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Abstract. This paper builds on the past study of single-spike waves in one-dimensional inte-
grate-and-fire networks to provide a framework for the study of waves with arbitrary (finite
or countably infinite) collections of spike times. Based on this framework, we prove an exis-
tence theorem for single-spike traveling waves, and we combine analysis and numerics to
study two-spike traveling waves, periodic traveling waves, and general infinite spike trains.
For a fixed wave speed, finite-spike waves, periodic waves, and other infinite-spike waves
may all occur, and we discuss the relationships among them. We also relate the waves con-
sidered analytically to waves generated in numerical simulations by the transient application
of localized excitation.

1. Introduction

Traveling waves in networks of neurons with purely excitatory synaptic coupling
have been the object of many recent theoretical studies [2,3,7,8,10,11,14–18].
These studies are motivated by experiments in which a slice of cortical tissue, with
all inhibition blocked, is subjected to a local shock stimulus. This stimulus results
in a wave of activity propagating across the network [4,5,9,13,22]. Theoretical
models of this phenomenon range from continuum firing rate models [1,18] to
simplified spiking models [2,7,17] to detailed conductance-based models [9,22].

Firing rate models do not include individual spikes; as a result, the temporal
details of neuronal activity cannot be considered. In spiking models (and in experi-
ments), it becomes apparent that after the first wave front passes through a network,
a single neuron can fire many times [9,19]. However, theoretical analysis of spiking
models has, with few exceptions, required that each neuron fire exactly once during
wave propagation. This is either a priori imposed on the model or implemented
by strong synaptic depression or after-hyperpolarization. In the single-spike case,
the existence of traveling waves is reduced to solving a certain nonautonomous
boundary value problem [7,17]. This computation can be done explicitly when
the individual neurons are modeled by the leaky integrate-and-fire (LIF) model.
Ermentrout [7], Bressloff [2] and Golomb and Ermentrout [10,11] developed
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methods for studying the existence of traveling waves of activity in networks of
LIF cells, incorporating a variety of additional features such as synaptic delays,
again under the assumption that each cell only fires once. Under this assumption it
is also possible to obtain an expression for the wave velocity c [16].

In this paper, we aim to address several questions related to networks of spiking
neurons in which each cell fires multiple spikes during wave propagation. As with
most previous analysis, we will restrict our attention to an excitatorily coupled net-
work of LIF neurons. Recall that the LIF model for an individual neuron has the
form

τ1
dV

dt
= −V + I (t) ,

where I (t) represents inputs and τ1 is the membrane time constant. If V (t−) = VT ,
the voltage threshold, then V (t+) = VR , the reset voltage, and the neuron emits a
“spike.” We can formally rewrite this equation to take into account the resetting as

τ1
dV

dt
= −V + I (t) + ṼR

∑

n

δ(t − tn) (1)

where ṼR = τ1(VR −VT ) and tn denotes the sequence of firing times of the neuron;
that is, V (t−n ) = VT for each n ≥ 1. Henceforth, we omit the − (minus) superscript
when taking the limit of V as t approaches a firing time from the left.

We consider a continuous network of such neurons, coupled in a translationally
invariant manner on an infinite one-dimensional domain and parameterized by the
spatial variable, x. The model is identical to those studied in many of the papers
mentioned above. Coupling between a neuron at position x and one at position y

is mediated by a time-dependent current with maximal strength depending on the
distance, |x −y|. Each time a neuron fires, it activates a potential defined by a fixed
function, α(t), which vanishes for t < 0, is typically positive for t > 0, and decays
to zero as t > 0 increases. With these considerations, the network of interest is:

τ1
∂ V

∂ t
= −V (x, t) + g

∞∑

n=−∞

∫ ∞

−∞
dy J (x − y) α(t − t∗n (y))

+
∞∑

n=−∞
δ(t − t∗n (x)) ṼR (2)

for (x, t) ∈ R × R, where ṼR is given in (1); we assume that VR < VT . In this
continuous network, note that the firing times t∗n (x) have a spatial dependence.
Integration of (2) yields V (x, t∗n (x)) = VT and V (x, t∗+

n (x)) = VR , which verifies
that the constant ṼR is defined appropriately.

In (2), the parameter g denotes maximal synaptic coupling strength, while
J (x) : R → R

+ ∪ {0} is the synaptic coupling function, with integral 1. Any
integrable, even, non-negative function could be used here. In this paper, we take

α(t) = e−t/τ2H(t) =
{

0, t < 0
e−t/τ2 , t ≥ 0

(3)
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where H(t) is the Heaviside step function, τ1 < τ2 and

J (x) = 1

2σ
e−|x|/σ . (4)

Our results will extend to any qualitatively similar pair of functions; however,
these specific choices allow us to make explicit calculations which would become
unwieldy in more general cases. Other examples are discussed in [14].

Numerical simulations indicate that the type of neural network given in (2) can
support a great variety of constant speed traveling wave solutions in which each cell
fires multiple spikes. Figure 1 shows an example of traveling waves emanating from
a transient localized stimulus. Bressloff [3] derives a dispersion relation between
wave speed c and wave number k in the special case of periodic traveling waves,
with t∗n (x) = (kx + n)T for each integer n and c = (kT )−1. He also character-
izes how this relation depends on rise-time of synaptic coupling, synaptic delays,
and dendritic cable properties. In this paper, we provide a framework for the study
of traveling waves with arbitrary (finite or countably infinite) collections of spike
times. We first, in Section 2, provide a reformulation of (2) which is particularly
suitable for the study of traveling waves. In Section 3, we use this to provide a nec-
essary and sufficient condition for the existence of single-spike traveling waves,
thereby completing the partial study of such waves begun in [2,7], and to analyze
two-spike traveling waves.
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Fig. 1. Numerically simulated traveling waves. Time increases along the vertical axis, while
space increases along the horizontal axis. The curves shown indicate the times and positions
at which spikes occur. At the start of the simulation, all cells are at rest, and cells in the
leftmost region shown are given a transient excitatory input. No further inputs are given; all
subsequent waves emerge spontaneously. The simulation is performed on a spatial region
that is symmetric about x = 0; symmetric waves propagate out to the left (negative x) in the
simulation but are not shown here.
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Ermentrout [7] showed that for fixed parameters, wave speed depends only
weakly on the number of spikes fired by each cell in an integrate-and-fire network.
Oşan and Ermentrout [15] showed similar results for a network of theta neurons
(another simple one-variable model for neurons). In numerical computations, wave
propagation can be initiated by application of a transient excitatory stimulus at
a fixed time and location. In these simulations, as waves propagate through the
network, it appears that the interspike intervals for cells with large x become inde-
pendent of x. We analytically calculate the interspike interval for a two-spike wave
here, and our results yield an excellent agreement with the interspike interval at
large x for multiple-spike waves simulated numerically.

Moving beyond finite-spike solutions, in Section 4 we consider traveling wave
solutions for which each cell spikes at an infinite sequence {Tn(x)}, n ≥ 0, of spike
times. Our traveling wave formulation can be used naturally for the iterative com-
putation of the interspike intervals Tn+1−Tn that must arise for such a solution to be
consistent with equations (2), (3), (4). Next, we analyze periodic solutions, deriving
a three-branched dispersion relation between wave speed c and period T . Finally,
we give some indications that in certain parameter regimes, the interspike intervals
of infinite-spike traveling waves with speed c monotonically decrease towards the
period T for the periodic solution with the same speed, as n → ∞.

2. Traveling wave description

We begin by considering constant speed traveling wave solutions of (2) for which
each cell has a finite first spike time. That is, we exclude periodic solutions, which we
discuss in Section 4.2. For non-periodic solutions, the n-th spike time, n ≥ 0, of the
neuron at the position x can be written as t∗n (x) = x

c
+Tn. Here we assume T0 = 0,

and {Tn}n≥0 is a sequence of nonnegative numbers T0 = 0 < T1 ≤ . . . ≤ TN ≤ . . . ,
with strict inequality as long as the Tn are finite. Traveling wave solutions of (2)
take the form V (x, t) = V (ξ) for traveling wave coordinate ξ = tc−x ∈ R, where
c denotes the traveling wave velocity. In terms of this coordinate, and under the
assumption that each cell’s first spike occurs at a finite time, equation (2) becomes

τ1c V ′(ξ) = −V (ξ) + g

∞∑

n=0

∫ ∞

−∞
duJ (u − ξ)α(u/c − Tn)

+
∞∑

n=0

δ(ξ/c − Tn)ṼR. (5)

A traveling wave solution of (5) is obtained by direct integration. For such a
solution to be valid, it must satisfy a self-consistency condition, which we state here.
This consistency condition relates the asymptotic behavior of V as ξ → −∞ with
the fact that V reaches threshold for the first time at ξ = 0. In the limit as ξ → −∞,
the synaptic input to each cell becomes 0 (that is, all wave fronts become infinitely
far away from each cell). Since solutions of the equation τ1cV

′(ξ) = −V (ξ) decay
to 0, the consistency condition states that the potential of each neuron must satisfy
limξ→−∞ V (ξ) = 0. Upon integration of (5) from ξ = −∞ to ξ = 0, using
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V (0) = VT , this condition formally yields

VT =
g
(∑∞

n=0 e− c Tn
σ

)

2
(

τ1c
σ

+ 1
) (

1 + σ
τ2c

) . (6)

The derivation of the consistency condition (6) will become more clear in subsection
2.2.

