosenmund et al.,
1995), suggesting that LTP, but not LTD, will be suppressed by sus-
tained postsynaptic activity level that results in the accumulation
of intracellular Ca2+ (Helmchen, Imoto, & Sakmann, 1996; Svo-
boda, Denk, Kleinfeld, & Tank, 1997). Therefore, we consider ADFB
modulation of plasticity such that increased postsynaptic activity
decreases the magnitude of LTP: A+(t) = A0+ − kfpost(t), where
fpost(t) is the postsynaptic firing rate at time t; A0+ is the mag-
nitude of LTP when the postsynaptic neuron is almost quiescent
(i.e., fpost = 0); and k (in s) is a positive parameter (see below).
Additionally, a line of evidence suggests that the strength of

Ca2+-dependent desensitization of NMDARs may be controlled in
cortical neurons. Functional NMDARs are composed of NR1 and
NR2 (NR2A–NR2D) subunits in the forebrain (Stephenson, 2001).
NR2B-containing NMDARs are predominantly expressed in neona-
tal neurons, whereas the number of NR2A-containing NMDARs
increases over postnatal development (Quinlan, Olstein, & Bear,
1999a; Quinlan, Philpot, Huganir, & Bear, 1999b). Since the NR2A-
but not NR2B-containing NMDARs exhibit Ca2+-dependent de-
sensitization (Krupp, Vissel, Heinemann, & Westbrook, 1996), the
desensitization can be expected to be facilitated through the NM-
DAR subunit switch. Moreover, the expression pattern of distinct
NR2 subunits is modulated depending on the neuronal activity
or the neurotrophin level (Caldeira, Melo, Pereira, Carvalho, Car-
valho, & Duarte, 2007; Quinlan et al., 1999a, 1999b), implying that
NMDAR subunit composition can alter across different conditions.
Therefore, to incorporate the effects of changes in NMDAR subunit
expression into our model, we define a non-dimensional parame-
ter ρ (0 ≤ ρ ≤ 1) such that ρ = 0 denotes the state where the
NR2B subunits are predominant, as in the case of very immature
neurons, whereas ρ = 1 represents the state where the NR2A sub-
units are fully expressed, as in mature neurons. Then, if we denote
by kmax the maximum value of the feedback gain parameter k pro-
vided by the NR2A-containing NMDARs, the ADFB modulation of
the magnitude of LTP (Fig. 1(B)) can be described as

A+(t) = A0+ − kmaxρfpost(t). (2)

Here, the postsynaptic firing rate at each time point was calculated
by fpost(t) =

∫
∞

0 λ exp(−λτ)Spost(t − τ)dτ , with the output spike
train represented by Spost(t) =

∑
tpost δ(t − tpost) and λ = 0.1/s

(Tanabe & Pakdaman, 2001). The parameter values used in the
ADFB function itself are A0

+
= 0.008 and kmax = 0.068 ms.

These parameter values were selected such that the postsynaptic
firing rate exhibited by our model, including STDP and ADFB,
covers a relativelywide range of firing rates observed in neocortical
pyramidal cells (60–170 Hz; Fig. 4(D)).

3. Results

3.1. Impact of LTP/LTD balance on learning dynamics by STDP

To investigate how the LTP/LTD balance in the STDP curve
affects learning dynamics,we examined the equilibriumproperties
of the additive STDP rule (i.e., the state where the synaptic weights
converge to a stationary distribution) for various values of the LTP
size A+ without ADFB (i.e., ρ = 0). In Fig. 2, we plotted the average

A

B

C

Fig. 2. Predicted effects of changing the LTP/LTD ratio (A+/A−) on the equilibrium
properties of STDP. Thick lines: The values of average weight (A) and the mean
firing rate (B and C), obtained by STDP without ADFB (i.e., ρ = 0), were plotted
as a function of A+/A− , for three different values of the inhibitory conductance ginh
(ginh = 3.75, 5, or 6.25 µS/cm2). Note that different ranges of A+/A− are used in
(B) and (C). Thin lines in (B) and (C): The linear relationship between A+/A−(t) and
fpost (t) specified by Eq. (3) for ρ = 0.6 and 0.8.

