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Abstract. Spatial patterns of neuronal activity arise in a variety of experimental studies. Pre-
vious theoretical work has demonstrated that a synaptic architecture featuring recurrent excitation
and long-range inhibition can support sustained, spatially patterned solutions in integrodifferential
equation models for activity in neuronal populations. However, this architecture is absent in some
areas of the brain where persistent activity patterns are observed. Here we show that sustained, spa-
tially localized activity patterns, or bumps, can exist and be linearly stable in neuronal population
models without recurrent excitation. These models support at most one bump for each background
input level, in contrast to the pairs of bumps found with recurrent excitation. We explore the shape
of this bump as well as the mechanisms by which this bump is born and destroyed as background
input level changes. Further, we introduce spatial inhomogeneity in coupling and show that this
induces bump pinning: for a given starting position, bumps can exist only for a small, discrete set
of background input levels, each with a unique corresponding bump width.
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1. Introduction. Evidence suggests that sustained, spatially patterned neu-
ronal activity may play a role in short-term encoding of information. For example,
localized persistent activity, or bumps, may provide the basis for a working memory
of external stimulus features [14, 7, 18] or a representation of internal states such as
head direction (reviewed in [25, 21]). Previous theoretical works have explored the
ways in which a network of spiking neurons with short-range recurrent excitation (i.e.,
positive local coupling) and long-range inhibition can support sustained, spatially or-
ganized activity [28, 1, 15, 13, 8, 17, 16, 4, 5]. These studies focus on various forms of
rate or activity models, in which a single equation encapsulates the temporal evolu-
tion of some measure of the activity level of an entire population of spiking neurons
(i.e., neurons firing regularly with some average spike rate). A related result shows
that when timescales of synaptic dynamics are taken into account in a conductance-
based network model, sustained, localized activity can arise in a two-layer network
of bursting thalamic cells that lacks recurrent excitation [20]. This leads naturally to
the fundamental question of just how crucial the presence of recurrent excitation is
for the existence of sustained spatial patterns of activity in rate or activity models
of populations of spiking neurons. This paper shows that spatially localized activ-
ity can be sustained in a neuronal network without recurrent excitation or bursting
mechanisms.

We consider a rate model of the form

∂u(x, t)

∂t
= −σu(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)) dy + h.(1.1)
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Fig. 1. Off-center coupling function for an excitatory population. Cells at any position x with
w(x) > 0 receive excitatory input from cells at position x = 0, while cells at x with w(x) < 0 receive
inhibitory input.

Equation (1.1) models a single population of spiking neurons. The function u(x, t)
encodes the activity level, or average voltage, of a neuronal subgroup at position
x ∈ (−∞,∞) and time t ≥ 0. The connection function w(x) determines the coupling
between subgroups, and the nonnegative, nondecreasing function f(u) denotes the
neuronal firing rate, or average rate at which spikes are generated, corresponding to
an activity level u. Neurons at a point x are said to be active if f(u(x, t)) > 0. Finally,
the parameter h encodes a constant external stimulus applied uniformly to the entire
neural field [1], such as an average background input level received from other areas
of the brain, and the parameter σ denotes a positive rate constant; the ratio h/σ
represents the baseline level of activity in the population without coupling. Without
loss of generality, we set σ = 1.

In this paper, we take f(u(x, t)) = H(u(x, t)), the Heaviside step function, which
gives

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)H(u(y, t)) dy + h.(1.2)

For the Heaviside form of firing rate function, the activity level u = 0 represents an
absolute threshold for synaptic input required to drive spiking activity. This form of
(1.1) was considered in [1] and by many subsequent authors. Further, it was shown in
[15] that results for (1.2) are crucial in determining solution structure for (1.1) with
more general nondecreasing f .