For expression (6) to be meaningful, a second condition must hold, namely
that the series

∑∞
n=0 e−c Tn/σ is convergent; we will only consider traveling wave

solutions for which this is true. Clearly this holds if each neuron fires only a finite
number M of times. In this case, we obtain T0 = 0 < T1 < . . . < TM−1 < ∞ and
set Tn = ∞ for all n ≥ M; thus, the series becomes the finite sum

∑∞
n=0 e−c Tn/σ =∑M−1

n=0 e−c Tn/σ .
Using the consistency condition (6), integration of (5) up to arbitrary ξ yields

V (ξ) = VT e−ξ/τ1c + Isyn(ξ) + R(ξ). (7)

The function R(ξ) is the “decaying reset,” encoding the refractoriness of a cell after
a spike. This is given by R(ξ) = ∑∞

n=0 η(ξ/c − Tn) where

η(t) =
{

0 , t ≤ 0

(VR − VT ) e−t/τ1 , t > 0
(8)

and Isyn(ξ) is the “synaptic integral”

Isyn(ξ) = g

τ1c
e−ξ/τ1c

∫ ξ

0
ds

[ ∞∑

n=0

∫ ∞

0
du J (u + c Tn − s)α(u/c)

]
es/τ1c

≡ (e−ξ/τ1c/τ1c)

∫ ξ

0
ds

( ∞∑

n=0

In(s)

)
es/τ1c . (9)

On each interval between two consecutive spikes the decaying reset has the
form

R(ξ) =





0 , ξ ≤ 0

(VR − VT )
(∑N−1

n=0 eTn/τ1

)
e−ξ/τ1c , c TN−1 < ξ ≤ c TN (N ≥ 1).

The balance between the input from the synaptic integral and the reset after spiking
determines what types of constant speed wave fronts can propagate in the neural
network.
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2.1. Computation of synaptic currents

We now derive the synaptic current due to the n-th front of the traveling wave,
In(s) = g

∫∞
0 du J (u + c Tn − s)α(u/c), at some point s on the traveling wave

coordinate axis.
Suppose we freeze the time t and record what happens at each position in space

along the neural network. Without loss of generality, we fix our point of refer-
ence at x = 0, where by assumption the first spike occurs at t = 0 (such that
ξ = ct − x = 0).

For any fixed negative time t , none of the wave fronts has yet reached the point
x = 0, and all synaptic current results from waves that will arrive in the future.
The n-th front (n ≥ 0) will reach x = 0 at time Tn. Hence, one can derive the
position yn of the n-th front at time t < Tn from 0 − yn = c(Tn − t), which gives
yn = c(t − Tn) < 0. Correspondingly, the current (measured at x = 0) that is
induced by this front (“future wave”) at time t is

In;f (t) = g

∫ c(t−Tn)

−∞
dy J (y) α(t − y/c − Tn) .

Written in the wave coordinates (s = ct −x = ct , u = ct −y−cTn = s−y−cTn),
and using the fact that J is an even function and that u + cTn − s = −y > 0, this
becomes

In(s) ≡ In;f (s) = g

∫ ∞

0
du J (u + cTn − s) α(u/c)

= g

2σ

∫ ∞

0
du e−(u+cTn−s)/σ e−u/τ2c = g e−cTn/σ

2(1 + σ
τ2c

)
es/σ .

In summary, for t (and thus s) negative, all the synaptic currents correspond to
“future waves” (In; f ) and the total current at s is

Itotal(s) =
∞∑

n=0

In(s) = g
(∑∞

n=0 e−cTn/σ
)

2(1 + σ
τ2c

)
es/σ . (10)

At any fixed nonnegative time t (such that s = ct ≥ 0), say between two
consecutive spike-times TN−1 < t ≤ TN , there are “previous wave” fronts that
have already passed through x = 0 and many others that have yet to arrive. The
position reached by each front at the moment t can be found by the same formula,
yn = c(t − Tn), as above; the only difference is that yn > 0 for all previous waves
(n = 0, . . . , N − 1) and yn ≤ 0 for all “future waves” (n ≥ N ). This classification
of waves is illustrated in Figure 2. The synaptic currents are characterized below:

Synaptic current due to a future wave (n ≥ N)

In(s) = In; f (s) = g

∫ c(t−Tn)

−∞
dy J (y) α(t − y/c − Tn)

= g

∫ ∞

0
du J (u + cTn − s) α(u/c) = g e−cTn/σ

2(1 + σ
τ2c

)
es/σ .
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Fig. 2. Illustration of incoming waves relative to the cell at x = 0 at the time labelled with
the solid black circle on the t-axis. At that time, the two waves labelled with ‘f’ are future
waves for this cell, as they have not yet reached x = 0; one of them will arrive at time T2

and the other at time T3 (not shown). The two waves to the right of the diagonal dashed line
are previous waves, as they have already passed through x = 0. We subdivide the synaptic
contribution from these waves into p− and p+, below and above the horizontal dashed line,
respectively; these correspond to synaptic inputs from spikes that occurred for some t < 0
and from spikes that occurred for some time t > 0, respectively.

Synaptic current due to a previous wave (n = 0, . . ., N − 1)

In(s) = In; p(s) = g

∫ c(t−Tn)

−∞
dy J (y) α(t − y/c − Tn) = In; p−(s) + In; p+(s)

where

In; p−(s) = g

∫ 0

−∞
dy J (y) α(t − y/c − Tn)

= g

∫ ∞

s−cTn

du J (u + cTn − s) α(u/c)

= g

2σ

∫ ∞

s−cTn

du e−(u+cTn−s)/σ e−u/τ2c = g eTn/τ2

2(1 + σ
τ2c

)
e−s/τ2c .

and

In; p+(s) = g

∫ c(t−Tn)

0
dy J (y) α(t − y/c − Tn)

= g

∫ s−cTn

0
du J (u + cTn − s) α(u/c)
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= g

2σ

∫ s−cTn

0
du e(u+cTn−s)/σ e−u/τ2c

= g eTn/τ2

2(1 − σ
τ2c

)
e−s/τ2c − g ecTn/σ

2(1 − σ
τ2c

)
e−s/σ .

Total current

Itotal(s) =
∞∑

n=0

In(s) =
N−1∑

n=0

In; p(s) +
∞∑

n=N

In; f (s)

=
g
(∑N−1

n=0 eTn/τ2

)

1 − σ 2

τ 2
2 c2

e−s/τ2c −
g
(∑N−1

n=0 ecTn/σ
)

2(1 − σ
τ2c

)
e−s/σ

+ g
(∑∞

n=N e−cTn/σ
)

2(1 + σ
τ2c

)
es/σ . (11)

2.2. The traveling wave solution

Once the synaptic integral Isyn(ξ) in (9) is computed by integrating Itotal(s) =∑∞
n=0 In(s), the right hand side of expression (7) for the solution V (ξ) is com-

pletely specified. The necessary condition (6) that we imposed at the beginning of
our analysis now appears in the form of Isyn(s) for ξ ≤ 0, i.e.

Isyn(ξ) = g
(∑∞

n=0 e−cTn/σ
)

2( τ1c
σ

+ 1)(1 + σ
τ2c

)

(
eξ/σ − e−ξ/τ1c

)
.

That is, if (6) holds, then the terms VT e−ξ/τ1c and Isyn(ξ) in (7) sum to VT eξ/σ , such
that V (ξ) → 0 as ξ → −∞. Moreover, as we expected, the equations V (0) = VT

and V (c T +
N ) = limξ↘c TN

V (ξ) = (VR − VT ) + V (c TN) = VR are valid. These
results are summarized in Lemma 1 below. A more concise expression for V (ξ) is
provided in Theorem 1; however, we shall see that for practical purposes, Lemma
1 is very useful.

Lemma 1. If condition (6) is true, then the following function V (ξ), ξ = tc−x, is
a traveling wave solution of the integro-differential equation (2), if all of the terms
converge as ξ, N → ∞.

V (ξ) = VT e ξ/σ , ξ ≤ 0 ,

V (ξ) =
[

VT − g
(∑N−1

n=0 e−c Tn/σ
)

2(
τ1c

σ
+1)(1+ σ

τ2c
)

]
e ξ/σ + g

(∑N−1
n=0 ec Tn/σ

)

2(
τ1c

σ
−1)(1− σ

τ2c
)

e−ξ/σ

+ g
(∑N−1

n=0 eTn/τ2
)

(1− σ2

τ2
2 c2 )(1− τ1

τ2
)

e−ξ/τ2c − g
(∑N−1

n=0 eTn/τ1
)

(1− σ2

τ2
1 c2 )(1− τ1

τ2
)

e−ξ/τ1c

+(VR − VT )
(∑N−1

n=0 eTn/τ1

)
e−ξ/τ1c, c TN−1 < ξ ≤ c TN (N ≥ 1) .