weight (Fig. 2(A)) and the mean firing rate of the neuron (Fig. 2(B)
and (C)) as function of the A+/A− ratio for three different values of
inhibitory conductance ginh. The figure shows that the equilibrium
state of STDP changes abruptly over a small range of A+/A− (Rubin
et al., 2001; Song et al., 2000): if A+/A− is slightly greater than 1,
the synaptic weights are increased toward the upper limit so that
the postsynaptic firing rate becomes much higher. Conversely, if
A+/A− becomes less than0.98, the synapses are strongly depressed
and, therefore, the postsynaptic activity becomes much lower.
On the other hand, the increased level of inhibition (larger ginh)
can gradually decrease the postsynaptic activity for all values of
A+/A− (Fig. 2(B) and (C)). The finding that the neuronal activity
is drastically changed in a very narrow range of A+/A− (Fig. 2(C))
implies that to regulate neuronal activity adequately, the LTP/LTD
ratio should also be precisely controlled.
To explore the possibility that the ADFB mechanism (Eq. (2))

regulates the LTP/LTD ratio, we simply take the temporal average
of Eq. (2) to obtain the following relationship:

A+/A−(t) = A0+/A− − αfpost(t), (3)
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Fig. 3. The time course of the A+/A− ratio at the equilibrium state of STDP (ρ = 0.5
and ginh = 6.25 µS/cm2).

with α = kmaxρ/A−. Here, x(t) = T−1
∫ t+T
t x(t ′)dt ′ (T �

1) represents the temporally-averaged value of x(t). Therefore,
A+/A−(t) is the temporal mean of the LTP/LTD ratio and fpost(t) is
the mean firing rate of the postsynaptic neuron. The relationship
between A+/A−(t) and fpost(t) in Eq. (3) was plotted, for given
values ofρ, as shown in Fig. 2(B) and (C) (thin lines). If the temporal
fluctuation of A+/A− is not so large, it might be expected that the
values of A+/A−(t) and fpost(t) obtained by STDP, in the presence
of ADFB modulation, would correspond to the intersection point
between 2 different curves – the line representing Eq. (3) for a
given ρ (thin lines) and the postsynaptic rate vs. A+/A− curve
(thick lines) for a given ginh – in Fig. 2(B).
Note that the increase in the strength of ADFB modulation

(larger ρ) will move the intersection point such that the value
of A+/A− at this point becomes slightly decreased, as can be
seen from Fig. 2(B). This implies the possibility that by changing
the parameter ρ, the mean value of the A+/A− ratio at the
equilibrium of STDP might be gradually modified within a very
small range of A+/A− ∼ 1. Moreover, Fig. 2(B) also indicates that
the enhanced inhibition (larger ginh) would shift the position of
the intersection point so that the A+/A− ratio becomes slightly
increased. Therefore, in the following section, we examine how the
changes in the strength of the ADFB mechanism, as well as the
background inhibition level, can regulate the LTP/LTD balance in
the STDP curve and thereby influence the learning dynamics.