After we detail additional assumptions on the model, we prove that recurrent
excitation is not necessary for the existence of stable stationary, spatially localized
solutions (i.e., bumps) in populations of spiking cells. The synaptic architecture that
we consider, as an alternative to recurrent excitation, takes the form shown in Figure
1. Such an off-center architecture may be relevant in several different contexts. For
example, consider a network featuring interconnected excitatory (E) and inhibitory
(I) populations of cells, in which E-cells are intrinsically capable of spiking and I-cells
inhibit both E-cells and other I-cells. In such a network, activity of E-cells leads
to activity of corresponding I-cells. This may lead to feedback inhibition onto the
active E-cells as well as inhibition of nearby I-cells. This I-I inhibition can in turn
disinhibit nearby E-cells, effectively acting as an off-center form of excitation onto
E-cells, as portrayed in Figure 1. This form of architecture may arise in interactions
of the subthalamic nucleus (E) and external segment of the globus pallidus (I) in the
primate basal ganglia [22, 26]. It also may occur in interactions of thalamocortical
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relay cells (E) and thalamic reticular cells (I) in the thalamus in awake states, where
activity bumps in certain subpopulations of cells can encode head direction [23, 24].
Long-range inhibitory connections have been found in the thalamus [9, 10], but no
thalamic recurrent excitatory connections are known to exist. In the first subsection
of the appendix, we discuss the derivation of the effective coupling shown in Figure 1
from coupled E and I populations modelled by a pair of equations of the form (1.1),
as in [28, 1, 19] but without recurrent excitation, although a rigorous mathematical
derivation, or a complete mathematical treatment of the coupled equations, remains
for future research. Alternatively, this form of suppression of recurrent excitation by
localized inhibitory feedback may be generated by inhibitory interneurons in a variety
of cortical areas, or in the CA1 region of the hippocampus, which features at most
sparse recurrent excitatory connections [6, 27].

We consider this coupling architecture in section 2. Under certain assumptions,
we prove the existence of a bump solution u(x) to (1.2) such that u(x) > 0 if and only
if x ∈ (0, a) for a fixed constant a. We also show that this bump solution is linearly
stable when it exists. Our proof method for existence generalizes that given by Amari
[1] for bumps in (1.2) with lateral inhibition. However, details become much more
subtle due to the more complicated synaptic architecture that we consider.

Unlike the case with recurrent excitation, where two bump solutions exist [1], the
bump of localized positive activity that we find is unique for each fixed h in some
finite interval. We show how the shape of a bump depends on its size, which in turn
depends on h, relative to certain features of the coupling function w(x). Further, as
h varies, bump solutions (parametrized by h) are created and destroyed by atypical
mechanisms that do not involve saddle-node bifurcations (since only a single solution
exists for each h) or the entire bump collapsing to 0, and we explain the possible
mechanisms and how they are selected.

For consideration of stability, we deviate from [1] to give a rigorous linear stability
calculation. A simplified version of the calculation shows that a spatially uniform state
can also be stable, such that the system exhibits bistability, consistent with [20, 24].

It has been argued that coupling strengths between neurons should not be purely
distance dependent but rather should allow for spatial variation [2, 3]. In section 3, we
introduce spatial inhomogeneity in coupling, replacing w(x−y) by w(x−y)p(y) under
the integral in equation (1.2). We set up equations relevant to bump existence in this
case, which we treat through a combination of analysis and numerics. The presence
of spatial inhomogeneity naturally destroys the translation invariance of bumps. In
fact, we find that it induces a form of bump pinning, such that for a given starting
position, bumps exist for only a small, discrete set of background input levels, each
with a unique corresponding bump width. Interestingly, in our primary numerical
example, we find that there is a special bump width which is possible for any starting
position. We comment on possible functional implications of these results in the
discussion in section 4.

2. Spatially homogeneous coupling.

2.1. Assumptions. In this section, we consider (1.2)

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)H(u(y, t)) dy + h

with a coupling function w(x) satisfying the hypothesis
(H1) w(x) is continuous and integrable on R and is symmetric; i.e., w(−x) = w(x)

for all x ∈ R.
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Moreover, we assume that there exist constants x∗ > x1 > x∗ > x0 > 0 such that
(H2) w(x) < 0 on (−x0, x0) and on (x1,∞), with w(x0) = w(x1) = 0;
(H3) w(x) is increasing on (0, x∗) and on (x∗,∞);
(H4) w(x) > 0 on (x0, x1);
(H5) w(x) is decreasing on (x∗, x∗).