(12)
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Theorem 1. [general traveling wave solution] If condition (6) is true, then the
following expression for V (ξ), ξ = tc − x, denotes a traveling solution of the
integrate-and-fire model (2), if it converges:

V (ξ) =
∞∑

n=0

η(ξ/c − Tn) + g

∞∑

n=0

∫ ∞

0
J (u − ξ + c Tn) A(u/c) du . (13)

In (13), η is defined by (8) and A is defined as the convolution function A(t) =
α ∗ β (t) = ∫ t

0 α(s) β(t − s) ds with β(t) = 1
τ1

e−t/τ1 , i.e.

A(t) =




0 , t ≤ 0

1
1−τ1/τ2

(
e−t/τ2 − e−t/τ1

)
, t > 0

.

Remark 1. For any traveling wave solution with a finite number of spikes, as
discussed in the next section, convergence is not an issue.

3. Solutions with a finite number of spikes

3.1. One-spike traveling waves

We focus first on the case of a solitary wave with speed c and corresponding firing
time t∗(x) = x/c. In the notation introduced in Section 2, T0 = 0 and TN = ∞
for all N ≥ 1. Therefore equation (6) reads

VT = g

2
(

τ1c
σ

+ 1
) (

1 + σ
τ2c

) (14)

and can be solved exactly for c, if g/VT ≥ 2
(

1 +
√

τ1
τ2

)2
. This necessary condition

for the existence of a one-spike wave was used as an existence criterion in [3,7,
16]. When this condition holds, there exist two candidate solutions, the slow wave
and the fast wave, corresponding to

cslow ; fast = σ

2τ1



 g

2VT

− τ1

τ2
− 1 ∓

√(
g

2VT

− τ1

τ2
− 1

)2

− 4
τ1

τ2



 .

As g/VT increases from its minimal critical value to infinity, cslow decreases from
σ/

√
τ1τ2 to zero and cfast increases from σ/

√
τ1τ2 to infinity. We will denote the

curve g/VT = 2
(

1 +
√

τ1
τ2

)2
as 1F below.

In what follows, we analyze the fast one-spike traveling wave, since only this
one is stable [2,7]. We will simply write c for the velocity cfast.

If a traveling wave solution to (2) exists, then it takes the form V (ξ) = VT e ξ/σ

when ξ ≤ 0. When ξ > 0 it is given by, from Lemma 1,
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V (ξ) = (VR − VT ) e−ξ/τ1c + g e−ξ/σ

2( τ1c
σ

− 1)(1 − σ
τ2c

)

+ g e−ξ/τ2c

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)

− g e−ξ/τ1c

(1 − σ 2

τ 2
1 c2 )(1 − τ1

τ2
)
.

Note that limξ→±∞ V (ξ) = 0, V (0) = VT , and V (0+) = VR .
The next step is to check that the candidate solution above indeed has no other

spike after it passes ξ = 0; that is, the spiking threshold is never reached again.
Therefore we must verify that V (ξ) < VT for all positive ξ . This is not true in
general for reasons that are simple to understand. At fixed VR , as g/VT → ∞, it
becomes increasingly easier for the individual neurons to re-excite and spike again.
We compute in the following the equation of a curve, call it 1S , which separates
the (g/VT , −VR/VT ) plane to the right of 1F into two disjoint regions: a region
where the one-spike fast wave solution exists and a region where it does not.

Theorem 2. [a necessary and sufficient condition for the existence of the fast
one-spike traveling wave solution] The integrate-and-fire model (2) has a one-
spike fast wave solution if and only if

g/VT ≥ 2

(
1 +

√
τ1

τ2

)2

(15)

and the reset voltage value satisfies

(−VR/VT ) > (H(y∗) − 1), (16)

where H is defined by

H(y) = 1

yσ/τ1c



y − 1 + g/VT

1 − τ1
τ2



yσ/τ2c − y

1 − σ 2

τ 2
2 c2

− yσ/τ1c − y

1 − σ 2

τ 2
1 c2







 (17)

and y∗ is the unique solution in the interval (0, 1) of the equation G(y) = 0 with

G(y) = y − 2τ2c

τ2c + σ
yσ/τ2c + σ(τ2c − σ)

(τ1c + σ)(τ2c + σ)
. (18)

When (15) holds, for values of VR for which (16) fails, there exists a positive ξ

where the threshold VT is reached again, so the one-spike condition is violated.

Proof. We sketch the proof here and provide technical details in Appendix A.
Set y = e−ξ/σ . The condition V (ξ) < VT for all positive ξ reads as V (y) < VT

for all y ∈ (0, 1), which is equivalent to H(y) < (−VR/VT + 1) with H defined
by (17).

We analyze H(y) and obtain that H ′(y) = τ2
2τ1

σ
τ2c−σ

g
VT

y−(1+σ/τ1c) G(y). The
sign of H ′(y) is the sign of G(y) since for the fast wave we have c ≥ σ/

√
τ1τ2 >

σ/τ2.
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On the interval [0, 1], the function G satisfies G(0) = σ(τ2c−σ)
(τ1c+σ)(τ2c+σ)

> 0,

G(1) = − τ1c(τ2c−σ)
(τ1c+σ)(τ2c+σ)

< 0; moreover it can be proved that G has exactly one zero
in this interval, say y∗. Hence, H(y) has a maximum at y = y∗,
and further, limy↘0 H(y) = −∞ and H(1) = 0. Together, these imply H(y∗)
> 0. In summary, V (ξ) < VT for all ξ > 0 if and only if (−VR/VT ) > (H(y∗)−1).


�

Remark 2. A special case occurs at g/VT = 4(1 + τ1/τ2), where the fast wave
has the velocity c = σ/τ1 and

V (ξ) = VT

(
− 2(τ2+τ1)

τ2−τ1

ξ
σ

e−ξ/σ + 4τ 2
2

(τ2−τ1)2 e−τ1ξ/τ2σ − 3τ 2
2 +2τ1τ2−τ 2

1
(τ2−τ1)2 e−ξ/σ

)

+ (VR − VT ) e−ξ/σ .

In this case, the definition of H changes in the following way: the ratio yσ/τ1c−y

1−σ 2/τ 2
1 c2

= −
(

yτ1c
τ1c+σ

)(
y

σ
τ1c −1−1

σ
τ1c

−1

)
becomes − τ1c

τ1c+σ
y ln(y), or equivalently − 1

2 y ln(y).

In the computation of G, the logarithm cancels and we again end up with expres-
sion (18), i.e. y∗ is again the unique solution of the equation G(y) = 0
on (0, 1).

Remark 3. The curve 1S which divides the plane (g/VT , −VR/VT ) into the two
regions mentioned above has the equation

−VR/VT = H(y∗) − 1 .

To see that this really forms a curve in the (g/VT , −VR/VT ) plane, note that
y∗ = y∗(σ, τ1, τ2, c), with c depending on g/VT . If we fix all parameters except
g/VT , then we get H(y∗) = H(y∗(g/VT )).

Remark 4. Recall that the equation

g/VT = 2

(
1 +

√
τ1

τ2

)2

defines the curve 1F in the (g/VT , −VR/VT ) plane. Theorem 2 states that to obtain
a one-spike traveling wave in the integrate-and-fire model, the parameters must lie
to the right of the curve 1F for firing to occur, and above the curve 1S for firing to
stop after one spike. That is, the first condition allows for self-sustained propaga-
tion of the traveling wave, while the second prevents multiple spikings by resetting
the potential to low enough values. These curves are displayed in Figure 3 for a
representative parameter set.
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Fig. 3. The curves 1F and 1S for τ1 = 1, τ2 = 2, σ = 1, VT = 1. Parameter values must
lie to the right of 1F for cells to be able to fire upon receiving the one-spike synaptic input.
Parameter values must lie above 1S for cells to stop firing after just one spike. Between the
two curves, one-spike waves exist in the region labelled EXIST. Note that 1S terminates in
an intersection with 1F , at g/VT = 2(1 + √

τ1/τ2)
2 with −VR/VT finite and positive.