3.2. Control of the LTP/LTD balance through ADFB and inhibitory
mechanisms

To explore the role of the ADFB function and inhibition in
controlling the LTP/LTD balance, we investigated the equilibrium
properties of STDP in the presence of ADFB modulation for various
values of ρ and ginh. Since the random synaptic activation, as well
as the temporal variation in the synaptic distribution, produces
fluctuation in the firing activity, the time course of the A+/A− ratio
is irregular even at the equilibrium (Fig. 3). However, as the ADFB
modulation is facilitated by increasing ρ, the temporally-averaged
value of the A+/A− ratio was found to converge to a value slightly
smaller than 1 (Fig. 4(A) and (B)), as predicted in Fig. 2(B) (Tegnér
& Kepecs, 2002). In the presence of this approximate balance in
LTP and LTD, a small reduction in the A+/A− ratio considerably
decreases the averageweight aswell as the postsynaptic firing rate
(Fig. 4(C) and (D)) (Song et al., 2000). Therefore, the strengthening
of ADFB by a further increase in ρ is counterbalanced by the
weakening of the postsynaptic activity, and the temporal average
of A+/A− decreases very gradually with increasing ρ (Fig. 4(B))
(Kubota & Kitajima, submitted for publication).
On the other hand, changing ginh does not significantly affect

the postsynaptic firing rate for larger ρ (ρ > 0.4) (Fig. 4(D)).
Instead, stronger inhibition augments the average weight via a
small increase in the LTP/LTD ratio (Fig. 4(B) and (C)). This finding
suggests that our model exhibits a strong regulatory function that
maintains the excitatory–inhibitory balance through the precise
control of the LTP/LTD balance. Furthermore, the coefficient of
variation (CV) for the interspike intervals (ISIs) in the output spike

train was found to increase with ρ and ginh in the range of larger ρ
values (Fig. 4(E)). The higher ISI variability caused by the enhanced
inhibition is attributable to the fact that larger ginh increases the
average synaptic weight (Fig. 4(C)). This effect reduces the number
of excitatory inputs needed to reach the threshold voltage and
prevent the temporal integration of inputs from producing regular
firing pattern (Softky & Koch, 1993). Although larger ρ acts to
weaken the synapses (Fig. 4(C)), this effect will be overcome by
decreasing the postsynaptic firing rate (Fig. 4(D)); since, at lower
firing rates, the effective passive decay for the membrane voltage
is increased, the neuron will behave as a coincidence detector and
thereby can produce an irregular firing pattern (Liu &Wang, 2001).
Additionally, as shown in Fig. 4(B) and (D) (open symbols),

we plotted the values of A+/A− and the postsynaptic firing rate
corresponding to the intersection points shown in Fig. 2(B) (see
Section 3.1), which were calculated by performing the linear
interpolation of the firing rate vs. A+/A− relationship for each ginh
(thick lines in Fig. 2(B)). Fig. 4(B) and (D) indicate that the results
obtained by the numerical simulation with the ADFB mechanism
(closed symbols) show very good agreement with those predicted
by this intersection argument (open symbols).

3.3. ADFB modulation in the presence of correlated inputs

The above results suggest that ADFB may provide STDP with a
strong regulatory function such that the postsynaptic firing rate
is kept almost constant for a given value of ρ (Fig. 4(D)). To
examine how such regulatory action affects learning dynamics in
the presence of correlated inputs, we divided synapses into two
equally-sized groups and introduced correlation into one of them
(Song & Abbott, 2001, see Methods). The other group remained
uncorrelated so that we could compare the effects of ADFB on the
correlated and uncorrelated inputs.
Physiological experiments examining correlated neuronal ac-