Coupling functions that satisfy (H2) and (H4) are sometimes called off-center cou-
pling functions.

To simplify notation, we will also assume the following symmetry hypothesis in
certain cases noted below

(H6) there exists δ > 0 such that x1 = x∗ + δ and x0 = x∗ − δ, and w(x∗ + η) =
w(x∗ − η) for all η ∈ [0, δ].

We will comment further on the role of this hypothesis in Remark 2.8 after the
proof of Theorem 2.5. A coupling function w(x) satisfying (H1)–(H6) appears in
Figure 2.

w(x)

x

δ δ

x

W(x)

−h

a1 2

x
ax1

0

w(x  )
*

0x x x x1
*

*

Fig. 2. Off-center coupling function w(x), together with antiderivative W (x). From the plot of
W (x), we can visualize the necessary condition (2.3), W (a) + h = 0, for bump existence.

2.2. Existence of a unique bump. Following Amari [1], we seek stationary
bump solutions u(x) to (1.2), for which u(x) > 0 if and only if x ∈ (0, a) for some
constant a. Note that this is equivalent to the existence of a bump on any other
interval of length a; that is, the system is translation invariant. Such solutions satisfy
the condition

u(x) =

∫ a

0

w(x− y) dy + h .(2.1)

Since limx→∞ w(x) = 0, the fact that limx→∞ u(x) ≤ 0 for such a solution requires
that h ≤ 0. Thus, we impose the existence condition that

(E1) the constant h ≤ 0.
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Let W (x) =
∫ x

0
w(t) dt, which is an odd function. Then (2.1) becomes

u(x) = W (x) −W (x− a) + h.(2.2)

From (2.2), the conditions u(0) = 0 and u(a) = 0 both give

W (a) + h = 0.(2.3)

Figure 2 displays a graphical representation of equation (2.3). Note that for fixed
h < 0, there exist either zero or two solutions of (2.1), unless −h = W (x1).

We will require a second existence condition, namely, that
(E2) W (x) + h > 0 for some x ∈ R

+ and limx→∞ W (x) < −h.
For fixed h such that conditions (E1) and (E2) hold, there exist two nonzero solutions
of (2.3). We label these solutions as a1 and a2, where a2 > x1 > a1 > 0. Note that a2

could fail to exist without (E2), if limx→∞ W (x) > −h > 0. Let u1(x), u2(x) denote
the corresponding functions defined by ui(x) = W (x) − W (x − ai) + h. Note that
ui(x) = W (x) −W (x− ai) + h = W (ai − x) + W (x) + h = u(ai − x) for all x. This
yields the following symmetry statement.

Proposition 2.1. Each solution ui(x) of (2.3) is symmetric about x = ai/2.
With these definitions, we state one final hypothesis, as an alternative to (H6),

that will be assumed when noted below:
(H6′) W (x0) −W (a2) + W (a2 − a1) > 0.
Proposition 2.2. Assume (H1)–(H5). Fix h such that (E1)–(E2) hold and

a1 < x1 such that W (a1) + h = 0. The function u1(x) defined by (2.1) with a = a1

does not represent a valid bump solution to (1.2). In fact, if we assume (H6) as well,
then u1(x) < 0 on all of (0, a1).

Proof. By construction, u1(0) = 0 and x0 < a1 < x1. Note that u′
1(x) =

w(x) − w(a1 − x). Since a1 < x1, it follows that w(a1) > w(0). Thus, u′
1(0) =

w(0) − w(a1) < 0. This establishes that u1(x) is not a valid bump.
Further, note that u′

1(x) = 0 requires w(x) = w(a1−x). This occurs at x = a1/2,
consistent with the symmetry of u1(x) about x = a1/2. However, we shall see that
when (H6) holds, the equation u′

1(x) = 0 has no other solutions in (0, a1), proving
the proposition. To see this, note that by (H6), if there exists x �= a1/2 in (0, a1)
such that u′

1(x) = 0, then (a1 − x) − x∗ = x∗ − x, or, equivalently, a1 = 2x∗. But
a1 < x1 < x1 + x0 = 2x∗, so this is not possible.

