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Abstract The pre-Bötzinger complex (preBötc) in the
mammalian brainstem has an important role in generat-
ing respiratory rhythms. An influential differential equation
model for the activity of individual neurons in the preBötc
yields transitions from quiescence to bursting to tonic spik-
ing as a parameter is varied. Further, past work has estab-
lished that bursting dynamics can arise from a pair of tonic
model cells coupled with synaptic excitation. In this paper,
we analytically derive one- and two-dimensional maps from
the differential equations for a self-coupled neuron and a
two-neuron network, respectively. Using a combination of
analysis and simulations of these maps, we explore the possi-
ble forms of dynamics that the model networks can produce
as well as which transitions between dynamic regimes are
mathematically possible.
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1 Introduction

Biologyprovidesmanyexamplesofsystemswhere individual
units, such as organisms, cells, or molecules, display qualita-
tively different dynamics under different conditions.
Particular dynamic regimes often have specific functional
consequences, and hence the conditions under which each
form of dynamics appears, and the mechanisms underlying
transitions between dynamic regimes, represent important
topics for analysis in models of biological systems. Square-
wave, or fold-homoclinic, bursting is a relatively complex
activity pattern (Rinzel 1985; Izhikevich 2000) that arises
in mathematical models for a variety of biological systems,
including pancreaticβ-cells (Chay and Keizer 1983) and neu-
rons in a respiratory region of the mammalian brain stem, the
pre-Bötzinger complex (preBötc) (Smith et al. 1991; Butera
et al. 1999a; Best et al. 2005). For some time now, the mini-
mal mathematical ingredients needed for square-wave burst-
ing to arise in a single model cell and the mechanisms by
which such a cell can switch its behavior between quies-
cence, square-wave bursting, and another form of activity,
called tonic spiking, have been understood (Rinzel 1985;
Terman 1992). Chaotic activity within transitional regions
has also been analyzed (Terman 1991; Medvedev and Yoo
2008). However, although the burst-capable cells in the rel-
evant biological systems belong to coupled networks, the
analysis of transitions between dynamic regimes in model
coupled networks has been relatively limited. The main point
of this work is to develop a reduced representation, based on
return maps, for a coupled pair of burst-capable model pre-
Bötc cells (Butera et al. 1999a,b) and to show how different
activity patterns, and transitions between them, arise in the
map representation.

To do so, we build heavily on two earlier papers, in
addition to the two papers (Butera et al. 1999a,b) that first
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introduced the model that we consider. In the study of a vari-
ety of models used in neuroscience (Ermentrout and Kopell
1998; LoFaro and Kopell 1999; Channell Jr. et al. 2007), and
in other areas as well (Gomes et al. 2008; Altendorfer et al.
2003; Ditto et al. 1990; Milik et al. 1998; Rinzel and Troy
1982a,b), high dimensional systems of differential equations
have been reduced to one-dimensional maps to facilitate anal-
ysis. Maps have also been constructed phenomenologically
to reproduce some important characteristics of a given activ-
ity pattern (Wang 1991; Rulkov 2002, 2004). In this work, we
follow a rigorous reduction, derived recently by Medvedev
(2005) for individual square-wave burst-capable elements
such as the single-cell Butera et al. (1999a) preBötC model,
that takes advantage of the presence of two disparate time-
scales in the model. We recapitulate Medvedev’s approach to
show explicitly how it plays out for a self-coupled model pre-
Bötc cell. Further, we provide a novel extension of the reduc-
tion to the case of a pair of model cells, mutually coupled with
synaptic excitation, which yields a two-dimensional map.

Second, in our analysis of the two-dimensional map, we
make extensive comparison with another recent study of
the dynamics of a pair of coupled model preBötC cells
(Best et al. 2005). In that work, numerical simulation and
bifurcation analysis of an appropriate slow averaged system
revealed the existence of four different dynamic regimes and
explained the mathematical mechanisms underlying transi-
tions between these regimes, in the singular limit where a
fast-slow decomposition applies. Here, we show how each
dynamic regime is manifested in the two-dimensional map
and arrive at a more comprehensive representation of possi-
ble transitions between regimes, valid when the ratio of the
slow and fast timescales is small, but not necessarily zero as
in the singular limit.

The paper is organized as follows. In Sect. 2, we pres-
ent the version of the differential equation model that we
study. For this model, we review the dynamic mechanisms
that give rise to bursting in a single cell and in a two-cell
network. In Sect. 3, we consider the one-dimensional map
derived from the single cell equations, properties of this map,
and constraints on the possible forms of single cell dynam-
ics that can be inferred from the map. Section 4 presents
similar topics for the two-dimensional map description of
a two-cell network. In particular, we introduce an iterated
map approach that we find useful for the study of this map.
Section 5 provides a brief discussion of our results, while
Appendix A gives further details of functions and parameter
values used in the model, and Appendix B presents analytical
arguments underlying some of the mathematical properties
of the one-dimensional map. We note that, although we pres-
ent our analysis in terms of the Butera et al. preBötc model,
our qualitative results generalize immediately to any other
model that shares its timescale decomposition and bifurca-
tion structure.

2 Model and previous results

The original Butera et al. model describes the time (t) evolu-
tion of the membrane potential (v), activation (n), and inac-
tivation (h) levels associated with certain transmembrane
currents, and fraction (s) of maximal synaptic conductance
available, for a single preBötc cell (Butera et al. 1999a). For
completeness, this model is presented in Appendix A. In this
paper, we work with the following version of the Butera et
al. preBötc model (Butera et al. 1999a), rescaled such that
voltage lies in (−1, 1) and cast in a way that allows for con-
sideration of either one or two cells:

dVi

dT
= (−INaP(Vi , hi ) − INa(Vi , ni ) − IK(Vi , ni ) − IL(Vi )

−Iton(Vi ) − Isyn(Vi ))/ρ ≡ F(Vi , hi , ni ) (1)
dhi

dT
= ε(h∞(Vi ) − hi )/τ

∗
h (Vi ) (2)

dni

dT
= (n∞(Vi ) − ni )/τ

∗
n (Vi ) (3)

dsi

dT
= αs(1 − si )s∞(Vj ) − si/τs, (4)

where a standard approximation is used to incorporate the
variable ni into both the fast sodium and potassium cur-
rents, INa = gNam3∞(Vi )(1 − ni )(Vi − E∗

Na) and IK = gKn4
i

(Vi − E∗
K). In the self-coupled case, i = j = 1, while in

the two-cell case, i = 1, 2 and j = 3 − i . This system is
obtained from the original model by rescaling variables for
time (T = t/10 for t from the original model in Appendix
A) and voltage (v = 100 V), as well as maximal conduc-
tances (gi = ḡi

ḡNa
) and reversal potentials (E∗

i = Ei/100),
and introducing the new parameters

ρ = Cm/(10ḡNa) = 7.5 × 10−2, ε = 10−3, αs = 2,

τs = τ̄s/10 = 0.5,

where parameters with bars on them are from the original
Butera model. We have also introduced the rescaled, volt-
age-dependent timescale functions

τ ∗
h (Vi ) = sec h[(Vi + 0.48)/0.12]

and

τ ∗
n (Vi ) = sec h[(Vi + 0.29)/(−0.08)].

Note, in particular, that we have factored out the small
parameter ε from Eq. 2. For unscaled voltages, v, between
−80 and 10 mV, the quantity ε/τh(V ) remains below 0.07,
while 1/τn(V ) is always above 1 and is well above 1 over
most of this range. Moreover, h∞(Vi ), n∞(Vi ) ∈ (0, 1) for
each i , such that hi , ni ∈ (0, 1) as well. Hence, we treat
hi as slow relative to the other variables in the system. The
nature of the rescaling implies that system (1–4) has the same
dynamics and associated structures as the original model. In
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the rest of this section, we summarize the key features of
system (1–4).