tivity suggest that the time scale of correlation ranges widely from
milliseconds to seconds (Bach&Kruger, 1986; Bair, Zohary, &New-
some, 2001; Brivanlou, Warleand, & Meister, 1998; Kohn & Smith,
2005; Lampl, Reichova, & Ferster, 1999; Mastronarde, 1983; Re-
ich, Mechier, & Victor, 2001); the sharing of the same afferent
inputs produces correlated spiking on a millisecond time scale
(Mastronarde, 1983), whereas the temporal variation in firing
activity caused by changing sensory stimuli can generate cor-
relation on a time scale of seconds (Bach & Kruger, 1986; Bair
et al., 2001). Therefore, we performed simulations by using a wide
range of correlation time τc (5 ms < τc < 5 s), the results
of which are presented in Fig. 5(A)–(C). Here, to clarify the im-
pact of ADFB, the results of both using and not using ADFB (left
and right column, respectively) are shown. The value of A+/A−
for the case without ADFB (A+/A− = 0.975) was chosen such
that the steady-state weight distribution becomes approximately
the same for the two models with smaller τc (τc = 10 ms;
Fig. 5(A)). As shown in the figure, with such smaller correlation
time, the correlated synapses gather near either the upper or lower
boundary, whereas the uncorrelated synapses are depressed to-
ward the lower boundary (Song & Abbott, 2001). However, as
the correlation time is increased, all the synapses are pushed to-
ward the lower limit in the absence of ADFB (Fig. 5(B), right),
converging to a unimodal distribution, whereas in the presence
of ADFB, the correlated and uncorrelated inputs tend to decrease
and increase, respectively, converging to a bimodal distribution
(Fig. 5(B), left). Therefore, in the presence, but not absence of ADFB,
there is a threshold value of τc such that the correlated inputs are
strengthened or weakened, compared to the uncorrelated inputs,
depending on whether the value of τc is smaller or larger than the
threshold, respectively (Fig. 5(C) and (D)).
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A

C D E

B

Fig. 4. The equilibrium properties of the STDP model incorporating an ADFB mechanism. The temporally-averaged values of the A+/A− ratio (A and B) and the average
weight over all the synapses (C), the mean postsynaptic firing rate (D), and the CV for the ISIs (E) are plotted as a function of ρ for three different values of ginh (ginh = 3.75,
5, or 6.25µS/cm2). (B) shows the higher magnification of the A+/A− ratio in (A). Open symbols in (B) and (D): The values of A+/A− and the postsynaptic firing rate obtained
by the intersection points in Fig. 2(B) (see Section 3.1). The difference in the firing rates for the three cases of ginh is invisible in the open symbols in (D).

It should be noted that a group of inputs having longer corre-
lation time cannot quit firing after evoking postsynaptic spikes,
increasing the number of post–pre-timing spike pairs, which in-
duce LTD (Song et al., 2000). Therefore, it is not surprising that,
in both the presence and absence of ADFB, the synaptic strength
of correlated inputs was decreased by increasing τc (Fig. 5(C)). An
interesting feature of ADFB is that it can function to compensate
for the decline of the correlated inputs by increasing the LTP/LTD
ratio (Fig. 5(E)). This in turn strengthens the uncorrelated inputs
(Fig. 5(C), left), since their synaptic drift is primarily determined
by the integral of the STDP curve (Rubin et al., 2001; Song & Ab-
bott, 2001). Thus, the increase in the uncorrelated inputs can coun-
terbalance the decrease in the correlated inputs to maintain the
postsynaptic activity (Fig. 5(F)). This will also be understood from
Fig. 2(B); the thin lines in this figure, which represents the relation-
ship of Eq. (3), show that ADFB keeps the postsynaptic firing rate at
an almost constant value as long as LTP and LTD are approximately
balanced.
To further explore the input correlation-based synaptic modi-

fications under the effects of ADFB, we performed similar calcu-
lations while changing the strengths of ADFB modulation and of
inhibition (Fig. 6). The correlation time dependence of the strength
of the correlated and uncorrelated inputs (Fig. 6(A) and (B)) and
the difference between them (Fig. 6(C)) as well as the LTP/LTD ra-
tio (Fig. 6(D)) was found to be stronglymodified by alterations in ρ
and ginh. Fig. 6(A) and (B) suggest that the synaptic strength of ei-
ther/both group(s) tends to accumulate very close to the upper or
lower limit for a range of very small or large values of τc , so that the
separation of the two groups of weights becomes saturated under
the influence of the boundaries (Fig. 6(C)). The LTP/LTD ratio is in-
creased and decreased, in a wide range of τc , by smaller ρ and ginh,
respectively (Fig. 6(D)), which is consistent with the previous re-
sults for uncorrelated input cases (Fig. 4(B)). Additionally, it can be
found that in a particular range of τc (80 ms < τc < 400 ms),
the correlated inputs can be either strengthened or weakened,
compared to uncorrelated inputs, depending on the values of ρ
and ginh (Fig. 6(C)). This effect implies that the changes in ρ and