Remark 2.3. Proposition 2.2 implies that a bump can only possibly exist when
there exists a2 > x1 for which (2.3) holds. Thus, if limx→∞ W (x) > −h, in violation
of (E2), then no bump exists.

Now, define the constant A as the smallest positive x value for which W (x) = 0,
guaranteed to exist by (E2) since h ≤ 0.

Proposition 2.4. Assume (H1)–(H5). Fix h such that (E1)–(E2) hold. If
0 < a2 − a1 < A, then the function u2(x), defined by (2.1) with a = a2, does not
represent a valid bump solution to (1.2).

Proof. We compute directly from equation (2.2) that

u2(a1) = W (a1) + W (a2 − a1) −W (a1) = W (a2 − a1) .

If a2 − a1 < A, then u2(a1) < 0. But a1 ∈ (0, a2), so u2(x) is not a bump.
Next we establish some results showing the existence of a valid bump in various

cases. Note that if limx→∞ W (x) = 0 (see Figure 2), then we can make a2 arbitrarily
large by choosing h sufficiently close to 0. If a2/2 > x1, then a2 − a1 > 2x1 − a1 >
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a1 > A. Thus, when a2/2 > x1, Proposition 2.4 does not apply, and u2(a1) > 0. In
fact, in this case, we can establish the existence of a bump without hypothesis (H6)
or (H6′), as addressed below in Theorem 2.5. However, as we shall see in subsection
2.4, a2 can also become too large for a bump to exist. This motivates a final existence
condition,

(E3) w(a2 ± x0) < w(0).
As we make h more negative, such that −h grows toward the peak of W , we will also
need to impose (H6) or (H6′) to ensure the existence of a bump.

Theorem 2.5. Assume that (H1)–(H5) hold. Fix h such that (E1)–(E3) hold
and assume that a2/2 > x1. Then the function u2(x) defined by (2.1) with a = a2,
such that −W (a2) = h, is a bump solution to (1.2), with u2(x) > 0 if and only if
x ∈ (0, a2).

Proof. First, recall that a2 > x1, since W (a2) = −h > 0 and W ′(a2) = w(a2) < 0
(see Figure 2). Further, since w(0) < 0 and w(x1) = 0, the hypotheses of the theorem
together with (H2)–(H5) imply that there exist exactly two positive values x′′ > x′ >
x1 such that w(0) = w(x′) = w(x′′), and a2 ∈ (x′ + x0, x

′′ − x0); see Figure 3. This
gives w(0) > w(a2) and a2/2 > x0.

We now show that u2(x) > 0 for x ∈ (0, a2). First, we consider x ∈ (0, x0]. Note
that

u′
2(x) = w(x) − w(a2 − x)(2.4)

from (2.2). In particular, u′
2(0) = w(0) − w(a2) > 0. Since a2 > x′ + x0, we have

a2−x > x′ for all x ∈ (0, x0]. Thus, w(a2−x) < w(x) and u′
2(x) > 0 for all x ∈ (0, x0].

Next, suppose that a2/2 > x1. Now, u′
2(x) = w(x) − w(a2 − x) > 0 on (x0, x1]

as well. This holds because on (x0, x1], w(x) ≥ 0, while a2 − x > a2 − x1 > x1, such
that w(a2 − x) < 0 by (H2). It remains to show that u2(x) > 0 for all x ∈ (x1, a2).
To do this, it suffices to show that u2(x) > 0 for all x ∈ (x1, a2/2], since symmetry
(Proposition 2.1) then gives u2(x) > 0 for all x ∈ (0, a2).

Equation (2.2) can be rewritten for u = u2(x) as

u2(x) = (W (x) −W (a2)) + W (a2 − x),(2.5)

using equation (2.3) and the fact that W (x) is odd. We will show that u2(x) in (2.5)
is the sum of two positive terms for x ∈ (x1, a2/2]. When x1 < x ≤ a2/2, it follows
that a2 − x1 > a2 − x ≥ a2/2 > x1. By construction, W (x) > 0 on [x1, a2]. Hence,
W (a2 − x) > 0 for all x ∈ (x1, a2/2]. Now, consider the first term in u2(x) in (2.5),
namely, W (x) − W (a2), for x ∈ (x1, a2/2]. Since W ′(x) = w(x) < 0 on (x1,∞) by
(H2), and x1 < x ≤ a2/2 < a2, we have W (x) > W (a2) for all x ∈ (x1, a2/2]. Thus,
u2(x) is the sum of two positive terms, and hence is positive, on (x1, a2/2], as claimed.
This gives u2(x) > 0 on (0, a2), as desired.