2.1 Single-cell dynamics

Since hi is slow, it is natural to define the fast or inner sub-
system

V ′
i = F(Vi , hi , ni )

n′
i = (n∞(Vi ) − ni )/τ

∗
n (Vi )

s′
i = αs(1 − si )s∞(Vj ) − s/τs,

(5)

where the prime symbol denotes differentiation with respect
to T and where hi is incorporated implicitly as a parameter.
We can also rescale time, introducing τ = εT as a variable
that changes slowly relative to T , recast system (1–4) in terms
of differentiation with respect to τ , and divide through by ε

to obtain the slow or outer subsystem

0 = F(Vi , hi , ni )

ḣi = (h∞(Vi ) − hi )/τ
∗
h (Vi )

0 = (n∞(Vi ) − ni )/τ
∗
n (Vi )

0 = αs(1 − si )s∞(Vj ) − s/τs .

(6)

In the remainder of this section, since we consider single-cell
dynamics, we drop the subscript i on our dependent variables.

To understand the dynamics associated with these sys-
tems, a bifurcation analysis of the fast subsystem (5) can
be performed, using h as a bifurcation parameter (Rinzel
1985). The left panel of Fig. 1 shows an example of a result-
ing bifurcation diagram, which is very similar to that shown
in Best et al. (2005), augmented with the h-nullcline, for a
fixed parameter set in the self-coupled case. The intersection
of the h-nullcline with the critical manifold S is a critical

point, p0, of the full system (1–4). An unstable family of
periodic orbits emerges from S in a subcritical Andronov–
Hopf (AH) bifurcation, say at h = hAH. This family meets
another stable family of periodic orbits, P , in a saddle-node
of periodic orbits (SNPO) bifurcation at h > hAH. In the dia-
grams in Fig. 1, the family P ends in an orbit homoclinic to
a point on the middle branch of S, at hHC < h AH . For some
other parameter values, the corresponding family, P , ends in
a second SNPO bifurcation, where it meets a third family of
periodic orbits. This third family is unstable and terminates
in an orbit homoclinic to a point on S (see Best et al. 2005).

The attractor in the configuration shown in the left panel
of Fig. 1 is the critical point p0 on the lower branch of S,
where the h-nullcline meets S. The dynamics associated with
the approach to this attractor is called quiescence, since no
spikes are generated (possibly after an initial transient). It
has been shown previously (Butera et al. 1999b; Best et al.
2005) that system (1–4) can also exhibit square-wave burst-
ing or tonic spiking in certain parameter regimes. More pre-
cisely, increasing gton yields a transition from quiescence
to bursting by changing the relative positions of S and the
h-nullcline such that p0 moves to the middle branch, and
further increases in gton elicit a second transition, to tonic
spiking. In tonic spiking, the downward drift in h during
the high-V part of a spike is balanced by the upward drift
in h in the trough of a spike. In the singular limit, the
transition from bursting to tonic spiking occurs when p0

moves in a direction of decreasing h through h = hHC,
when hHC exists, or when h decreases through an analo-
gous point when hHC does not exist. The right panel of Fig. 1
shows a configuration with p0 at an h-value before hHC,
predicted to give tonic spiking for ε sufficiently small. Vary-
ing gsyn has different effects on the bifurcation diagram and
resulting dynamics, with increases in gsyn from 0 initially
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Fig. 1 Bifurcation diagrams for the fast subsystem (5), with respect
to parameter h, with h-nullcline superimposed. Le f t : diagram for
gsyn = 0 and gton = 0.2, similar to that shown by Best et al. (2005).
Here p0 is a stable critical point for the full system (1–4), correspond-
ing to the quiescent state. The star indicates a homoclinic point at

h = hHC < hAH, where hAH is the h-value at which an Andronov–
Hopf (AH) bifurcation occurs. Right : a configuration, with p0 now
occurring at h < hHC and unstable, predicted to give tonic spiking for
small ε
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expanding the bursting region and later contracting it again
(see Butera et al. 1999b; Best et al. 2005). Interestingly, for
an appropriate interval of gton that yields tonic spiking with
gsyn = 0, increasing gsyn can switch the system back to
bursting, showing that dynamic synapses could play a role in
promoting bursting, a functionally relevant activity pattern
of the preBötc.

2.2 Two-cell dynamics

Best et al. (2005) noted that when a pair of coupled
cells is considered, the range in (gton, gsyn) over which
bursting occurs is enhanced even further than in the self-
coupled case, matching the simulations of Butera et al.
(1999b). A system of two coupled cells includes two slow
variables, h1, h2, and hence the fast–slow decomposition
approach becomes more complicated. When both cells are
in the silent phase, their dynamics are well approximated by
solutions to the slow subsystem (6). Best et al. computed the
net drift in the hi when both cells are in the active phase by
using the method of averaging. That is, at any (h1, h2) for
which the two-cell fast subsystem exhibits a stable periodic
oscillation L(h1,h2) with period Λ(h1, h2),

L(h1,h2) =
{

(V1(T ), n1(T ), s1(T ), V2(T ), n2(T ), s2(T ))

∈ R
6, T ∈ [0,Λ(h1, h2))

}
,

the dynamics of the slow variables with respect to the slow
time τ = εT is given, up to O(ε), by the averaged slow
equations

ḣi = 1

Λ(h1, h2)

Λ(h1,h2)∫

0

gi (Vi (ξ))dξ i = 1, 2. (7)

In Eq. 7, gi (Vi ) ≡ (h∞(Vi ) − hi )/τ
∗
h (Vi ) and critical points

where ḣ1 = ḣ2 = 0 correspond to periodic (tonic spiking)
solutions of the full system (1–4) for the two cells (Pontryagin
and Rodygin 1960). Based on Eq. 7, hi -nullclines, Ni , were
computed numerically, and four dynamic regimes were iden-
tified: symmetric bursting (SB), asymmetric bursting, asym-
metric spiking, and symmetric spiking (Best et al. 2005).
Figure 2 illustrates the regions in (ḡton, ḡsyn) parameter space
on which these regimes were found to arise, while Fig. 3
shows phase portraits for system (7) representative of each
regime.

Here we briefly describe the regimes found and analyzed
by Best et al. (2005). Let O denote the region in the h1 − h2

plane, such that for each (h1, h2) ∈ O the fast subsystem (5)
has a stable periodic orbit L(h1,h2). Numerically, the bound-
ary bd(O) of O inside the relevant square [0, 1] × [0, 1] is
observed to consist of two curves, with reflection symmetry
across the line {h1 = h2}. In each of Fig. 3a–c, the region
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Fig. 2 Boundaries for different regimes of activity on the parameter
space (ḡton, ḡsyn). Figure reproduced from Best et al. (2005) (Copy-
right(c)2005 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved)

O is above and to the right of these two curves, which are
solid and black. Consider (ḡton, ḡsyn) fixed such that no stable
critical point exists for (h1, h2) outside of O.

In the SB regime (Fig. 3a), ḣ1 < 0 and ḣ2 < 0 for all
(h1, h2) ∈ O. Hence, trajectories starting in O leave through
bd(O). Outside of O, si ↓ 0 on the fast timescale, such that
the two cells decouple, and each cell evolves along the lower
branch of S (Fig. 1) until one cell reaches the lower knee
of S and jumps back to O, pulling the other cell with it due
to the resumption of synaptic excitation. This cycle repeats,
yielding bursting dynamics consisting of alternating phases
of fast system quiescence and phases of fast subsystem oscil-
lations. In simulations, trajectories approach {h1 = h2} as
time advances.

In asymmetric bursting (Fig. 3b), unlike the previous case,
there are curves in O where ḣ1 or ḣ2 changes sign, which
form the nullclines Ni of (7) in O. By symmetry, they inter-
sect at a point, call it PO, in {h1 = h2}. With (h1, h2) fixed
at PO, the fast subsystem exhibits a stable oscillation, and
there is no net drift of (h1, h2) over each period, such that
this represents a stationary state of the full system (in the
singular limit, which perturbs to a dynamically equivalent
nearby state for ε sufficiently small). However, PO can be
shown to be a saddle point for system (7). Trajectories near
the stable manifold of PO, namely the line {h1 = h2}, that
approach a neighborhood of PO cross the h2-nullcline and
are kicked out along the unstable manifold of PO until they
reach bd(O) and exit O. As in SB, this exit decouples the
cells, leading to a silent phase followed by reinjection into
O. Bursting dynamics, with a relatively long active phase
due to passage near the saddle PO, results.