3.2. Two-spike traveling waves

In a two-spike traveling wave, each cell fires at times that we denote T0 = 0 and
T1 = T . In our earlier notation, this also means Tj = ∞ for each j ≥ 2. In this case,
equation (6) and substitution of the condition V (cT ) = VT into (12) in Lemma 1
read as

VT = g
(

1 + e−c T /σ
)

2( τ1c
σ

+ 1)(1 + σ
τ2c

)
, (19)

VT = (VR − VT ) e−T/τ1 + g

2( τ1c
σ

+ 1)(1 + σ
τ2c

)
+ g e−c T /σ

2( τ1c
σ

− 1)(1 − σ
τ2c

)

+ g e−T/τ2

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)

− g e−T/τ1

(1 − σ 2

τ 2
1 c2 )(1 − τ1

τ2
)
. (20)

With the definition

f (c) = 2

g/VT

(τ1c

σ
+ 1

)(
1 + σ

τ2c

)
− 1 (21)

we obtain according to (19) an explicit equation for T ,

T = −σ

c
ln f (c) . (22)
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We are ready now to investigate under which conditions the system (19), (20)
has a solution (c, T ) with positive c and T , i.e. when f (c) is between 0 and 1. Let
us define






c̃1;2 = σ
2τ1

[
g

VT
− τ1

τ2
− 1 ∓

√(
g

VT
− τ1

τ2
− 1

)2 − 4 τ1
τ2

]
,

c1;2 = σ
2τ1

[
g

2VT
− τ1

τ2
− 1 ∓

√(
g

2VT
− τ1

τ2
− 1

)2 − 4 τ1
τ2

] (23)

and notice that f (c) = 0 at c = c1;2 and f (c) = 1 at c = c̃1;2.
The set Sc = { c ∈ R

+ | f (c) ∈ (0, 1) } is easily computed: if g/VT <(
1 +

√
τ1
τ2

)2
then Sc = ∅; if

(
1 +

√
τ1
τ2

)2
< g/VT < 2

(
1 +

√
τ1
τ2

)2
then c1;2 are

complex with nonzero imaginary parts and Sc = (c̃1, c̃2); if 2
(

1 +
√

τ1
τ2

)2 ≤ g/VT

then 0 < c̃1 < c1 ≤ c2 < c̃2 and Sc = (c̃1, c1) ∪ (c2, c̃2) ⊂ R.

Remark 5. c1 = c1
slow and c2 = c1

fast; that is, c1 and c2 are the slow and fast veloc-
ities from the one-spike wave case. Moreover, T (c) → ∞ as c → c1;2 since we
have then f (c) ↘ 0.

Remark 6. As g/VT → ∞ we obtain c̃1, c1 → 0, c2, c̃2 → ∞ and c̃2/c2 → 2,
c̃1/c1 → 1/2.

The equations (20) and (22) imply F(c) = 0, where

F(c) =
(

−VR

VT

+ 1

)
f (c)

σ
τ1c

−1 + g/VT

1 − τ1
τ2

(
τ2c

τ2c + σ
fτ2(c) − τ1c

τ1c + σ
fτ1(c)

)
,

(24)

with

fτi
(c) =






f (c)
σ

τi c
−1−1

σ
τi c

−1 , c �= σ/τi

ln f ( σ
τi

) , c = σ/τi

(i = 1, 2) .

The velocities of candidate two-spike traveling wave solutions are precisely the
roots of F that belong to the set Sc. Such velocities correspond to true two-spike
traveling wave solutions if V (ξ) < VT for all ξ > cT .

Lemma 2. The function F : Sc → R defined by (24) is continuous on Sc and
satisfies F(c̃+

1 ) = F(c̃−
2 ) = −VR

VT
+ 1 > 0.

Proof. The result comes directly from the definition of F and the fact that limc→c̃1;2
f (c) = 1. Here and below we use the notation F(x+

0 ) = limx↘x0 F(x), F(x−
0 ) =

limx↗x0 F(x). 
�

Lemma 3. Suppose that g/VT ≥ 2
(

1 +
√

τ1
τ2

)2
, i.e. Sc = (c̃1, c1) ∪ (c2, c̃2).

Then F(c+
2 ) = −∞ and F(c−

1 ) < 0. Moreover
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i) if 2
(

1 +
√

τ1
τ2

)2 ≤ g/VT < 4
(

1 + τ1
τ2

)
, then c̃1 < σ

τ2
< c1 ≤ c2 < σ

τ1
< c̃2

and F(c−
1 ) = −∞,

ii) if g/VT = 4
(

1 + τ1
τ2

)
, then c̃1 < c1 = σ

τ2
< σ

τ1
= c2 < c̃2 and F(c−

1 ) =
−∞,

iii) if g/VT > 4
(

1 + τ1
τ2

)
, then c̃1 < c1 < σ

τ2
< σ

τ1
< c2 < c̃2 and F(c−

1 ) =
− g

VT

(
1 + τ1

τ2

)
σ 2

τ 2
1 c2

1−σ 2

τ 2
2 c2

1
τ 2

2 c2
1−σ 2 < 0.

Proof. See Appendix B. 
�
These two lemmas immediately imply the following result.The relation between

velocities described in the theorem is shown in the numerical results in Figure 4.

Theorem 3. If g/VT ≥ 2
(

1 +
√

τ1
τ2

)2
, then for all VR ∈ R

−, there exist two dis-

tinct positive values cS ∈ (c̃1, c1), cF ∈ (c2, c̃2) such that F(cS) = F(cF ) = 0.
Therefore there exist two distinct solutions (cS, TS), (cF , TF ) for the system (19),
(20).

When these correspond to two-spike traveling wave solutions, the velocity cF

(cS) of the fast (slow) two-spike traveling wave solution is greater (less) than that
of the fast (slow) one-spike traveling wave solution.

Remark 7. The above results apply for g/VT ≥ 2(1 + √
τ1/τ2)

2. We also expect
two-spike traveling waves to exist for some g/VT < 2(1+√

τ1/τ2)
2, since Sc �= ∅

2 6 10 14
g

0

2

4

6

ve
lo

ci
ty

single spike
double spike

Fig. 4. Numerically generated curves showing wave speed as a function of coupling strength
for one- and two-spike waves.
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for (1 +√
τ1/τ2)

2 < g/VT < 2(1 +√
τ1/τ2)

2. In fact, in analogy to the one-spike
case, we expect that there exist curves 2F , given by g/VT = F2(−VR/VT ), and
2S , given by −VR/VT = S2(g/VT ), in the (g/VT , −VR/VT ) plane, such that for
all g/VT to the right of 2F , cells can fire two spikes, while for all −VR/VT above
2S , cells fire at most two spikes.

It is perhaps non-intuitive that, for fixed VR and VT , a two-spike traveling wave
should exist for smaller g than needed for a one-spike wave. This holds because in
a two-spike wave, the two spikes fired by each cell produce a larger overall synaptic
input to each cell in the medium, which promotes firing.

We can carry these ideas further to make several reasoned conjectures. Recall
that a cell’s voltage is reset to VR after a spike. For fixed VT , as |VR| increases, a
larger g is required to elicit a subsequent second spike. Hence, we expect F2 to have
a positive slope, with F2(−VR/VT ) ↗ 2(1 + √

τ1/τ2)
2 as |VR| → ∞. For fixed g

and VT , a sufficiently large value of |VR| (sufficiently strong reset) is required to
prevent subsequent spikes after a second one, with a stronger reset needed for larger
g. Hence, we also expect S2 to have a positive slope. Finally, the same arguments
should give corresponding curves for N -spike waves, for any positive integer N ,
such that NF moves leftwards and NS moves upwards in the (g/VT , −VR/VT )

plane, as N increases. Figure 5 illustrates a numerically generated version of the
curve 2F , the shape of which agrees with our conjectures. The expected relation of
the curves for one- and two-spike waves is drawn in Figure 6. The proofs of these
conjectures remain open.

3.5 4 4.5 5 5.5
g/VT

0

20

40

60

80

−
V

R
/V

T

Fig. 5. Numerically generated 2F curve. To the right of this in parameter space, cells can
propagate two-spike waves.



258 R. Oşan et al.

g / VT

1F 1 & 2

1S
2

2F 2S

1

− V   / VR T

Fig. 6. Schematic illustration of the expected relation of the 1F , 1S, 2F and 2S curves in
parameter space. In the regions labelled 1 or 2, one-spike or two-spike waves exist; in the
region labelled 1&2, these co-exist. Outside of the labelled regions, neither type of wave
exists.

By solving the equation F(c) = 0 numerically for fixed parameters, one can
analytically find the velocity c. Given this, equation (22) yields the time T between
the two spikes in the corresponding traveling wave (if it really is a two-spike solu-
tion). These results match quite closely to those obtained from numerical simulation
of fast two-spike traveling waves. Numerically, waves are initiated by applying an
excitatory input, or “shock,” to an initial region, which leads to wave propagation
away from the region [15,16]; see Figure 1. Note that wave solutions obtained in
this manner are conceptually different from those studied analytically, in that the
numerical waves originate at a finite time, from a specific spatial location. Thus,
it is rather interesting that wave speed c and second spike time T from theory and
numerics compare so well.