Finally, to complete the proof, we confirm that u2(x) < 0 for all x ∈ (a2,∞). Note
that since W (a2) = −h > 0, u2(x) < 0 is equivalent to W (x) < W (a2)+W (x−a2) by
equation (2.3). Since W (a2) > 0, we have u2(x) < 0 for all x such that W (x− a2) ≥
W (x). Since W (x) decreases on (x1,∞), this implies that u2(x) < 0 for x− a2 ≥ x1,
namely, x ∈ [a2 + x1,∞). Thus, it remains to consider x ∈ (a2, a2 + x1). We will
show that u′

2(x) < 0 on (a2, a2 +x1), for u′
2(x) given in (2.4), such that u2(x) remains

negative there. Since w(x− a2) > 0 on (a2 + x0, a2 + x1) by (H4), while w(x) < 0 on
this interval by (H2), it is obvious from (2.4) that u′

2(x) < 0 on (a2 + x0, a2 + x1).
It remains only to consider x ∈ (a2, a2 + x0]. Condition (E3) gives w(a2) < w(0), so
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Fig. 3. Graphical representation of Theorems 2.5, 2.7, 2.9, and 2.13. Here, a denotes a2 from
the theorems. (a) Illustration of the hypotheses of the theorems. (b) The relation of w(x), w(a2 −x)
resulting from the proof of Theorem 2.9, if a2/2 ≤ x1. (c) The relation of w(x), w(a2 − x) shown
in Theorem 2.13 if a2/2 ∈ (x1, x∗]. (d) The relation of w(x), w(a2 − x) shown in Theorem 2.13 if
a2/2 > x∗.
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u′
2(a2) < 0. For x ∈ (a2, a2+x0], we have w(x) < w(0) by (E3), while w(x−a2) > w(0)

by (H3). Thus, u′
2(x) remains negative, as desired.

Theorem 2.5 establishes the existence of a bump u2(x) when a2/2 > x1. Next,
we consider the case of a2/2 ≤ x1, corresponding to more negative choices of h.
In this situation, we will prove two different theorems that invoke (H6′) and (H6),
respectively. Note that it is natural to interpret (H6′) as an assumption on the value
of h, for fixed w. On the other hand, (H6) is an assumption about the shape of w,
independent of h. When we assume (H6) below, we restrict the class of w considered,
and we correspondingly restrict the shape of the bump produced (see Theorem 2.9).

Remark 2.6. Note that the proof that u2(x) < 0 for all x ∈ (a2,∞) does not
require a2/2 > x1. Thus, in the proofs of Theorems 2.7 and 2.9 below, we will not
repeat the corresponding arguments.

Theorem 2.7. Assume that w and h are chosen such that (H1)–(H5), (E1)–
(E3), and (H6′) hold and such that a2/2 ≤ x1. Then the function u2(x) defined by
(2.1) with a = a2, such that −W (a2) = h, is a bump solution to (1.2), with u2(x) > 0
if and only if x ∈ (0, a2).

Proof. By symmetry (Proposition 2.1), it suffices to show that u2(x) > 0 on
(0, a2/2]. From the proof of Theorem 2.5, we already have u′

2(x) > 0 on (0, x0].
We will first consider x ∈ (a1, a2/2] and then x ∈ (x0, a1]. Note that by (H6′),
W (a2 − a1) > W (a2), so a2 − a1 > a1, and thus the interval (a1, a2/2] is nonempty.
For x ∈ (a1, a2/2], we have a2 − x ∈ (a1, a2), since

a1 < x < a2/2 ≤ a2 − x < a2 .