In the asymmetric spiking regime (Fig. 3c), there are
two additional intersection points of N1,N2, located off of
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Fig. 3 The four dynamic
regimes discussed in the text for
ḡsyn = 3 and ḡton = 0.56,

ḡton = 0.83, ḡton = 0.87 and
ḡton = 0.91, respectively. Note
the difference in scales in
different panels; in particular, d
shows a zoomed view of a small
neighborhood of PO . Figure
reproduced from Best et al.
(2005) (Copyright (c)2005
Society for Industrial and
Applied Mathematics. Reprinted
with permission. All rights
reserved)
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{h1 = h2} but equivalent under reflection across {h1 = h2},
and these are stable critical points of system (7). Correspond-
ing to each of these, the full system exhibits a stable state in
which the fast variables undergo large amplitude oscillations
while the slow variables periodically drift around the critical
point, representing tonic spiking solutions with h2 > h1 and
with h1 > h2, respectively.

Finally, symmetric spiking (Fig. 3d) results after a pitch-
fork bifurcation for system (7) occurs. This bifurcation
destroys the two previously stable critical points and sta-
bilizes the one on {h1 = h2}, yielding tonic spiking in which
h1 ≈ h2.

3 Self-coupled cell: one-dimensional map

In this section, we derive a one-dimensional map representing
the dynamics of a self-coupled cell given by (1–4), directly
following Medvedev (2005). We subsequently analyze its
properties and consider the dynamics of the map, with par-
ticular attention to transitions between bursting and spiking.

3.1 Derivation of the one-dimensional map

Consider the slow Eq. 2 for a fixed gsyn. Define a new time
variable t (T ) (distinct from t in the original Butera model
in Appendix A) such that d

dt = τ ∗
h (V ) d

dT . Then, t (T ) =∫ T
0 [1/τ ∗

h (V (ξ))]dξ and Eq. 2 simplifies to

dh

dt
= ε(h∞(V ) − h). (8)

As noted in Sect. 2.1, the fast subsystem has a family of stable
periodic orbits, P , for each h within a range, which can be
denoted as (hL , h R), where the SNPO bifurcation that gives
birth to P (Fig. 1) occurs at h = h R . For any η ∈ (hL , h R),
let Pη denote the corresponding member of P and let Ση

denote a local section transversal to Pη in (V, n, s) space.
Without loss of generality, we can choose Ση as a surface
of constant n at the minimum of V along P , since ṅ 	= 0
there, assuming the minimum occurs at V < θsyn, such that
ṡ < 0. Indeed, if ṅ = V̇ = 0 and ṡ < 0 at a point, then
d2V/dt2 = −(∂ Isyn/∂s)ṡ < 0, contradicting the fact that
the point is a minimum of V . In fact, ṅ < 0 must hold there,
since n∞(V ) is monotone increasing. Since the curve of min-
ima in V along P is differentiable by the implicit function
theorem, Σ := ∪η∈(hL ,h R)Ση is a local transversal to P .

For any (V (0), n(0), s(0)) ∈ Ση for η ∈ (hL , h R), define

ts(η) = min{t > 0 : (V (t), n(t), s(t)) ∈ Σ and ṅ < 0}.

Define the first return map by

P(η) = h(ts(η)). (9)

Adding εh on both sides of Eq. 8, multiplying it by its inte-
grating factor eεt , and integrating from 0 to ts(η) yields

eεts (η)h(ts(η)) − h(0) = ε

ts (η)∫

0

h∞(V )eεt dt.
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Substitution of (9) then gives an equation for the first return
map for the self-coupled case,

P(η) = e−εts (η)η + ε

ts (η)∫

0

h∞(V )eε(t−ts (η))dt,

hL < η < h R . (10)

To complete the definition of the map, let hL denote the
h value such that the family P ends as h → h+

L (i.e., as h
approaches hL from above), either in a homoclinic orbit (such
that hL = hHC) or in a second saddle node bifurcation of peri-
odic orbits. We note that for h < hL , the unique stable state of
the fast subsystem is the critical point (V ∗(h), n∗(h), s∗(h))

on the lower branch of the critical manifold S. Trajectories
that approach a neighborhood of this branch evolve under the
slow flow

ḣ = ε(h∞(V ∗(h)) − h) > 0

until h = hSN is reached and the active phase is resumed.
Hence, for η ≤ hL , we set P(η) = hSN . This assignment
completes the definition of the map P(η) for η ∈ (hl , h R),
for any choice of hl < hL .

Now, define a function (Medvedev 2005),

F(η) =
∫ ts (η)

0 h∞(V (t))eε(t−ts (η))dt∫ ts (η)

0 eε(t−ts (η))dt
. (11)

Some algebraic manipulations allow us to write Eq. 10 as

P(η) = e−εts (η)(η − F(η)) + F(η), (12)

with P(η) = η if and only if F(η) = η. Hence, it becomes
helpful to analyze F(η), to gain insight about the form of
P(η).

3.2 Properties of the one-dimensional map

First, assume that the curve of periodic orbits P ends in a
homoclinic orbit H at h = hHC . The function F(η) can be
seen to have several properties for η ∈ (hHC , h R):

1. F(η) is a smooth function with 0 < F(η) < 1,
2. F(η) is a monotone decreasing function,
3. F(η) → h∞(VHC) as η → h+

HC,
4. for ε sufficiently small, dF

dη
→ −∞ as η → η+

HC.

All of these properties can be inferred from numerical simu-
lations (see Fig. 4). Properties 1, 3, and 4 are also supported
by analytical calculations, as detailed in Appendix B.

Alternatively, if P ends in a saddle node of periodic orbits
as h decreases, the periods along the family remain finite. In
this case, of the properties of F(η) mentioned above, only
the first two still hold, as can be observed numerically.

0.3 0.4 0.5

0.1

0.3

0.5

η

F
(η

) identity line

Fig. 4 F(η) for gton = 0.025 and gsyn = 0.1 (equivalent to ḡton =
0.70 and ḡsyn = 2.8 in the original system)

The enumerated properties of F(η) yield corresponding
properties of P(η). Specifically, if the homoclinic termina-
tion occurs, then

1. there exists η0 ∈ (hHC, hSN) such that 0 < dP/dη < 1
and P(η) < η both hold for η ∈ [η0, hSN] and ε suffi-
ciently small,

2. P(η) → h∞(VHC) as η → h+
HC, since, in Eq. 12,

e−εts (η) → 0 and F(η) → h∞(VHC) as η → h+
HC, and

3. dP/dη → −∞ as η → h+
HC.

The first property can be seen, as in Medvedev (2005), by
fixing η ∈ (hHC, hSN) and using continuous dependence on
ε to write

t (η) = t0(η) + O(ε),

(V (t), n(t), s(t)) = (V0(t), n0(t), s0(t)) + O(ε),

0 ≤ t ≤ t (η),

where (V0(t), n0(t), s0(t)), t > 0 is the periodic solution of
the fast subsystem with h = η, with period t0(η). Substitution
into (12) and Taylor expansion yields

P(η) = (1 − εt0(η))η + εt0(η)F(η) + O(ε2).

Hence, we can bound t0(η) by choosing η above hHC and
then fix ε sufficiently small such that the desired property
holds.

The third property follows from differentiating Eq. 12 with
respect to η, which gives

dP

dη
= e−εts (η) + dF

dη

(
1 − e−εts (η)

)

+ e−εts (η)ε
dts(η)

dη
(F(η) − η). (13)

As η → h+
HC, ts(η) → ∞, dF/dη → −∞, and e−εts (η)

dts(η)/dη = −e−εts (η)(σ/(η − ηHC )) → 0, while F(η)

remains bounded, yielding the desired result.
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Fig. 5 The four possible forms of the map P and associated dynamic
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exists an η∗ > hL such that P ′(η∗) = 0. In the S∗ regime, note that
minη>hL P(η) > hL , such that trajectories cannot leave the active phase

From continuity of the map, the above properties yield a
fixed point on (hHC, hSN) for ε sufficiently small, assuming
that P ends in a homoclinic orbit. A more detailed analysis of
the transition between the linear region and the homoclinic
orbit is given elsewhere for an analogous system (Medvedev
2005). If P does not end in a homoclinic orbit, then the peri-
ods along P may stay relatively small and dP/dη may fail to
become negative as η → h+

HC, and correspondingly a fixed
point of the map P may fail to exist.