4. Arbitrary numbers of spikes and infinite spike trains

4.1. Computation of interspike intervals

Consider a traveling wave solution for which each cell spikes at an infinite sequence
{x/c + Tn}, n ≥ 0, of spike times. We will discuss here how the formulation given
in Lemma 1 can be used to compute the interspike intervals Tn − Tn−1 between
successive waves. In the traveling wave formulation, in which V is expressed as
a function of ξ = ct − x, we have V (cTn) = VT for each Tn. Correspondingly,
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Lemma 1 implies that for any N ≥ 1,

VT =


VT −
g
(∑N−1

n=0 e−c Tn/σ
)

2( τ1c
σ

+ 1)(1 + σ
τ2c

)



 e c TN/σ

+
g
(∑N−1

n=0 ec Tn/σ
)

2( τ1c
σ

− 1)(1 − σ
τ2c

)
e−c TN/σ +

g
(∑N−1

n=0 eTn/τ2

)

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)

e−TN/τ2

+


(VR − VT ) − g

(1 − σ 2

τ 2
1 c2 )(1 − τ1

τ2
)




(

N−1∑

n=0

eTn/τ1

)
e−TN/τ1 . (25)

Suppose that there are a finite number of spikes in the traveling wave, say
N + 1. For each spike, equation (25) applies. In fact, one obtains a system with
N + 1 equations and N + 1 unknowns to be solved to obtain a valid (N + 1)-spike
traveling wave solution. The unknowns are c, which denotes the velocity of the
traveling wave, and the spike-times T1 up to TN (since T0 = 0 by convention). The
equations in the system are those corresponding to V (cTn) = VT , 1 ≤ n ≤ N , and
the equation (6). Based on the analysis in the previous section, it appears that this
highly nonlinear system can only be solved numerically for most N .

The situation becomes even more complicated when an infinite number of
spikes is considered. Thanks to the traveling wave description set out in Section
2, equation (25) is available, and one can iteratively solve for the spike time TN

from the previously known spike times T0 = 0, T1, ..., TN−1 for every N ≥ 1. To
do so, however, an obstacle must first be overcome: since equation (6) involves all
of the traveling fronts, it cannot be used independently from (25) in the case of
infinitely many spikes. Thus, the velocity c that appears in each equation must be
determined from some alternate source and then used here as a constant. Once c

is specified from such a source, one can iteratively compute the spike times, and
hence the interspike intervals 	 TN = TN − TN−1.

Remark 8. One source for the wave speed here is the fast two-spike wave speed
calculated from the analytical formulas (19), (20). Numerics show that the speeds
of waves with large numbers of spikes are quite similar to those calculated for
two-spike waves with corresponding parameter sets. Intuitively, this makes sense
because in fast two-spike waves, the interspike interval cT is significantly greater
than σ , the space constant or “footprint” of the synaptic coupling; see Figures 3, 5.
Even for cT = 2σ , we have J (cT ) = (1/2σ)e−2, such that little interaction occurs
between the synaptic inputs from different waves in the same solution. Thus, waves
travel with roughly the same speed, no matter how many waves there are.

One might question the value of computing the interspike intervals from numer-
ical solution of equation (25), given that one can perform a numerical simulation
of traveling waves in the full network. However, such simulations are based on
applying a localized shock somewhere in the network at a fixed time and allowing
waves to propagate thereafter [15,16]. This corresponds to a different, although
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closely related, form of traveling wave from that which we analyze analytically,
for which all waves can be thought of as having existed somewhere in the infinite
network for all time. In fact, one interesting result that arises from using equation
(25) to compute interspike intervals is that we can compare theory and analysis, to
see just how closely related these forms of traveling wave solutions are.

To make this comparison, we used the parameters τ1 = 1, τ2 = 2, σ = 1,
VT = 1, VR = −25 and g = 6. For the first six interspike intervals, full numerical
simulation of equation (2), labelled as ‘Numerics,’ and numerical solution of the
analytical expression (25), labelled as ‘Iterations,’ produced excellent agreement,
as shown in the following table. Note that for the analytical approach, we used
c = 1.256422, the speed of the wave found in our numerical simulations.

Numerics I terations Error

T 1 − T 0 2.4258 2.4258 2.83e − 006
T 2 − T 1 2.0479 2.0479 1.56e − 005
T 3 − T 2 1.8844 1.8845 9.72e − 005
T 4 − T 3 1.7953 1.7964 6.22e − 004
T 5 − T 4 1.7417 1.7488 0.0040

Errors in the table grow due to difficulty in solving equation (25) numerically,
resulting from the fact that the first product in this equation consists of a factor
that converges to 0 as N → ∞ with a factor that diverges as N → ∞. Thus, we
stopped after computing six interspike intervals. In full numerical simulations, the
subsequent interspike intervals can be computed as well. We did this at a distance
corresponding to about 40 σ away from the originally shocked region (of about
5σ ), where σ is the footprint of the coupling function J (x) in (4). (The total length
of the domain is 100σ so that a point 40σ from the center is still far enough away
from the boundary to avoid any edge effects.) We note that these intervals form a
monotone decreasing sequence, which appears to converge to an asymptotic value.
This will be relevant when we discuss periodic solutions in Section 4.2.

Remark 9. It can be shown, by induction on N ≥ 1, that equation (25) is equiva-
lent to

VT =


VT −
g
(∑N−1

n=0 e−c Tn/σ
)

2( τ1c
σ

+ 1)(1 + σ
τ2c

)



 · e c TN/σ ·
[

1 − e
−(TN−TN−1)(

1
τ1

+ c
σ

)
]

+
g
(∑N−1

n=0 ec Tn/σ
)

2( τ1c
σ

− 1)(1 − σ
τ2c

)
· e−c TN/σ ·

[
1 − e

−(TN−TN−1)(
1
τ1

− c
σ

)
]

+
g
(∑N−1

n=0 eTn/τ2

)

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)

· e−TN/τ2 ·
[

1 − e
−(TN−TN−1)(

1
τ1

− 1
τ2

)
]

+ VR e−(TN−TN−1)/τ1 . (26)

This formulation proves its advantage when we discuss the effect of adding an
absolute refractory period to the integrate-and-fire model (Section 4.4).
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4.2. Periodic solutions

We next analyze periodic traveling wave solutions, for which the time interval
between each pair of spikes fired by any fixed neuron is a constant T > 0. Bressloff
offers a general account of this case, but he presents his results in terms of infi-
nite Fourier series expansions [3]. We use the formalism developed in Section 2 to
obtain the dispersion relation between velocity c and period T directly. A periodic
traveling wave solutions exists precisely for those values (c, T ) that satisfy the
dispersion relation. Our explicit calculations allow us to plot the dispersion rela-
tion, which gives insight into the range of speeds and periods for which periodic
solutions can exist.

We assume that all traveling wave fronts have the same velocity c, such that
they are separated by a distance cT at all times. The case of a periodic solution
is different from all others we have treated, because for fixed x, we can no longer
identify a first spike time x/c + T0. Equation (2) must be modified accordingly,
taking into account the fact that at each point in space, when we record a new
spike, we assume that an infinite number of fronts have already passed and an
infinite number will come. This means that the spike times should be defined as
t∗n (x) = x/c + Tn = x/c + nT with n ∈ {. . . , −2, −1, 0, 1, 2, . . . } and the sums
in the synaptic integral and the reset term should be taken over all integers.

Under this ansatz, we analytically derive the dispersion relation, which consists
of curves relating wave velocity c and time period T . To understand why periodic
solutions exist for intervals of c and T values, rather than for a unique pair (c, T ),
note that an equation similar to (6) does not arise in the periodic case, since the
assumption limξ→−∞ V (ξ) = 0 does not apply. Suppose that a cell spikes at times 0
and T during a periodic solution. The two mathematical conditions that encode these
spikes are V (0+) = VR and V (T ) = VT , but, as in the previous sections, these are
redundant. Therefore, the two unknowns c and T are related by only one equation.

4.2.1. Derivation of the dispersion relation
Again, we fix a point x = 0 as the origin for our reference frame and record, at
arbitrary fixed t ∈ (0, T ], the strengths of the synaptic inputs that reach x = 0 from
the integer-indexed sequence of traveling wave fronts in the solution. These inputs
are classified as previously:

Synaptic current due to future waves Here we consider wave fronts that are at
some positions yn ≤ 0 at time t and will reach x = 0 in a time equal to nT , for
n ≥ 1. That is, yn = c(t − nT ) and t∗n (x) = x

c
+ nT , for each fixed x ∈ R. The

corresponding synaptic current is given by

In; f (t) = g

∫ c(t−nT )

−∞
dy J (y) α(t − y/c − nT )

= g

2σ

∫ c(t−nT )

−∞
dy ey/σ e−(t−y/c−nT )/τ2

= ge−ncT /σ

2(1 + σ
τ2c

)
ect/σ , n ≥ 1 . (27)
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Synaptic current due to previous waves Here we consider wave fronts that are
at positions yn > 0 at time t . These fronts pass through x = 0 at times equal to
−nT for n ≥ 0, such that yn = c(t + nT ) and t∗n (x) = x

c
− nT for each x for this

front. The corresponding synaptic current is given by

In; p(t) = g

∫ c(t+nT )

−∞
dy J (y) α(t − y/c + nT ) = In; p−(t) + In; p+(t)

where

In; p−(t) = g

∫ 0

−∞
dy J (y) α(t − y/c + nT )

= g

2σ

∫ 0

−∞
dy ey/σ e−(t−y/c+nT )/τ2

= ge−nT/τ2

2(1 + σ
τ2c

)
e−t/τ2 , n ≥ 0 (28)

and

In; p+(t) = g

∫ c(t+nT )

0
dy J (y) α(t − y/c + nT )

= g

2σ

∫ c(t+nT )