Thus, W (a2 − x) > −h > 0, with a similar inequality for W (x). Equation (2.2),
together with the fact that W is odd, therefore gives

u(x) = W (x) + W (a2 − x) + h > W (a2 − x) > −h > 0

for x ∈ (a1, a2/2].
Next, suppose x ∈ (x0, a1]. Note that over the range of positive x-values, the

minimum value of W occurs at x = x0, so

u(x) > W (x0) + W (a2 − x) + h =: F (x) forx ∈ (x0, a1] .(2.6)

F (x0) = u(x0) by comparison of (2.2) and (2.6), and u′(x) > 0 on (0, x0] gives u(x0) >
0, so F (x0) > 0. Next, note that F ′(x) = −w(a2−x), so since w(a2−x0) < w(0) < 0,
it follows that F ′(x0) > 0.

Suppose that for some xf ∈ (x0, a1], F
′(xf ) = 0. Then w(a2 − xf ) = 0, so either

a2 − xf = x0 or a2 − xf = x1 (see Figure 2). In the former case, we would have
xf = a2 − x0 > x1 > a1, however, so this cannot occur, and a2 − xf = x1. Thus,
F ′′(xf ) = w′(a2 − xf ) = w′(x1) < 0. Since F (a1) > 0 by (H6′), the maximum
principle implies that F > 0 on the entire interval [x0, a1].

In summary, u(x) > F (x) > 0 on (x0, a1]. Thus, the proof is complete.
Remark 2.8. Note that hypothesis (H6′) requires a2 − a1 > A. That is, if

a2 − a1 < A, then W (x0),−W (a2), and W (a2 − a1) are all negative terms, and (H6′)
cannot hold. Thus (H6′) ensures that we are in a regime in which Proposition 2.4
does not apply.

To conclude this subsection, we show that under the symmetry hypothesis (H6),
there exists a bump u2(x) that is monotone increasing on [0, a2/2) and monotone
decreasing on (a2/2, a2], for a2/2 ≤ x1.
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Theorem 2.9. Assume that (H1)–(H6) hold. Fix h such that (E1)–(E3) hold
and such that a2/2 ≤ x1. Then the function u2(x) defined by (2.1) with a = a2,
such that −W (a2) = h, is a bump solution to (1.2), with u2(x) > 0 if and only if
x ∈ (0, a2). Moreover, u′

2(x) > 0 on [0, a2/2) and u′
2(x) < 0 on (a2/2, a2].

Proof. Again, from the proof of Theorem 2.5, we have u′
2(x) > 0 on (0, x0].

Now, suppose that a2/2 ≤ x1. By the assumption of the theorem, a2 − x0 > x′ >
x1. Therefore, a2/2 > (x0 + x1)/2 = x∗. Together with (H6), this implies that
w(a2 − x) < w(x) remains true on (0, x∗], that w(a2 − x) = w(x) precisely at x =
a2/2 ∈ (x∗, a2 − x∗), and w(a2 − x) > w(x) on (a2/2, a2] (see Figures 2 and 3(a) and
(b)). Thus, u2(x) > 0 for all x ∈ (0, a2), with u2(a2) = 0, if a2/2 ≤ x1.

Corollary 2.10. Let w = w(x, µ) be continuous in µ ∈ R and set W (x, µ) =∫ x

0
w(t, µ) dt. Assume that w satisfies (H1)–(H5) for all µ in a neighborhood of µ = 0

and that w(x, 0) satisfies (H6). Then there exist µ1 < 0 < µ2 and a function a(µ),
with a(0) = a2 given by −W (a2, 0) = h, such that a bump solution uµ(x) of (1.2)
exists, with uµ(x) > 0 if and only if x ∈ (0, a(µ)), for all µ ∈ (µ1, µ2).

Proof. By the implicit function theorem, since Wx(a2, 0) �= 0, a unique function
a(µ) satisfying W (a(µ), µ) + h = 0 exists near µ = 0, with a(0) = a2. The existence
of the bump solution uµ(x) then follows immediately from the proof of Theorem 2.5,
for |µ| sufficiently small.

Remark 2.11. Without hypothesis (H6), or some other restriction on the behavior
of w(x), there could be an unlimited variety of zeros of u′

2(x) on (0, a2), depending
on the relative rates of change of w to the left and right of x∗. In fact, without some
hypothesis such as (H6) or (H6′), u2(x) could become negative inside (0, a2), and the
bump could fail to exist, as seen in Proposition 2.4. This issue is explored further in
subsection 2.4.