3.3 Dynamics of the one-dimensional map

The properties stated in the previous subsection provide con-
straints on the form P can take. For any fixed parameter val-
ues, we can assign P to one of four classes, such that maps
within the same class give rise to qualitatively similar dynam-
ics. These four classes are illustrated schematically in Fig. 5;
note that we assume that P has at most one local minimum
point based on numerical observations. The four classes are
distinguished by two properties: (i) whether the minimum
value of P(η) lies above or below hL , the h-value at which
P terminates, and (ii) whether or not there exists η∗ > hL

such that P ′(η∗) = 0.
Importantly, we use property (i) to classify the dynamics

associated with a parameter set as bursting or spiking. That is,
if P(η) < hL , then the trajectory leaves the active phase and
P2(η) = hSN , corresponding to reset after passage through
the silent phase, results. Alternatively, if P(η) > hL for all η,

then the solution must remain in the active phase for all time.
Thus, a necessary condition for bursting is that the minimum
value of P(η) lies below hL . Technically, this condition is
not sufficient to ensure that bursting is observed, since trajec-
tories may not be forced close to η values near the minimum
of P , yet numerics suggest that such exceptions occur only
within small transitional parameter ranges, if at all.

We noted in Sect. 3.2 that when P ends in a homoclinic
orbit, there exists η∗ > hL , as stated in property (ii). If P
ends in a SNPO, then such η∗ will exist if and only if the
period T (η) grows sufficiently large as η → h+

L . Figure 5
shows an example from each class, with the corresponding
form of dynamics indicated by a cobwebbing trajectory and
a text label.

When P terminates in a homoclinic orbit, only the regimes
shown in Fig. 5a,b are possible. When the termination is in
a SNPO, however, all four regimes could occur if T (η) were
sufficiently large near ηL ; otherwise, only those in Fig. 5c,d
are possible. From continuity with respect to parameters, it
is clear that there are two pathways from spiking with a ho-
moclinic termination, as seen with gsyn small and gton above
some threshold, to bursting: either η∗ can pass below ηL , cor-
responding to a switch from Fig. 5a to 5b, or the local min-
imum of P can be lost, after which limη→h+

L
P(η) can pass

from above h+
L to below it. We can describe each pathway

in more precise mathematical terms, such as in the following
proposition.

Proposition 1 Suppose that for some small gsyn ≥ 0 the
cell is spiking and P terminates in a homoclinic orbit at
h = hHC. The onset of bursting occurs, as gsyn increases
through g∗

syn, if the following conditions hold: For each
gsyn ∈ (g∗

syn − ξ, g∗
syn + ξ) and 0 < ξ � 1, there exists

η∗(gsyn) ∈ (hHC, h R) such that

1. dP
dη

(η∗(gsyn), gsyn) = 0,

2. P(η∗(g∗
syn)) = hHC, and

3. dP
dgsyn

(η∗(g∗
syn), g∗

syn) < 0.

Other pathways between dynamic regimes are similar, and
these pathways help determine the types of dynamics occur-
ring between pure tonic spiking and bursting, as analyzed
elsewhere (Terman 1991; Medvedev 2005). On the other
hand, a direct transition between spiking with a critical point
of P and bursting with no critical point of P (Fig. 5a,c), or
between bursting with a critical point of P and spiking with
no critical point of P (Fig. 5b,d), generically will not occur
through variation of a single parameter, as they would require
simultaneous changes in both properties (i) and (ii).

We conclude this section with some numerical results,
obtained using a combination of XPPAUT (Ermentrout 2002)
and MATLAB (The MathWorks, Inc. 2008). Figure 6 shows
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Fig. 6 P(η) for gton = 0.025
(equivalent to ḡton = 0.70 in
Butera et al. 1999a,b), for a
single self-coupled cell, with
gsyn = 0.10 (top, le f t) and
gsyn = 0.11 (top, right), near
the transition from spiking to
bursting, and with gsyn = 0.47
(bottom, le f t) and gsyn = 0.48
(bottom, right), near the
transition from bursting back to
spiking. In each panel, the
hori zontal dashed line
represents the level of η where
P terminates (η = hL in the
text) and the termination
mechanism is indicated
(P(η∗) = hHC for homoclinic,
P(η∗) = h p

SN for SNPO). The
part of P corresponding to reset
in the silent phase (P(η) = hSN)
has been omitted from the
bottom two panels
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Table 1 Values of hL computed with AUTO (Ermentrout 2002) and
the lowest value of P(η)

gsyn hL P(ηmin)

0.10 0.2680692 0.26819

0.11 0.26588065 0.26579

0.47 0.07978 0.07976

0.48 0.07368 0.073686

an example of each regime from Fig. 5, generated by
varying gsyn with fixed gton. Table 1 shows the values hL and
the minimum value of the map for the cases in Fig. 6, con-
firming that all four regimes really are represented. Results
of cobwebbing, implemented numerically for two of the
regimes, are shown in Fig. 7. In Fig. 8, the voltage time course
generated by the full system (1–4) is displayed, illustrating
a full agreement with the predictions of the map analysis.
Interestingly, the two bursting solutions (top right and bot-
tom left) exhibit very different burst duration and intraburst
frequency. For the upper right case, P ends in an orbit of long
(possibly infinite) period, manifested in Figs. 6 and 5b by the
sharp slope of P near its point of discontinuity. Hence, spikes
slow near the end of the active phase, yielding the slowed in-
traburst frequency. Similarly, spike frequencies within tonic
spiking solutions depend on the proximity of the fixed point

η

P(η)

 

 

h
L

h
SN

η
0

Tonic Spiking

η

P(η)

η
0

h
L

h
SN

Bursting

Fig. 7 Cobwebbing of the maps on Fig. 6 for gton = 0.025 (equivalent
to ḡton = 0.70 in Butera et al. 1999a,b), for a single self-coupled cell
and gsyn = 0.1 and gsyn = 0.11, implemented numerically

to hL and on whether hL corresponds to a homoclinic
point or SNPO.

In summary, we have used a previously introduced
approach (Medvedev 2005) to derive a one-dimensional map
from a four-dimensional system of ordinary differential equa-
tions, representing a single, self-coupled preBötc cell. Cer-
tain properties of this map determine the possible pathways
for transitions between bursting and spiking as parameters
are varied. Numerical simulations show that all of the identi-
fied dynamic regimes can be realized by varying gsyn. In the
next section, we derive a two-dimensional map for a pair of
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Fig. 8 Simulated voltage traces
for the full system (1–4) for the
four parameter sets used to
generate Fig. 6, showing that the
transitions from spiking to
bursting and bursting to spiking
occur as the map predicts
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coupled cells, as a tool for analytically characterizing transi-
tions between different forms of dynamics in that system.

4 Two coupled cells: two-dimensional map

Consider Eqs. 1–4 for i, j = 1, 2 and j = 3 − i , describ-
ing the dynamics of a coupled pair of cells. As discussed
in Sect. 2.2, numerical simulation of averaged slow equa-
tions can be used to study activity patterns, and transitions
between activity patterns, generated by this system. To get
an analytical handle on the system’s dynamics, we generalize
the approach from the previous section to derive and study a
two-dimensional map.