0
dy e−y/σ e−(t−y/c+nT )/τ2

= g

2(1 − σ
τ2c

)

(
e−nT/τ2e−t/τ2 − e−ncT /σ e−ct/σ

)
, n ≥ 0 . (29)

Total synaptic current The equations (27), (28) and (29) sum to give the total
synaptic current

Itotal(t) =
∞∑

n=1

In; f (t) +
∞∑

n=0

In; p−(t) +
∞∑

n=0

In; p+(t)

= g

2(1 + σ
τ2c

)

(
ect/σ

ecT /σ − 1

)
+ g

2(1 + σ
τ2c

)

(
e−t/τ2

1 − e−T/τ2

)

+ g

2(1 − σ
τ2c

)

(
e−t/τ2

1 − e−T/τ2
− e−ct/σ

1 − e−cT /σ

)

= g

1 − σ 2

τ 2
2 c2

(
e−t/τ2

1 − e−T/τ2

)
− g

2(1 − σ
τ2c

)

(
e−ct/σ

1 − e−cT /σ

)

+ g

2(1 + σ
τ2c

)

(
ect/σ

ecT /σ − 1

)
. (30)

By substituting (30) into the modified form of equation (2) and integrating over the
time t ∈ (0, T ], using the condition V (0+) = VR (or equivalently V (T ) = VT ),
we obtain the dispersion relation

V (c, T ) = VT (31)
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where

V (c, T ) =VR e−T/τ1 + g

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)

(
e−T/τ2 − e−T/τ1

1 − e−T/τ2

)

+ g

2( τ1c
σ

− 1)(1 − σ
τ2c

)

(
e−cT /σ − e−T/τ1

1 − e−cT /σ

)

+ g

2( τ1c
σ

+ 1)(1 + σ
τ2c

)

(
ecT /σ − e−T/τ1

ecT /σ − 1

)
. (32)

4.2.2. Numerical computation of the dispersion relation
It is a simple matter to solve (31) numerically for a given set of parameters and thus
find c as a function of T . We plot V (c, T ) from (32) for fixed c and g = 6, σ = 1,
τ1 = 1, τ2 = 2, VT = 1, VR = −25 in Figure 7. The full dispersion relation for
these parameters is shown at the left of Figure 8. Note that there are three branches
of solutions to (31). This represents a significant difference from the dispersion
relation for periodic solutions of the FitzHugh-Nagumo reaction-diffusion model
for nerve conduction, which features two connected branches of solutions cf (T )

and cs(T ), joined at a minimal T value [20]. The right part of the figure shows a
different view of the dispersion relation, formed by plotting the temporal frequency,
ω = 1/T , as a function of the wavenumber, k = 1/(cT ).

Heuristically, we can understand the three-branch structure of the dispersion
relation in the following way. For fixed c, if T were increased from 1.6, each cell in
the network would receive less and less current at each fixed time. Correspondingly,
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Fig. 7. V(c,T) versus T for the parameter values given in the text, with fixed c ≈ 1.25.
Points on the dispersion relation are given by intersections of V (c, T ) with VT , which here
has been chosen to equal 1.
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Fig. 8. The dispersion relation for g = 6, σ = 1, τ1 = 1, τ2 = 2, VT = 1, and VR = −25.
Left figure: Velocity c versus period T . The left branch originates with T ≈ 1.6245 and
has a vertical asymptote at T ≈ 1.974. The upper right branch has a vertical asymptote at
T ≈ 4.464 and a horizontal asymptote at c = 1. The lower right branch originates with
T ≈ 11.99 and has a horizontal asymptote at c = 1/2. No periodic solutions exist with peri-
ods between the two vertical asymptotes. Right figure: The same data, plotted as frequency
ω = 1/T versus wave number k = 1/(cT ).

c must increase to deliver enough current to sustain periodic spiking. Thus, the low
T branch of the relation is current-limited.

On the other hand, for very large T , spikes essentially do not interact. Thus, it
is not surprising that periodic solutions can occur with approximately the speeds
of the fast and slow single-spike solutions; once time T elapses after a cell spikes,
the cell’s voltage has recovered to approximately the right level to propagate a new
single-spike wave. Consider the upper branch, corresponding to the fast wave. As
T decreases from large values, if c were kept fixed, each cell would actually receive
too much input to maintain a large T periodic solution. Faster speeds c are required
to carry away waves that have already passed a cell, allowing the cell to recover to a
state from which it can respond again. Thus, the large T , large c branch of the rela-
tion is recovery-limited. Similarly, due to the inverse relationship between speed
and period that characterizes slow waves, slower speeds are needed to compensate
for decreases in T , yielding the large T , small c curve.

4.3. Convergence of interspike intervals

In addition to the above heuristic interpretations of the three-branched dispersion
relation, there is a natural correspondence between two of the three branches of
periodic solutions given in the dispersion relation and our numerical simulations
of waves, induced by a localized shock, in the full network. The low T branch of
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periodics corresponds to experiments in which a single shock is applied, while for
the large T - large c branch, spike interactions are limited, such that one would
not expect to obtain these solutions in a single shock simulation. As an example,
consider the graph of V (c, T ) versus T , with c fixed at approximately 1.25, the
wave speed obtained from numerical simulations of the full network. This graph is
presented in Figure 7.

Since VT = 1, it is easy to see that the equation V (c, T ) = VT has solu-
tions at two values of T . The smaller one occurs at T ≈ 1.63612. Recall that
when we solved the integrate-and-fire equation (2) numerically, after applying a
shock to an initial region, we observed that interspike intervals decayed monoton-
ically. For example, in addition to the interspike intervals presented in the table
in subsection 4.1, we find that the tenth through sixteenth interspike intervals are
1.6846, 1.6721, 1.6626, 1.6553, 1.6497, 1.6458, and 1.6437. We expect that these
interspike intervals converge asymptotically towards the value of T for the (low
branch) periodic solution with the same c ≈ 1.25.

Due to the close relation between the analytically derived infinite-spike solu-
tions considered in Section 4.1 and the solutions observed in our numerical sim-
ulations, this example suggests that two results hold, at least in certain parameter
regimes. First, for fixed wave speed c, the interspike intervals of the analytically
derived infinite-spike traveling waves converge in a monotone decreasing way to
the low branch period of the periodic solution for that c. Second, periodic solutions
are stable and are attractors for the solutions obtained in the types of numerical
simulations described here.

To follow up on the first of these conjectures, for fixed c > 0, suppose that
an infinite-spike traveling wave solution of (2) exists with spike times {x/c + Tn},
n ≥ 0, for each x, and without loss of generality set T0 = 0. We will derive a
condition under which T1 − T0 ≡ T1 > T , where T is the period of the low branch
periodic solution with the same c . Henceforth, we assume cτ1 > σ , based on
the fact that this inequality holds for c2, the analytically computed speed of the
two-spike wave.

Note the similar structures of the equation

VT = VR e−T1/τ1 + g




(
e−T1/τ2 − e−T1/τ1

)

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)

+
(
e−cT1/σ − e−T1/τ1

)

2( τ1c
σ

− 1)(1 − σ
τ2c

)





+
[
VT − g

2( τ1c
σ

+ 1)(1 + σ
τ2c

)

](
ecT1/σ − e−T1/τ1

)
, (33)

derived from (26) for N = 1 and satisfied by the infinite-spike wave, and the
dispersion relation (31)–(32)

VT = VR e−T/τ1 +


 g

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)

(
e−T/τ2 − e−T/τ1

1 − e−T/τ2

)



266 R. Oşan et al.

+ g

2( τ1c
σ

− 1)(1 − σ
τ2c

)

(
e−cT /σ − e−T/τ1

1 − e−cT /σ

)



+ g

2( τ1c
σ

+ 1)(1 + σ
τ2c

)

(
ecT /σ − e−T/τ1

ecT /σ − 1

)
(34)

satisfied by the periodic solution.
To show that T1 > T for fixed c, it suffices to show that the right hand side of

equation (33), evaluated at T1 = T , is less than VT . This will imply that at T = T1,
the cell at x = 0 in the infinite-spike wave has not yet reached VT and fired its
second spike, such that T1 must be greater than T . Equivalently, we can show that
the right hand side of equation (33), evaluated at T1 = T , is less than the right hand
side of equation (34).

Of course, we can neglect the first (VR) terms, since they become identical at
T1 = T . Further, consider the sums in the first set of square brackets in each equa-
tion, evaluated at T1 = T for (33). For both equations, these terms are positive;
however, in equation (34), each term in the sum is divided by a factor of the form
(1 − e−µ) for a positive number µ. Hence, the sum from equation (34) is larger
than that from equation (33). Thus, it suffices to show that the final term on the
right hand side of equation (33), evaluated at T1 = T , is less than the final term in
the right hand side of equation (34).