Remark 2.12. The condition (H6) as stated may seem to represent somewhat
restrictive conditions to be achieved as an architecture of synaptic connections in
a biological neuronal network. However, suppose we consider bumps as a form of
memory. It is possible that for a given pattern of past experiences, only certain sub-
networks within a coupled E-I network should be able to form bumps, corresponding
to the particular memories stored in the network. The learning process could consist
of the scaling of synaptic connections and their associated weights to develop particu-
lar architectural patterns. From this viewpoint, restrictions on synaptic architectures
required for the appearance of bumps might be an essential feature of E-I networks,
to prevent spurious overactivity. See the discussion in section 4 for consideration of
related ideas.

2.3. The shape of the bump without (H6) or (H6′). We have already seen
that hypothesis (H6) gives certain monotonicity properties for the bump u2(x) when
a2/2 ≤ x1. We next characterize more generally how the shape of u2(x) depends on
the position of a2, without assuming (H6) or (H6′), when a2/2 > x1.

Theorem 2.13. If a2/2 ∈ (x1, x∗], then u2 has a unique global maximum at
x = a2/2. If a2/2 > x∗, then u′

2(x) has at least three zeroes on (0, a2), including a
local minimum of u2(x) at x = a2/2.

Proof. Suppose that a2/2 > x1. We look for zeroes of u′
2(x), as given in equation

(2.4). From the proof of Theorem 2.5, we already know that u′
2(x) > 0 on (0, x0].

The condition a2/2 > x1 implies that

w(x1) = 0 > w(a2 − x1),(2.7)
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so in fact w(x) ≥ 0 > w(a2−x) for all x ∈ (x0, x1] and u′
2(x) > 0 on (x0, x1]. Suppose

that a2/2 ≤ x∗, the point where w(x) has its minimum (see Figure 3(a)), and define
x̄ by a2 − x̄ = x∗. Then x̄ = a2 − x∗ ≤ x∗. Thus, w(a2 − x) = w(x) at exactly one
value x ∈ (x̄, x∗], namely, at x = a2/2, and this is the only zero of u′

2(x) in (0, a2).
As in the previous case, this is a global maximum for u2(x) (see Figure 3(d)).

We now show that if a2/2 > x∗, then in fact u′
2(x) = w(a2 − x) − w(x) has at

least three zeroes (see Figure 3(c)). To see this, first note that inequality (2.7) still
holds, since we still have a2/2 > x1. However, w(x∗) < w(a2−x∗), since a2−x∗ > x∗
and w(x) has its minimum at x = x∗. Thus, u′

2(x) has at least one zero on (x1, x∗).
For x > x∗, w(x) is increasing by (H3), while w(a2 − x) decreases until x = a2 − x∗,
at which point w(x) > w(a2 − x). Thus, exactly one additional zero of u′

2(x) occurs
on (x∗, a2 − x∗). Since a2/2 > x∗, we have a2 − x∗ > a2/2. As noted earlier, u′

2(x)
has a zero at x = a2/2 from the form of (2.4); hence, this second zero must occur at
x = a2/2, and u′

2(x) has at least one more zero for x > a2 − x∗, by symmetry.
From (2.4), it follows that u′′

2(x) = w′(x) + w′(a2 − x), such that u′′
2(a2/2) =

2w′(a2/2). When a2/2 > x∗, we have w′(a2/2) > 0 by (H3), such that u′′
2(a2/2) > 0;

that is, u2 has a local minimum at a2/2, completing the proof.
Remark 2.14. Examples of bump solutions u2(x) of (2.1) with a2/2 < x∗ and

a2/2 > x∗, respectively, are shown in Figure 4. These plots were generated by solving
(2.1) numerically with a coupling function w(x) defined in a piecewise manner on
[0,∞) as

w(x) =

{ −Kx(x− 1) − ε, x ∈ [0, 1),

−(x− 1 + ε)e−b(x−1), x ∈ [1,∞)
(2.8)

for K, b > 0 and 0 < ε < min{K/4, 1/b}, and then extended to be even on (−∞,∞).
This function satisfies (H1). It also satisfies (H2) and (H4), with x0 = 1

2 [1 −√
1 − 4ε/K] and x1 = 1

2 [1 +
√

1 − 4ε/K] < 1. Assumptions (H3) and (H5) hold
for this w(x) as well, with x∗ = 1/2 and x∗ = 1 + 1/b− ε. Finally, w(x) is symmetric
about x∗ = 1/2 on (x0, x1), satisfying (H6).