As in the one-dimensional case in Sect. 3.1, we assume
that the fast subsystem has a family of periodic orbits P , now
a two-parameter family parameterized by h1 and h2 on which
both cells exhibit large-amplitude oscillations, that is stable
on some connected open set H ⊂ [0, 1] × [0, 1] in (h1, h2)-
parameter space. Analogously to the one-dimensional case,
we can define a section Σ that is transverse to the family,
which for concreteness we can choose to intersect P along
the curve of minima of V1. If we fix (h1, h2) ∈ H and inte-
grate Eqs. 1–4 from an initial condition on Σ with ṅ1(0) < 0
and let c = sign(ṅ2(0)), then the time of first return to Σ can
be defined as

Ts(h1, h2) = min{T > 0|Φ(T ) ∈ Σ and

ṅ1 < 0 and sgn(ṅ2(T )) = c}. (14)

As in Sect. 3.1, the two-dimensional first return map
P(η1, η2) can be defined on H and expressed as

P(η1, η2) =
[

P1(η1, η2)

P2(η1, η2)

]

=
[

e−α1(Ts )(η1 − F1) + F1

e−α2(Ts )(η2 − F2) + F2

]
(15)

where Ts = Ts(η1, η2) from Eq. 14 and

αi (Ts) = ετ̄h(Vi )Ts, τ̄h(Vi ) = 1

Ts

Ts∫

0

(
1/τ ∗

h (Vi (ξ))
)

dξ,

Fi = Fi (η1, η2) =
∫ Ts

0 gi (V1(T ), V2(T ))eαi (T )dT

eαi (Ts ) − 1
,

gi (V1, V2) = εh∞(Vi )/τ
∗
h (Vi )

for i = 1, 2. Note that the coupling between the two cells does
not appear explicitly in the expressions above but is present
implicitly and will affect the behavior of each component of
the map.

At least part of the boundary of the region H on which
both cells oscillate corresponds to a fast subsystem bifurca-
tion curve along which the family P of stable periodic orbits
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terminates. Trajectories that cross this curve may continue to
exhibit large-amplitude oscillations in one component only or
may feature silent phases in which neither component under-
goes such oscillations. The former case may arise in certain
transitional regimes and is beyond the scope of this work.
In the latter case, the trajectory may approach a stable crit-
ical point in the silent phase, such that quiescence results,
or the trajectory may eventually be reinjected into the active
phase by crossing a saddle-node bifurcation curve. Fixing an
initial condition (h1, h2) in the silent phase selects a unique
saddle-node reinjection point, up to O(ε), due to the fast–
slow nature of the flow of system (1–4).

4.1 Iterated map approach

Numerically, one could iterate the two-dimensional map P
given in (15) by fixing (h1, h2) ∈ H , choosing the intersec-
tion point of the corresponding periodic orbit P(h1, h2) with
Σ as an initial condition for system (1–4), and integrating
to the first return to Σ . It is not at all clear how to treat the
two-dimensional map (15) analytically, however.

We find it useful to consider sections P1(η1, η2), for fixed
η2, and P2(η1, η2), for fixed η1, of the full two-dimensional
map P. That is, to generate the P1(η1, η2) section, we fix
η2 and we vary η1 over a range of values, say Ξ(η2) :=
[ηmin

1 , ηmax
1 ], such that (η1, η2) ∈ H for each η1 ∈ Ξ(η2).

For each choice of η1 ∈ Ξ(η2), we choose an initial con-
dition φ = (V1, n1, s1, V2, n2, s2) such that for (h1, h2) =
(η1, η2), φ is the point P(h1, h2)∩Σ . We integrate Eqs. 1–4
from this initial condition until a return to Σ occurs and take
the value of h1 at this return as P1(η1, η2). An analogous
approach yields P2(η1, η2) for fixed η1. If (η1, η2) /∈ H ,
then we assume that both cells enter the silent phase and take
Pi (η1, η2) = ηSN

i , where (ηSN
1 , ηSN

2 ) is the point on the sad-
dle-node reinjection curve determined by initial condition
(η1, η2) in the silent phase.

This use of sections allows us to visualize the iter-
ation process simultaneously in the (η1, P1(η1, η2)) and
(η2, P2(η1, η2)) planes. The key point is, since both η1 and
η2 are updated in each iteration, we must choose a new sec-
tion after each iteration to use for the subsequent iteration.
An individual section that is a function of ηi is not equiva-
lent to the one-dimensional map P(η) generated for the self-
coupled cell with η = ηi , because the timing of the synaptic
input to the cell during the oscillation in the two-cell network
may differ from the timing in the self-coupled case. Nonethe-
less, each section is qualitatively similar to the one-dimen-
sional maps studied in Sect. 3, which allows us to catalog
possible dynamic regimes and transitions between them for
the two-cell system.

The iteration process is illustrated schematically in Fig. 9.
The panels all show the P1 component of P, although the
subscript is omitted; the other component would be updated

in parallel in a similar way and is not shown. The upper
two panels show the section P1(η1, η

1
2), with η2 = η1

2 fixed,
as well as the first iteration step, which takes η1

1 to η2
1 :=

P1(η
1
1, η

1
2). The value η2

2 is given by P2(η
1
1, η

1
2). In the left

panel in the second row, a new section P1(η1, η
2
2) is shown

together with P1(η1, η
1
2) and the second iteration step, yield-

ing η3
1 := P1(η

2
1, η

2
2). Similarly, the right panel in the second

row and the panels in the third row show subsequent updates
to P1 and iterations of P1. Note that different sections are
defined on different intervals of η1, since ηmin

1 depends on
η2, as discussed above. Interestingly, η5

1 < P1(η
5
1, η

5
2) ≡

η6
1. Hence, the cobwebbing process reverses direction, and

moves toward successively larger values of η1, starting in the
right panel of the third row of Fig. 9. Finally, η7

1 lies to the
left of the domain of P1(η

6
1, η

6
2) (i.e., η7

1 < ηmin
1 (η6

2)), such
that cell 1 exits the active phase after the seventh iteration.
Assuming that cell 2 exits the active phase at the same itera-
tion, P1(η

7
1, η

7
2) is set to be the η1 value on the saddle-node

reinjection curve determined by silent phase initial condition
(η7

1, η
7
2).

We can use linear interpolation to connect the points
(η

j
1 , P1(η

j
1 , η

j
2)) in the (η1, P1(η1))-plane. We take the curve

obtained in this way as the orbit generated by what we call the
iterated map, and we denote it by Γ1 = Γ1(η1). In an analo-
gous way, we obtain the orbit generated by the iterated map
Γ2 = Γ2(η2). For the schematic example, Γ1 is illustrated in
the bottom right panel of Fig. 9. Based on the construction
of Γ1, a crossing of the identity line corresponds to a switch
from a regime in which η1 is decreasing on successive iter-
ates of P to a regime in which η1 is increasing. In terms of
the flow of the underlying system of differential equations,
the h1-nullcline must therefore be crossed. Thus, a period
where h1 hardly changes occurs, and the linear interpolation
between small steps in h1 produces an appearance of smooth-
ness. A numerical example of Γ1 and Γ2 is shown in Fig. 10,
and the apparent smoothness in crossing the identity line is
evident in the right panel.

Note that the map � := (Γ1, Γ2) does not correspond pre-
cisely to the dynamics of system (1–4), but it gives a good
approximation by continuity in initial conditions for ε small,
such that η changes by a small amount on each iteration. By
construction, � depends quantitatively on the choice of initial
condition (η1

1, η
1
2), but, after initial transients, the qualitative

form of � does not depend on this choice and in fact can be
used to classify possible dynamics of the two-cell system.
To perform this classification, it is useful to consider possi-
ble intersections of components of � with the identity line.
To do this, we start from the observation that the sections
Pi (η1, η2) are qualitatively similar to the one-dimensional
map P(η) analyzed in Sect. 3. A second important observa-
tion is that

∂ Pi/∂η j < 0 (16)
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Fig. 9 Dynamic cobwebbing to
generate an iterated map. The
lower right panel illustrates the
iterated map that results from
the cobwebbing process
depicted in the other panels.
Note that an iterated map
generated from numerical
cobwebbing would not have a
local minimum at η above the
branch point, as occurs in this
cartoon near η = η6
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Fig. 10 Numerical
computation of the iterated maps
Γ1 and Γ2, for gsyn = 0.107143
and gton = 0.0275
(corresponding to ḡsyn = 3 and
ḡton = 0.77 in Best et al. 2005)
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for i 	= j ∈ {1, 2}. This second observation is consistent
with the bifurcation results derived previously (Best et al.
2005). In brief, a decrease in the initial value of h j weakens
the input from cell j to cell i during the ensuing oscilla-
tion. This weakened input causes the average voltage of cell
i to be lower during this oscillation, yielding a less negative
change of hi (less inactivation) over the course of the oscil-
lation, regardless of the initial value of hi . Thus, Pi (ηi , η j )

becomes larger for each ηi as η j decreases.
The simplest form of � is one for which both compo-

nents do not intersect the identity line, meaning that η1

and η2 both decrease throughout the active phase, as in
the SB case described in Sect. 2.2 (Fig. 11, upper left
panel). Alternatively, the simplest possible way that Γ1 can
intersect the identity line is if there exists η∗

1 such that
limη1→(η∗

1)+ Γ1(η1) = η∗
1 and Γ1(η1) is an increasing func-

tion of η1 with Γ1(η1) < η1 for all η1 > η∗
1, as shown

in Fig. 11, upper right panel. For such a point to exist,
there must be a finite or infinite sequence (η

j
1 , η

j
2) such that

η
j+1
1 = P1(η

j
1 , η

j
2) < η

j
1 and η

j+1
2 = P2(η

j
1 , η

j
2) for all j ,

and both η
j
1 → η∗

1 and P1(η
j
1 , η

j
2) → η∗

1 hold as j increases.