Due to the common factors shared by these terms, this condition reduces to

VT <
g

2( τ1c
σ

+ 1)(1 + σ
τ2c

)

(
1 + 1

ecT /σ − 1

)
(35)

Since the right hand side of (35) is nonnegative, continuous and monotonically
decreasing in positive T , and blows up as T ↘ 0, there does exist a unique T ∗
such that inequality (35) holds on (0, T ∗). So, T1 − T0 > T as long as T < T ∗,
or equivalently, as long as T < (σ/c) ln(H/(H − g)) where H = 2VT (τ1c/σ +
1)(1 + σ/τ2c).

4.4. Absolute refractory period

After each spike, real neurons are unable to fire again during a time period called
absolute refractory period. We address here the consequences of adding this feature
to the integrate-and-fire model. Equation (1) is supplemented by the condition that
during the refractory period, on the interval (0, tr ), the potential of the neuron is
held fixed at VT . While the addition of this feature induces extra complexity in the
traveling wave solutions, they retain a similar structure.

First, the interspike intervals can be computed from the following modified
version of equation (26)

VT =


VT −
g
(∑N−1

n=0 e−c Tn/σ
)

2( τ1c
σ

+ 1)(1 + σ
τ2c

)



 · e c TN/σ ·
[

1 − e
−(TN−TN−1−tr )(

1
τ1

+ c
σ

)
]

+
g
(∑N−1

n=0 ec Tn/σ
)

2( τ1c
σ

− 1)(1 − σ
τ2c

)
· e−c TN/σ ·

[
1 − e

−(TN−TN−1−tr )(
1
τ1

− c
σ

)
]
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+
g
(∑N−1

n=0 eTn/τ2

)

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)

· e−TN/τ2 ·
[

1 − e
−(TN−TN−1−tr )(

1
τ1

− 1
τ2

)
]

+ VR e−(TN−TN−1−tr )/τ1 . (36)

We outline here the factors that determine this new formulation. We note first that
the formula for the synaptic current (30) does not change, since the refractory effects
apply to the potential of the neuron and not to synaptic contributions. Second, since
the cell potential is held fixed during the refractory period, it follows that the inte-
gration interval of equation (30) is reduced from (c(Tk−1), cTk) to (c(Tk−1 + tr ),
cTk).

Numerical simulations for tr = 0.3 yield traveling waves with speed c =
1.1871 and the first six ISIs of 2.841, 2.517, 2.397, 2.341, 2.314, 2.3. The
numerical scheme for computing ISIs can be used to compute the first three terms,
2.841, 2.520, 2.430, before numerical errors become too large.

The reduced efficiency of the ISI scheme is an effect of including the refrac-
tory period. Remember that the first term in equation (36) is the one responsible
for numerical instabilities. Addition of the refractory period pushes TN to larger
values, increasing the magnitude of the factor e c TN/σ , which drives the numerical
scheme towards instabilities faster.

Similar structural changes apply for the dispersion relationship, given in its
original formulation by equations (31)–(32). When the absolute refractory period
is introduced in the LIF model, equation (32) changes to

V (c, T ) =VR e
− T −tr

τ1 + g

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)



e
− T −tr

τ2 − e
− T −tr

τ1

1 − e−T/τ2



 e
− tr

τ2

+ g

2( τ1c
σ

− 1)(1 − σ
τ2c

)



e− c(T −tr )
σ − e

− T −tr
τ1

1 − e−cT /σ



 e− ctr
σ

+ g

2( τ1c
σ

+ 1)(1 + σ
τ2c

)



e
c(T −tr )

σ − e
− T −tr

τ1

ecT /σ − 1



 e
ctr
σ . (37)

Numerical simulations of the full model again suggest the existence of a periodic
solution, as the ISI intervals decrease monotonically towards a fixed non-zero value.
The tenth such ISI has a value of 2.2858, in agreement with the value T = 2.2845
obtained using equation (37) with c = 1.1871.

The most important change in the shape of the dispersion curves, as a result
of including the refractory period, is that for large enough refractory period dura-
tions tr , the vertical asymptotes no longer exist and instead the upper branches are
united, as indicated in Figure 9. However, the the existence of horizontal asymp-
totes is unaffected, as they correspond to solutions that approach slow and fast
single-spike traveling wave solution.

We point out here how the solutions of equations (36), (37) reflect global changes
induced by the refractory period on the dynamics of the traveling waves. Adding
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Fig. 9. The dispersion relation for g = 6, σ = 1, τ1 = 1, τ2 = 2, VT = 1, VR = −25 and
tr = 0.6. Left figure: Velocity c versus period T . Note that the left branch connects with
the upper right branch. The newly formed branch originates with T ≈ 2.78, has a peak at
T ≈ 9.14 and maintains its horizontal asymptote at c = 1. The lower right branch originates
with T ≈ 11.8 and maintains its horizontal asymptote at c = 1/2. Right figure: The same
data, plotted as frequency ω = 1/T versus wave number k = 1/(cT ).

the refractory period to the model slows down wave propagation in the network
due to two factors. First, holding the cell at the reset potential prevents the neuron
from returning to its rest state and also limits the speed with which the cell can
reach spiking threshold. Second, during the refractory period, synaptic contribu-
tions decay, thus increasing the amount of time required for the neuron to spike
again. A slower wave speed ensures that when a cell emerges from refractoriness,
there is still synaptic current available to push it towards threshold. Thus it is not
surprising that, when comparing numerics for the tr = 0 and tr > 0, the latter,
refractory case exhibits both a decrease in the speed of the traveling waves and an
increase in the interspike intervals that separates them (at least on the small T part
of the dispersion curves). Furthermore, the positive correlation between interspike
intervals and refractory period also applies to periodic solutions of equation (37).

5. Summary and open problems

Traveling waves of activity are observed in slices of cortical tissue under vari-
ous pharmacological manipulations [4,5,9,13,22]. These have been used both as
models for epilepsy and as a way to probe the intracortical circuitry. Two of the mac-
roscopic quantities which can be readily observed are the velocity of propagation
and the number of spikes fired during a discharge (see for example, [9], where this is
quantified). In previous work, [7,10,11,14,17], we studied how the velocity of trav-
eling waves depends on various parameters by assuming that each cell spiked once.
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In particular, conditions on the parameters which prevent propagation are readily
computed. Thus, several questions remained: (i) is it possible to get multiple-spike
waves; (ii) how does the existence of waves depend on having multiple spikes; (iii)
how does the velocity depend on the number of spikes; and (iv) are there waves
with infinitely many spikes (wave fronts)? We have attempted to address these
questions in this paper by studying propagation in the integrate-and-fire model.

Lemma 1 and Theorem 1 provide two equivalent formulas for general traveling
wave solutions to the continuum integrate-and-fire model (2), with the synaptic
coupling functions α(t) and J (x) given in (3) and (4), respectively. The functions
defined by these formulas correspond to traveling wave solutions, for which the
neuron at position x spikes at times {t∗n (x) = x/c + Tn}∞n=0, where ξ = ct − x,
if and only if the consistency condition (6) holds and the sum

∑∞
n=0 e−cTn/σ con-

verges. Convergence is not an issue, of course, when each cell fires only finitely
many spikes (corresponding to Tn = ∞ for all but finitely many values of n). The
same type of computations used to derive these formulas would be valid for other
forms of α(t) and J (x); see [14] for one example where other functions have been
considered. With more complicated functions, however, difficulties in evaluating
relevant integrals may arise.

We use these formulas to prove that there are curves that delineate the region
on which single-spike traveling wave solutions exist, in a certain parameter space.
These curves are shown in Figure 3. We also prove that in another region of param-
eter space, neurons can propagate a two-spike traveling wave. It remains open to
determine where such solutions actually exist, by rigorously specifying the set of
parameter values for which neurons stop spiking after exactly two spikes. Our rea-
soned conjecture on this result, illustrated in Figure 6, stems from the numerical
results displayed in Figure 5. It also remains open to prove results about solutions
with more than two spikes. We expect a similar pattern of regions in parameter
space to extend to these cases.

The traveling wave formula in Lemma 1 is rewritten in (25), and equivalently
(26) . This provides a relationship that can, in theory, be used in an iterative way
to solve for as many spike times as desired in a traveling wave with any countable
number of spikes, for fixed parameter values and a fixed wave speed. Numerics are
needed here due to the highly nonlinear nature of (25); even with numerics, we find
it difficult to compute more than about six spike times accurately in practice.

Periodic waves are different from the other cases that we treat in that in a peri-
odic wave, these is no “first” spike time at each spatial location. Nonetheless, we
are able to perform computations similar to those used to derive Lemma 1 and The-
orem 1 to obtain a dispersion relation for periodic solutions in the integrate-and-fire
network. By using specific coupling functions, we are able to produce a concrete
analytical expression for this relation and to plot it, as done in Figure 8, although
this represents a special case of a more abstract result of Bressloff [3].