ginh could regulate which among correlated and uncorrelated in-
puts become strengthened by STDP. This was clarified by perform-
ing the same simulations while systematically changing the values
of ρ and ginh in the case of τc = 160 ms, as shown in Fig. 6(E). The
figure demonstrates that changes in these physiological parame-
ters can modulate both the direction and the magnitude of the in-
put correlation-dependent synaptic modifications emerging from
STDP.

4. Discussion

In this study, we have examined an additive STDP model in-
corporating an ADFB mechanism, wherein higher postsynaptic ac-
tivity decreases the magnitude of LTP so that the LTP/LTD ratio
is modified dynamically. When a postsynaptic neuron received
random uncorrelated inputs, the temporal average of the LTP/LTD
ratio (A+/A−) in the STDP curvewas increased and decreased grad-
ually, within a range slightly smaller than 1, by increasing ginh and
ρ, respectively (Figs. 2(B) and 4(B)). The strengths of ADFB and in-
hibition therefore provide physiological mechanisms by which the
LTP/LTD balance in STDP can be precisely controlled. Importantly,
for a given value of ρ, changing ginh does not significantly change
the postsynaptic firing activity (Fig. 4(D)). This finding suggests
that ADFB achieves a strong regulatory function that maintains
the level of neuronal activity by slightly modulating the LTP/LTD
ratio (Fig. 4(B) and (D)). We further studied the cases where the
input consists of two groups of synapses, where one group is
correlated and the other group is uncorrelated. In this case, as
the correlation time (τc) was prolonged, the dominant group was
switched under ADFB modulation such that the correlated and
uncorrelated groups become dominant for smaller and larger τc ,
respectively (Fig. 5(C) (left) and (D)). This switch in the direction
of input correlation-based plasticity represents an additional reg-
ulatory function emerging from ADFB. When the prolonged co-
rrelation weakens the correlated synapses (Fig. 5(C) (left), Song
and Abbott (2001)), ADFB can produce a bias in the LTP/LTD ratio
toward LTP (Fig. 5(E)) and counterbalance the decrease in the
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Fig. 5. The equilibrium properties of the STDPmodel when the neuron receives both correlated and uncorrelated inputs. (A–C) The steady-state weight distributions (A and
B) and the relationship of the average weight vs. the correlation time (C) for the correlated (red) and uncorrelated (black) input groups. The ADFBmodulation is active in the
left column, but inactive in the right column. The correlation times used for (A) and (B) are τc = 10 and 1280 ms, respectively. (D–F) The difference in the average weight
between the correlated and uncorrelated groups (D), the temporal mean of the LTP/LTD ratio (E), and the postsynaptic firing rate (F) are shown as a function of τc . The solid
and dashed lines show the cases with and without ADFB mechanism, respectively.

correlated synapses by the increase in the uncorrelated ones, keep-
ing the neuronal activity nearly constant (Fig. 5(F)). Interestingly,
the direction of the input correlation-based plasticity can reverse
with changes in the values of ρ and ginh, within a certain inter-
mediate range of τc (Fig. 6(E)), providing a possible mechanism
for tuning a system’s response properties in response to stimulus
characteristics.