By property (16), there must exist η∗
2 such that η

j
2 → η∗

2 as
j increases as well, to achieve the convergence of P1, since
η2 is constrained to a finite domain, such that ∂ P1/∂η2 has
a strictly negative upper bound. In summary, in this case, �

has a fixed point, the coordinates of which both of its com-
ponents approach from above, and this point is also a stable
fixed point of P, yielding symmetric spiking (SS) dynamics.

A third possibility is that Γ1 has a portion of its graph
below the identity line and a portion above the identity line.
We shall refer to the portion below the identity line as the
lower branch of the iterated map and denote it by LB and the
portion of the map above the identity line as the upper branch
and denote it by UB. In this case, interpolation yields a point
η∗

1 such that Γ1(η
∗
1) = η∗

1, connecting its LB and UB, which
we call a branch point of Γ1. When Γ1 has a branch point, Γ2

may or may not have one, and vice versa. Moreover, for either
i , the UB of Γi , when it exists, may meet the identity line in

a fixed point η∗
i , such that Pi (η

j
1 , η

j
2) → η∗

i (Fig. 11, bottom
row left), or in a second branch point, or neither (Fig. 11, bot-
tom row right). We assume here that multiple branch points
do not occur. If UB terminates in a fixed point for some i , then
Γ j also has a fixed point for j 	= i , by similar convergence
arguments to those used above, although Γ j need not have a
branch point. Again, fixed points of � correspond to stable
fixed points of P, and in fact the relation is reciprocal, since
convergence of P yields convergence of � by construction.

In summary, intersection points of Γi (ηi ) with the identity
line may be

(i) fixed points that Γi approaches below (above) the iden-
tity line as ηi decreases (increases), in which case they
are shared by Γ j , j 	= i , and correspond to stable fixed
points of P, or

(ii) branch points, which do not correspond to stable fixed
points of P and do not imply anything about Γ j for
j 	= i .

Interestingly, if Γi has a branch point, then for iterates
after the branch point is crossed, property (16) implies that
Pj (η

j
1 , η

j
2) decreases as j increases, since η

j
i increases.

Nonetheless, Γ j may still develop a branch point, if Pj has
a region of negative slope.

4.2 Dynamic regimes and transitions between them

Each qualitatively distinct form of the iterated map � corre-
sponds to a specific form of dynamics of the slow averaged
Eq. 7. A key observation is that ηi can change from decreas-
ing to increasing, and a branch point of a component Γi can
exist, if and only if the slow averaged variable hi crosses its
nullcline. That is, both of these effects occur if and only if the
direction of net change in hi over a single oscillation cycle
switches from negative to positive. Moreover, as we have dis-
cussed, if Γi has a fixed point, then Γ j also has a fixed point,
corresponding to a stable fixed point of P, which implies the
existence of a stable equilibrium point of the slow averaged
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Fig. 11 Four possible
configurations for a component
Γi of the iterated map �
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Eq. 7 in the oscillatory region O where the fast subsystem
has stable periodic orbits.

Based on these observations, we can enumerate the pos-
sible dynamic regimes that can be achieved by the possible
forms of � that we have identified. It turns out that all pos-
sible dynamic regimes fit within the nomenclature from past
work (Best et al. 2005), as reviewed in Sect. 2.2 of this paper.

1. If Γ1, Γ2 take the form shown in Fig. 11, upper left panel,
then the slow averaged dynamics yield no nullcline cross-
ings or equilibrium points and symmetric bursting (SB)
results.

2. If one or both of the Γi take the form in Fig. 11, lower
right panel, then at least one of the slow averaged vari-
ables crosses its nullcline, but the absence of fixed points
implies that bursting still occurs. This case is asymmetric
bursting (AB).

3. If one of the Γi takes the form in Fig. 11, lower left panel,
then the other component must have a fixed point, as in
the upper right and lower left panels of Fig. 11. In either
case, the resulting form of dynamics is asymmetric spik-
ing (AS), since at least one slow averaged variable crosses
its nullcline and the trajectory of (7) converges to a stable
equilibrium point.

4. Finally, if both of the Γi take the form in Fig. 11, upper
right panel, then the trajectory of system (7) converges
to a stable equilibrium point without a nullcline crossing,
yielding symmetric spiking (SS).

We have identified two key types of points, branch points
and fixed points, in the iterated map �. Based on these ideas,
we can reason out what are the possible codimension-1 tran-
sitions (i.e., transitions that can be achieved by varying a sin-
gle parameter) between dynamic regimes within the two-cell
network. In doing so, it also can be helpful to think about the
components Pi of the original map P. The following list spec-
ifies the most obvious such transitions, and after we describe
these, we will address two additional subtle cases.

1. Starting from the SB regime, the codimension-1 events
that can occur are the development of a fixed point and
the development of a branch point. The former would
establish SS dynamics, corresponding to the existence of
a fixed point without a branch point, while the latter would
establish AB dynamics, corresponding to the existence of
a branch point without a fixed point, at least on some small
parameter interval.
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To understand these events in terms of the Pi , we need to
distinguish how the sections of P behave near the termi-
nation of the family P of fast subsystem periodic orbits.
Assume first that the periods of the orbits in P become
large near termination, such that

P1(η1, η2) > η1, P2(η1, η2) > η2 (17)

hold for each pair of sections P1, P2 of P for all (η1, η2)

sufficiently close to the termination curve.
Now, in the SB regime, there exists an iteration index i
such that ηi+1

1 = P1(η
i
1, η

i
2) lies outside the domain of

P1(η1, η
i+1
2 ) (i.e., ηi+1

1 < ηmin
1 (ηi+1

2 )), and hence cell 1
enters the silent phase; further, we have assumed that cell
2 enters the silent phase on the same iteration as cell 1.
By continuous variation of a single parameter, we could
in theory vary P such that ηi+1

1 > ηmin
1 (ηi+1

2 ). We have
P1(η1, η

i+1
2 ) > η1 for η1 near ηmin

1 (ηi+1
2 ), by (17). In

particular, P1(η
i+1
1 , ηi+1

2 ) > ηi+1
1 , a branch point of Γ1

is generated, and AB dynamics results.
Alternatively, suppose that instead of (17), we have
P1(η1, η2) < η1 and P2(η1, η2) < η2 for each pair of
sections of P. Since no branch points can form, the only
alternative regime to SB is SS, and this can be achieved
by variation of a parameter to generate a stable fixed point
of P.

2. Starting from the AB regime, a one-parameter transition
to the SB regime is theoretically possible, by reversing
the arguments given above. Variation of a single parame-
ter could instead give rise to a fixed point, which would
yield the AS regime, since the branch point present in AB
would still be there.

3. From the AS regime, loss of the fixed point due to mod-
ulation of a single parameter would give a switch to the
AB regime, corresponding to the reverse of the previous
case. The SS regime can also be achieved by variation of a
single parameter, if this variation causes the fixed point to
collapse onto the branch point. In fact, the codimension-1
nature of the AS to SS transition may be easier to appre-
ciate in terms of the dynamics of the slow averaged dif-
ferential equations (7), where this transition corresponds
to a pitchfork bifurcation within the oscillatory region O
(see Best et al. 2005 and Fig. 3).