Suppose that we fix a wave speed for which a periodic traveling wave solution,
say of period T , exists. We expect that the time intervals between the spikes fired
by any fixed cell in any other infinite-spike traveling wave solutions that exist for
this speed will converge to T as the spike number increases. This result remains to
be proven. In our numerical simulations, in which waves are initiated by applying
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an excitation to a localized region in the network at a finite time, we observe that
intervals between subsequent spikes again appear to converge. Moreover, the inters-
pike intervals that develop appear to be a property of the medium, such that, when
the wave is initiated by a localized, transient shock, the interspike intervals that
arise far away from the shock are independent of the details of the shock applied.
This differs from results in excitable media with diffusive coupling, as modeled,
for example, by the FitzHugh-Nagumo equation; there, wave propagation appears
to depend more strongly on how waves are initiated [21]. Our dispersion relation,
shown in Figure 8, also differs significantly from standard excitable media results
[20]. The properties of solutions generated through application of a shock, including
the details of transients and the selection of a particular speed and corresponding
set of interspike intervals, have not yet been investigated analytically. The latter
issue in particular may relate to stability of solutions, which was not considered in
this paper.

We can connect the present work with firing rate models in which spikes are
completely ignored if we allow the neuron to spike continuously after shocking.
There are several possible approaches. In the simplest, we suppose that the synapses
saturate. Then we replace the alpha function in equation (3) by

α(t) = 1 − exp(−bt).

This means that once the neuron fires the synapse stays on for all time. Since the
synapse has completely saturated and does not decay, later spikes are irrelevant and
the model reduces to the “single-spike” integrate and fire model. This approxima-
tion is very good for saturating synapses which decay slowly (Ermentrout, 2003,
preprint). The other way to connect this to the firing rate model is as follows. Let
A(x, t) denote the firing rate of the neuron at spatial point x and time t. Then

A(x, t) = F(I (x, t))

where F is the firing rate of a neuron as a function of the applied current. For the
integrate-and-fire model, this is almost a threshold linear curve ([6], p. 164). Recall
that the current is given by

I (x, t) = g

∞∑

n=−∞

∫ ∞

−∞
dy J (x − y) α(t − t∗n (y))

which can be rewritten as

I (x, t) =
∫ t

−∞
α(t − s)

∫ ∞

−∞
J (x − y)

∑

n

δ(s − t∗n (y)) ds dy.

The sum is essentially the firing rate of the neuron ([6], p. 233), so that we obtain
the closed system:

A(x, t) = F

(∫ t

−∞

∫ ∞

−∞
α(t − s)J (x − y)A(y, s) ds dy

)
.
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Finally, if α(t) = exp(−t/τ )/τ we can let

U(x, t) =
∫ t

−∞
α(t − s)A(x, s) ds,

so that upon inverting the linear operator:

A(x, t) = τ
∂U(x, t)

∂t
+ U(x, t) = F

(∫ ∞

−∞
J (x − y)U(y, t) dy

)
.

This is the familiar firing rate model that has been the subject of much analysis.
For smooth F such that u = F(u) has three fixed points, [8] prove the existence of
unique stable travelling wavefronts joining the resting state to the firing state. For
the case in which F(x) = Kmax(u − uT , 0) (approximating the integrate-and-fire
firing rate curve) [12] also constructed travelling wavefronts. The integrate-and-
fire model, by virtue of the fact that the firing rate curve is asymptotically linear
is subject to runaway excitation. However, an absolute refractory period prevents
this and keeps the firing rate saturated. We finally note that by adding a relative
refractory process or reset to this simple firing rate model, it is possible to obtain
finite spike waves since the activity will terminate once the refractoriness builds up
enough.

Appendix A

Details for the proof of Theorem 2. The inequality V (y) < VT can be written as

g/VT

2( τ1c
σ

− 1)(1 − σ
τ2c

)
y + g/VT

(1 − σ 2

τ 2
2 c2 )(1 − τ1

τ2
)
yσ/τ2c − g/VT

(1 − σ 2

τ 2
1 c2 )(1 − τ1

τ2
)
yσ/τ1c

< 1 + (−VR/VT + 1) yσ/τ1c ,

or equivalently as

(y − 1) + 2(1 + τ1/τ2)

( τ1c
σ

− 1)(1 − σ
τ2c

)
y

+ g/VT

1 − τ1
τ2

(
τ 2

2 c2

τ 2
2 c2 − σ 2

yσ/τ2c − τ 2
1 c2

τ 2
1 c2 − σ 2

yσ/τ1c

)

< (−VR/VT + 1) yσ/τ1c .

We used here g/VT

2(τ1c/σ−1)(1−σ/τ2c)
−1 = 2(1+τ1/τ2)

(τ1c/σ−1)(1−σ/τ2c)
, which comes from (14).

When we regroup the terms, we obtain

y




2(1 + τ1/τ2)

( τ1c
σ

− 1)(1 − σ
τ2c

)
− g/VT (1 + τ1/τ2)

(
τ 2

1 c2

σ 2 − 1)(1 − σ 2

τ 2
2 c2 )





+ (y − 1) + g/VT

1 − τ1
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

 yσ/τ2c − y

1 − σ 2

τ 2
2 c2

− yσ/τ1c − y

1 − σ 2

τ 2
1 c2



 < (−VR/VT + 1) yσ/τ1c .



272 R. Oşan et al.

The difference inside the first set of parentheses is zero because of (14). Therefore,
we are left exactly with the inequality H(y) < (−VR/VT + 1).

The next step is to compute the derivative of H . This is

H ′(y) =y−(1+σ/τ1c)

1 − τ1
τ2

[
σ(1 − τ1

τ2
)

τ1c
−
(

σ (1 − τ1
τ2

) g/VT

τ1c

)
τ 2

2 c2

τ 2
2 c2 − σ 2

yσ/τ2c

+ y




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τ2
)

τ1c
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σ 2(

τ 2
2

τ 2
1

− 1)

τ 2
2 c2 − σ 2




(

τ1c

τ1c + σ

)






 .

By using again equation (14) we obtain

H ′(y) = y−(1+σ/τ1c)

1− τ1
τ2

[ σ(1− τ1
τ2

)

τ1c
− 2(τ1c+σ)· τ2

τ1
·(1− τ1

τ2
)

τ2c−σ
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+ y
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τ2
)

τ1c(τ2c−σ)
]

= (τ1c+σ)(τ2c+σ)
τ1c(τ2c−σ)
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[

σ(τ2c−σ)
(τ1c+σ)(τ2c+σ)

− 2τ2c
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yσ/τ2c + y
]

= τ2
2τ1

σ
τ2c−σ

g
VT

y−(1+σ/τ1c) G(y)

with G defined by (18).
The existence of the unique root y∗ ∈ (0, 1) for G comes from the following

observations. Since G ′(y) = 1 − 2σ
τ2c+σ

yσ/τ2c−1, the derivative of G has exactly

one zero in the interval (0, 1), at ỹ =
(

2σ
τ2c+σ

)τ2c/(τ2c−σ)

, G decreases on (0, ỹ),

and G increases on (ỹ, 1). Further, since we calculated that c > σ/
√

τ1τ2, the
assumption τ2 > τ1 implies that G(0) > 0 and G(1) < 0. Therefore, G(ỹ) must
be negative, and the unique root of G belongs to (0, ỹ) ⊂ (0, 1).

Appendix B

Proof for Lemma 3. The inequalities from i), ii), iii) can be easily verified. To estab-
lish the limits of F , we use these inequalities, the assumption that τ2 > τ1, and the
fact that limc→c1;2 f (c) = 0.

i) By direct calculation, we obtain limc↘c2 F(c) = limc↗c1 F(c) = −∞.
ii) By direct calculation, we have

lim
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

= −∞ .
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iii) At g/VT = 4(1 + τ1/τ2), since c1 = σ
τ2

and c2 = σ
τ1

, the calculation needs to
be handled more carefully. We apply l’Hospital’s rule repeatedly and obtain

lim
c↘ σ

τ1

f (c)
σ

τ1c
−1 = 1 , lim

c↘ σ
τ1

f (c)
σ

τ1c
−1 − 1

σ
τ1c

− 1
= −∞ ,

lim
c↘ σ

τ1

f (c)
1− σ

τ2c [ f (c)
σ

τ1c
−1 − 1 ]

σ
τ1c

− 1
= 0 ,

and therefore

lim
c↘ σ

τ1

F(c) = lim
c↘ σ

τ1

f (c)
σ

τ2c
−1

[
(−VR/VT + 1)f (c)

σ
τ1c

(
1− τ1

τ2

)

+ g/VT

1 − τ1
τ2



f (c)
1− σ

τ2c − 1

1 − σ 2

τ 2
2 c2

− f (c)
1− σ

τ2c (f (c)
σ

τ1c
−1 − 1)

(1 + σ
τ1c

)( σ
τ1c

− 1)









= −∞ .

Similarly,

lim
c↗ σ

τ2

f (c)
σ

τ2c
−1 = 1 , lim

c↗ σ
τ2

f (c)
σ

τ2c
−1 − 1

σ
τ2c

− 1
= −∞ , lim

c↗ σ
τ2

f (c)
σ

τ1c
−1 = 0 ,

and thus limc↗ σ
τ2

F(c) = −∞. 
�
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16. Oşan, R., Ermentrout, G.B.: The evolution of synaptically generated waves in one- and
two-dimensional domains. Phys. D 163, 217–235 (2002)
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