4.1. Physiological mechanisms regulating LTP/LTD balance in STDP

The synaptic dynamics resulting from additive STDP has been
shown to have an important advantage of being competitive,
unlike the rate-based models of Hebbian plasticity (Song et al.,
2000). However, the induction of such a competitive function

critically depends on an approximate balance in LTP and LTD in
the STDP curve (Rubin et al., 2001; Song et al., 2000). Considering
the fact that such LTP/LTD balance is generally not found in the
learning curves obtained by experiments using pairing protocols
(e.g. Bi & Poo, 1998), it appears likely that an additionalmechanism
may be involved in regulating this balance in biological systems.
The present results have shown that the ADFB mechanism

can maintain an approximate balance in LTP and LTD (Fig. 4(B));
moreover, modulation of the strength of ADFB as well as of
inhibition, provided by the activation of GABA conductance, has
been found to be effective in very gradually modulating this
balance. As mentioned above, a line of evidence suggests that
the magnitude of ADFB in cortical neurons can be altered under
physiological conditions; first, the induction of LTP, but not LTD,
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A B

C D

E

Fig. 6. The effects of changing the strength of ADFB (ρ) and the inhibition level (ginh) on the equilibriumproperties of STDP in the presence of both correlated anduncorrelated
groups of inputs. (A and B) The average weights for the correlated (red) and uncorrelated (black) groups at the equilibrium of STDP are plotted as a function of the correlation
time τc . In (A), the impact of changing ρ is examined, where ρ = 0.8 (solid) or 0.6 (dashed). In (B), the impact of changing ginh is examined, where ginh = 5 (thick line) or
3.75µS/cm2 (thin line). (ginh = 5µS/cm2 in (A) and ρ = 0.8 in (B)) (C and D) The difference in the average weights between the correlated and uncorrelated groups (C) and
the temporally-averaged value of A+/A− (D) are plotted by using the same line types as those in (A) and (B). ((ρ, ginh) = (0.8, 5) (thick s olid), (0.6, 5) (dashed), or (0.8, 3.75)
(thin solid)) (E) The difference in the average weight between the two input groups as a function of ρ and ginh , where τc = 160 ms. The correlated inputs are potentiated or
depressed, as compared to the uncorrelated inputs, depending on the values of ρ and ginh .

depends on the activation of postsynaptic NMDARs (Bender et al.,
2006; Egger et al., 1999; Nevian & Sakmann, 2006), indicating
that the LTP/LTD ratio depends on the activity level of NMDARs.
Second, the Ca2+-dependent desensitization of NMDARs will
be found in NR2A- but not NR2B-containing NMDARs (Krupp
et al., 1996), suggesting that switching from NR2B to NR2A
subunits will strengthen the activity-dependent desensitization of
NMDARs mediated by the Ca2+ influx through voltage-dependent
Ca2+ channels (Medina et al., 1999). Therefore, the coordination
between NMDAR subunit expression and GABA conductance may
be involved in the control of the LTP/LTD balance in the STDP
learning rule. Furthermore, both the expression pattern of different
NR2 subunits and the level of GABA inhibition also depend on
the past history of neuronal activity (Morales, Choi, & Kirkwood,
2002; Quinlan et al., 1999a, 1999b). Suchmechanismsmay provide
further feedback effects that modify the strength of the ADFB
function itself.
Importantly, the primary role of the ADFB mechanism in our

model is to prevent the saturation of synaptic weights so that the

firing rate is maintained in a reasonable range (Fig. 2). Therefore,
it would be possible to regulate the LTP/LTD balance by using
more general mechanisms that can maintain the firing activity in
the neuronal circuits, such as homeostatic plasticity (Turrigiano
& Nelson, 2004). Additionally, since the physiological mechanism
that provides subunit-specific modulation of NMDAR-mediated
synaptic currents (Yuen, Jiang, Chen, Gu, Feng, & Yan, 2005) will
be expected to alter the level of ADFB, it appears likely that
such mechanism can contribute to regulating the LTP/LTD balance
in biological systems. It has also been shown that the LTP/LTD
balance can be precisely regulated, similar to the present study, by
using the STDP model involving synaptic modification based on a
biophysical Ca2+-dependent plasticity model (Kubota & Kitajima,
submitted for publication).