4. From the SS regime, as we have already seen, transitions
to AS and to SB are both possible codimension-1 events.

In fact, the above list includes exactly those transitions
that were clearly distinguished in previously published sim-
ulation results on the two-cell ode model (Best et al. 2005).
However, there was some ambiguity in that work relating to
the two most subtle cases, namely direct transitions between
SB and AS and between SS and AB.

The transition between SB and AS can in fact be achieved
as a codimension-1 event, in theory. Consideration of the
two-dimensional map is advantageous for understanding this
transition, relative to the dynamics of the ode. In the AS
regime, both components of � have fixed points, while at
least one has a branch point. Without loss of generality, sup-
pose that component Γ1 has a branch point. Variation of a
single parameter could cause a change in the forms of the
relevant Pi yielding a switch from ηi+1

1 > ηmin
1 (ηi+1

2 ) to
ηi+1

1 < ηmin
1 (ηi+1

2 ) for some i . Thus, the active phase would
terminate at iteration i + 1, and the fixed point, which would
still be present in the dynamics of (7), would not show up
in the new Γ , by construction. The (i + 1)st iteration could
come after the crossing of the branch point, in which case
AB would result, or, if the (i + 1)st iteration had been the
first one for which η1 became increasing, then the branch
point could disappear, yielding SB. In terms of the dynamics
of (7), this form of transition would correspond to a move-
ment of the nullclines such that trajectories that had crossed
a nullcline and been attracted to a stable fixed point off of
{h1 = h2} in the AS regime would instead leave from O
without crossing a nullcline and being pushed away from
{h1 = h2} after the transition to the SB regime. The stable
fixed point off of {h1 = h2} would remain, but trajectories
would enter the active phase outside of its basin of attraction
under the flow of (7). In fact, this transition would yield a
region in parameter space for which some trajectories in the
active phase oscillatory region O would leave O through its
boundary and others would still be attracted to the remaining
stable fixed points off of {h1 = h2}. Such a situation is sug-
gestive of bistability, but in fact reset from the silent phase
could push trajectories toward only one of these outcomes,
such that bistability would not be guaranteed.

The SS to AB transition, corresponding to replacement of
a stable fixed point of � with a branch point of at least one
of the Γi , is also theoretically possible through continuous
variation of a single parameter. To understand why, it is in
this case most convenient to think in terms of the dynamics
of the differential equation system (7). Recall that from the
SB regime, a transition to the SS regime will occur if varia-
tion of a parameter causes a stable fixed point of (7) to enter
the fast subsystem oscillatory region O through the boundary
point of O on the line {h1 = h2}. If we turn this transition
around, it suggests that an SS to SB transition will occur
if parameter variation causes such a fixed point to leave O
through its boundary, bd(O). The state resulting from such
a modulation, however, depends on the slopes of the null-
clines of (7) relative to those of the components of bd(O) at
{h1 = h2}. If the nullclines do not intersect O after the fixed
point leaves, then SB can result. If, however, a part of one
nullcline lies in O above {h1 = h2}, and by symmetry a part
of the other nullclines lies in P below {h1 = h2} even after
the fixed point leaves, then AB results. In terms of maps, the
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corresponding idea is that the disappearance of a fixed point
of � might or might not be accompanied by the appearance
of a branch point of one of its components, depending on
details of the slices of the two-dimensional map P made rel-
evant by variation of a parameter. In simulations, we have
not previously found clear evidence of a transition from SS
to AB, but much room for exploration remains.

5 Discussion

We have taken the model introduced by Butera et al.
(1999a,b) for a single, self-coupled neuron in the pre-Bötc,
which yields quiescence, bursting, and tonic spiking as
particular parameters are varied, and applied a previously
developed derivation method (Medvedev (2005)) to obtain
a one-dimensional map, P , representing its dynamics. The
one-dimensional map tracks the evolution of the slow inac-
tivation variable h for the persistent sodium current from
one oscillation to the next while the cell is spiking, with an
appropriate reinjection into the active phase if the cell falls
silent. Certain properties of the map can be established ana-
lytically, and others numerically, and we have used these to
delineate the possible forms of dynamics the model can pro-
duce as well as the possible codimension-one (i.e., attainable
through variation of a single parameter) transitions between
dynamic regimes (Figs. 5, 6). In particular, it is known that
depending on parameter values, the oscillations exhibited by
the model may terminate, as h is decreased, in a homoclinic
bifurcation or a saddle-node bifurcation of periodic orbits for
the fast subsystem consisting of the equations for the other
variables in the model. Our analysis shows how the nature
of this termination mechanism affects the form of the map
and affects its dynamics. We have also shown numerically
that all of these forms of dynamics can be obtained by vary-
ing the conductance of the synaptic current representing the
neuron’s self-excitation, gsyn (Fig. 8).

In the case of a coupled two-neuron network, as ana-
lyzed previously by numerical simulations (Butera et al.
1999b) and through fast-slow decomposition, averaging,
and numerical bifurcation analysis (Best et al. 2005), a
conceptually similar derivation yields a two-dimensional
map, P(η1, η2) = (P1(η1, η2), P2(η1, η2)), on the persistent
sodium inactivation variables for the two neurons. Establish-
ing the properties of two-dimensional maps and analyzing
their dynamics is generally a difficult undertaking. We have
noted that for each fixed η j , the component Pi , i 	= j , treated
as a function of ηi , is analogous to the one-dimensional map
P . We have exploited this feature to generated an iterated map
that can be used to approximate orbits of P. This approach
allows us to constrain the possible forms of dynamics that
the two-neuron network can produce and the codimension-
1 transitions between them, as we did in the one-cell case.

Interestingly, the possible dynamics match those seen pre-
viously (Best et al. 2005), providing an analytical confirma-
tion that the earlier bifurcation analysis based on fast–slow
decomposition and averaging covered the relevant dynamic
regimes. Our analysis of transitions establishes exactly
which switches between dynamic regimes are possible and
hence is more comprehensive than numerical explorations
alone.

We do make certain simplifying assumptions in our anal-
ysis. In particular, we assume that the two-cell network
does not enter a regime in which one cell exhibits multiple
oscillations while the other is silent. We also do not explore
chaotic dynamics, which will arise during at least some
transitions between regular dynamic regimes (Terman 1991,
1992; Medvedev 2006; Medvedev and Yoo 2008; Innocenti
and Genesio 2009). Further, we neglect the possible influ-
ence of noise on system dynamics. Of course, noise is present
in all neuronal systems. Because we focus on codimension-
1 transitions between regimes and structurally stable forms
of dynamics, our qualitative results will persist in the pres-
ence of small noise. Noise can affect times of transitions
between phases in bursting dynamics (e.g., Su et al. 2004,
Pedersen and Sørensen 2006/07) and, at stronger levels, can
induce even more significant dynamic effects (Hitczenko and
Medvedev 2009).

In past work, an increase in simulation speed, relative to
differential equation models, has been cited as a motivation
for the development of map-based representations of neuro-
nal network dynamics. The derivation that we follow is theo-
retically attractive relative to phenomenogical approaches, in
that it is an analytical reduction that preserves model dynam-
ics, but it does not yield this efficiency advantage at the
network level, since it requires integration of differential
equations, unlike the phenomenological approach (Rulkov
2004). Possibly other reduction methods (Channell Jr. et al.
2007) or a combination of analytical and phenomenological
steps can be used to achieve both ends in future work. Another
challenge is the difficulty of analyzing maps of dimension
greater than one. Overcoming this difficulty, perhaps through
an iterative approach as we have employed here for our two-
cell network and corresponding two-dimensional map, will
be necessary to broaden the applicability of maps for the
mathematical analysis of neuronal networks.

Acknowledgements This work was partly supported by the U.S.
National Science Foundation Award DMS 0716936 (JR).