4.2. Hebbian and anti-Hebbian plasticity in STDP

The notion of Hebbian plasticity has guided much work in
both experimental and theoretical neuroscience (Buonomano &
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Merzenich, 1998; Feldman & Brecht, 2005). At a level of cortical
organization, a Hebbian-based learning rule contributes to detect-
ing correlated inputs and expanding the representation of such
inputs. This would be effective to augment the cortical process-
ing capacity of behaviorally relevant inputs, given that the periph-
eral inputs that fire at similar times are likely to represent points
that are close together on peripheral sensory units (Buonomano &
Merzenich, 1998).
STDP has been considered important as a mechanism for

realizing Hebbian-based plasticity in natural conditions (Abbott,
2003). STDP can strengthen a group of correlated inputs and
promote the organization of neuronal connections in an activity-
dependent manner (Song & Abbott, 2001). The present study has
revealed that when STDP is accompanied by the ADFBmechanism,
it can strengthen or weaken the correlated inputs as compared to
uncorrelated ones when the correlation time is shorter or longer
than a threshold, respectively (Fig. 5(D)). This result suggests that
STDP can act as either a Hebbian or an anti-Hebbian learning
rule depending on the correlation structure of afferent inputs.
Furthermore, this finding is reminiscent of recent observations
of barrel map plasticity (Feldman & Brecht, 2005; Polley, Chen-
Bee, & Frostig, 1999; Polley, Kvasnak, & Frostig, 2004), which
have revealed that transferring rats from home cages to a natural
environment induces the contraction of the representation of
frequently-used whiskers as well as the sharpening of the whisker
map. Based on our results, we can predict that the contraction
of frequently-activated inputs may occur through the appearance
of prolonged correlation times within the firing activity of the
neuronal subpopulation representing the inputs to the barrel
cortex (Fig. 5(D)). Since the time scale of the correlations will
significantly depend on that of changing input stimuli (Bach &
Kruger, 1986; Simons, 1978), it appears conceivable that the
observed change in barrel map plasticity (Polley et al., 1999, 2004)
may result from the alteration in the time course of whisker
movement caused by active exploration of a natural environment.
Another source of correlated firing arises through synchronized

membrane fluctuations, which consist of ‘up’ and ‘down’ states,
and is frequently observed between nearby cortical neurons
(Anderson, Lampl, Reichova, Carandini, & Ferster, 2000; Castro-
Alamancos, in press; Kohn & Smith, 2005; Lampl et al., 1999).
The correlation of the two-state membrane potential fluctuation
is stronger in pairs of cortical neurons that respond to the same
aspects of sensory stimuli (Lampl et al., 1999), and additionally, this
type of correlated firing is enhanced by the stimulus presentation
(Anderson et al., 2000), suggesting that it plays a role in the
stimulus-dependent cortical processing. For a range of correlation
time (80–400 ms), nearly corresponding to the time scale of
correlation by themembrane potential fluctuation (Anderson et al.,
2000; Castro-Alamancos, in press; Lampl et al., 1999), our model
predicts that whether the correlated inputs are potentiated or
depressed depends on the level of ADFB and GABA inhibition
(Fig. 6(E)). Therefore, the combination of the cortical membrane
fluctuation and the ADFB modification of STDP may provide
the neurons with the ability to select from Hebbian or anti-
Hebbian rule such that the inputs arising from sensory stimuli
can be strengthened or weakened compared to those from the
background spontaneous activity. The cortical network may use
Hebbian plasticity to increase the response to the behaviorally
important stimuli by strengthening the connections from such
stimuli to widely distributed neurons. On the other hand, anti-
Hebbian plasticity may be beneficial when animals are in an
environment containing many stimuli so that a more efficient
method for representing each sensory stimulus is required (Polley
et al., 2004). Therefore, we consider that the proposed mechanism
for selecting from functionally distinct forms of plasticity rules
may be useful to permit efficient distribution of limited metabolic
resources for achieving cortical representation of stimuli.
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