6 Appendix A

The model for pre-Bötc cells introduced by Butera et al.
(1999a,b), for a network of two reciprocally cells indexed
by i = 1, 2, takes the form
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Table 2 Parameter values for the preBötc neuron model

Parameter Value

ḡNaP 2.8 nS

ENa 50.0 mV

θm,P −40 mV

σm,P −6 mV

τ̄h 10,000 ms

θh −48 mV

σh 6 mV

ḡNa 28 nS

θm −34 mV

σm −5 mV

ḡK 11.2 nS

EK −85.0 mV

τ̄n 10 ms

θn −29 mV

σn −4 mV

ḡL 2.8 nS

EL −65.0 mV

Cm 21 pF

Esyn 0 mV

αs 0.2 ms−1

τs 5 ms

θs −10.0 mV

σs −5 mV

v′
i = (−INaP(vi , hi ) − INa(vi , ni ) − IK(vi , ni )

−IL(vi ) − Iton(vi ) − Isyn(vi ))/Cm

n′
i = (n∞(vi ) − ni )/τn(vi ) (18)

h′
i = (h∞(vi ) − hi )/τh(vi )

s′
i = αs(1 − si )s∞(vi ) − si/τ̄s .

In system (18), the intrinsic ionic currents are INaP =
ḡNaPmP,∞(vi )hi (vi − ENa), INa = ḡNam3∞(vi )(1−ni )(vi −
ENa), IK = ḡKn4

i (vi − EK), and IL = ḡL(vi − EL), while
the input currents are Iton = ḡton(vi − Esyn), corresponding
to a constant conductance drive, and Isyn = ḡsyns j (vi −Esyn)

for j = 3 − i , denoting synaptic input from the other cell.
For x ∈ {m P , m, h, n, s}, the function x∞(v) takes the form
x∞(v) = {1 + exp[(v − θx )/σx ]}−1, and for x ∈ {h, n},
the function τx (v) takes the form τx (v) = τ̄x/ cos h[(v −
θx )/2σx ]. Most parameter values for the model appear in
the table below. The parameters ḡton and ḡsyn were varied
in past work (Butera et al. 1999b) within the ranges 0 − 1.2
nS and 0 − 12 nS, respectively, to study their impact on sys-
tem dynamics. Identical values were also used by Best et al.
(2005) except that a parameter ε was specifically factored out
of τ̄h , as was done in Eq. 2 in this paper, and similar values
were used in other works (Rubin 2006; Dunmyre and Rubin
2009.

7 Appendix B

Here we consider the properties of

F(η) =
∫ ts (η)

0 h∞(V )eε(t−ts (η))dt∫ ts (η)

0 eε(t−ts (η))dt
,

as stated in Sect. 3.2. The first property follows immediately
from the definition of F(η), since h∞(V ) ∈ (0, 1). For prop-
erties 3 and 4, assume that P ends in a homoclinic orbit at
h = hHC.

Consider the fast subsystem dynamics for h = hHC,
which we assume exists. Choose local transversals Σs,Σu

to the stable and unstable manifolds of the homoclinic point
(VHC, nHC, sHC) of H, respectively, in a neighborhood of that
point, and let t0

s denote the time of passage along H from Σu

to Σs . Write the numerator of Eq. 11 as

ts (η)∫

0

h∞(V )eε(t−ts (η))dt =
t0
s∫

0

h∞(V )eε(t−ts (η))dt

+
ts (η)∫

t0
s

h∞(V )eε(t−ts (η))dt. (19)

The two terms on the right hand side correspond, respectively,
to the dynamics away from and close to the homoclinic point.
The first integral in (19) can be written as

t0
s∫

0

h∞(V )eε(t−ts (η))dt = eε(t0
s −ts (η))

t0
s∫

0

h∞(V )eε(t−t0
s )dt

(20)

In the second integral, since V changes slowly near the
homoclinic point, h∞(V ) � h∞(VHC). Thus, Eq. 19
becomes

ts (η)∫

0

h∞(V )eε(t−ts (η))dt ≈ eε(t0
s −ts (η))

t0
s∫

0

h∞(V )eε(t−t0
s )dt

+h∞(VHC )

ts (η)∫

t0
s

eε(t−ts (η))dt.

Based on these expressions, the equation for F(η) can be
written, up to a small error that shrinks with ε, as

F(η) = e−ε(ts (η)−t0
s ) A(η) + h∞(VHC)

(1 − e−εts (η))
(21)

where A(η) = εt0
s F0(η) − h∞(VHC) and

F0(η) = ε

∫ t0
s

0 h∞(V )eε(t−t0
s )dt

(1 − e−εt0
s )

. (22)
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From these expressions it is clear that, since ts(η) → ∞ as
η → h+

HC , property 3 holds.
Now, differentiating (21) with respect to η yields

dF

dη
= ε

e−ε(ts (η)−t0
s )[G(η) − H(η)]

(1 − e−εts (η))2

where

G(η) = t0
s

dF0

dη

(
1 − eεts (η)

)

and

H(η) = dts(η)

dη

(
A(η) + h∞(VHC)e−εt0

s

)
.

In (21), ts(η) − t0
s can be written as

ts(η) − t0
s =

Ts (η)∫

0

(
1/τ ∗

h (V )
)

dξ −
T 0

s∫

0

(
1/τ ∗

h (V )
)

dξ

=
Ts (η)∫

T 0
s

(
1/τ ∗

h (V )
)

dξ (23)

where Ts(η) and T 0
s are defined similarly to ts(η) and t0

s ,
respectively. Again using τh(V ) ≈ τh(VHC) near the homo-
clinic point yields

ts(η) − t0
s ≈ (

1/τ ∗
h (VHC)

)
(Ts(η) − T 0

s )

≈ −(log(d(η − ηHC)))μ/τ∗
h (VHC)

(24)

where μ−1 is the positive eigenvalue of the matrix of lin-
earization of the fast subsystem near the homoclinic point
(Medvedev 2005) and d = | f ′(hHC)| 	= 0, where f (h)

is the split function that measures the distance between the
branches of the stable and unstable manifolds correspond-
ing to the fast subsystem at h near hHC (Medvedev 2005;
Kuznetsov 1995.

Let σ = (εμ) /τ ∗
h (VHC), such that

e−ε(ts (η)−t0
s ) ≈ (d(η − ηHC))σ . (25)

Note that when ε → 0, (d(η − ηHC ))σ → 1. Near the
homoclinic, we also have

ε

ts (η)∫

t0
s

h∞(V )eε(t−ts (η))dt

≈ h∞(VHC)(1 − (d(η − ηHC))σ ). (26)

Thus, we can write (23) as

dF

dη
= ε[d(η − ηHC)]σ [G(η) − K (η)]

(1 − e−εts (η))2
(27)

where

K (η) = dts
dη

(
εt0

s F0 + h∞(VHC)(e−εt0
s − 1)

)
.

Consider Eq. 27. Equation 25 implies that dσ (η−ηHC)σ >

0. Clearly, t0
s > 0 and 1 − e−εts (η) > 0, while we know

0 < F(η) < 1. Differentiating ts(η) with respect to η, up to
first order terms, yields

dts
dη

= −μ/τ ∗
h (VHC)

η − ηHC
= − σ

ε(η − ηHC)
< 0 (28)

for η > hHC. Note that dts
dη

→ −∞ as η → h+
HC. More-

over, Eq. 22 reveals that dF0/dη is finite, since t0
s is a finite

constant, h∞(V ) is a smooth function, and the family P of
periodic orbits varies smoothly with η. Hence, the dts(η)/dη

term dominates the numerator of F(η) in Eq. 27 as η → h+
HC.

To establish property 4, we next show that the term mul-

tiplying dts (η)

dη
in Eq. 27 is negative. Recall that

F0(η) = ε
∫ t0

s
0 h∞(V )e−ε(t−t0

s )dt

1 − e−εt0
s

< h∞(VHC )
ε
∫ t0

s
0 e−ε(t−t0

s )dt

1 − e−εt0
s

= h∞(VHC)

if V (t) > VHC, since h∞(V ) is a non-increasing function of
V . Thus,

εt0
s F0(η) + h∞(VHC)(e−εt0

s − 1)

= εt0
s F0(η) − εt0

s h∞(VHC) + O(ε2) < 0

for ε sufficiently small. Since dts (η)

dη
< 0 as well, the domi-

nant term on the right hand side of (27) is negative, as desired.
Finally,

(η − ηHC)σ
dts(η)

dη
= −σ(η − ηHC)σ−1

ε
→ −∞ (29)

as η → η+
HC , which gives property 4. ��
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