From (2.4), no matter what the value of a2, we have u′
2(a2/2) = 0. Thus, it is of

interest to estimate u2(a2/2).
Proposition 2.15. If a2/2 > a1 and u2(x) > 0 on (0, a2), then u2(a2/2) > −h.
Proof. If a2/2 > a1, then a2/2 ∈ (a1, a2), so W (a2/2) > −h (see Figure 2). From

(2.2), this implies

u2(a2/2) = 2W (a2/2) + h > W (a2/2) > −h .

Combining Theorem 2.13 and Proposition 2.15 yields the following result.
Corollary 2.16. If a bump u2(x) exists with a2/2 ∈ (x1, x∗], then the activity

level u2(x) attains a maximum value greater than −h. If a bump u2(x) exists with
a2/2 > x∗, then at the local activity minimum a2/2, the activity level is bounded below
by −h.

2.4. Birth and death of bumps. We have seen that the function u2(x) is
a bump for some values of a2, but may fail to be a bump in some cases, such as
a2 − a1 < A, as in Proposition 2.2. In fact, since limx→∞ w(x) = 0, we will see
below that the interval of a values on which u2(x) is a valid bump is finite. Thus,
a family of bump solutions, parametrized by bump length a, must be born at some
finite value of a and must die at some larger finite value of a. In this subsection,
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Fig. 4. Bump solutions of (2.1) for the coupling function w(x) given in (2.8) and extended in
an even manner. Parameters used are K = 10.0, ε = 0.1, b = 1.0, such that x∗ = 1.9. Left: A bump
with no local minimum, found with h = −0.85, such that a2 = 3.15 < 2x∗. Right: A bump with a
local minimum at a2/2 > x∗, found with h = −0.57, such that a2 = 4.90 > 2x∗. Dashed lines show
the levels of h.

we discuss possible mechanisms by which bumps may be created or destroyed as a
varies (which can be achieved by varying h). We shall see that this does not occur
through a “usual” bifurcation mechanism, such as a saddle-node bifurcation, and
that when bumps arise, they do so with a finite amplitude. This contrasts with the
situation when the coupling function w(x) is derived from recurrent excitation and
lateral inhibition, in which case bump amplitudes and widths may go to zero as a
parameter varies.

In the following analysis, we will always assume a > x1, corresponding to the
possible bump solution u2(x), since u1(x) is never a valid bump. We will also assume
that W (a) > 0, also necessary for a to represent a bump length since h < 0 in (2.3).

In general, there are two types of transitions through which a bump u2(x) may
cease to exist as its size a varies, even without interaction with any other solutions.
One possibility is that a bump may go negative on its interior; that is, it may develop
a dip as in Figure 4, which may continue to drop until the minimum value of u2(x)
on (0, a) passes through 0. We refer to this as the internal tangency mechanism, since
right at the transitional a value, we have u2(x) = u′

2(x) = 0 for some x ∈ (0, a). By
(2.5),

u2(a/2) = 2W (a/2) −W (a).(2.9)

We will use (2.9) to show that u2(a/2) = 0 can occur only at a unique value of a > x1.
Proposition 2.17. There is at most one value of a > x1 for which W (a) > 0

and u2(a/2) = 0.
Proof. Suppose u2(a0/2) = 0 and W (a0) > 0 for a0 > x1. Then W (a0) > 0

implies that W (a0/2) > 0, by (2.9). Thus, a0/2 > A, where A was defined as the
smallest positive value for which W (x) = 0. Moreover, W (a0) = 2W (a0/2) implies
that W (a0) > W (a0/2), so a0/2 < x1 (e.g., Figure 2).

Now, let z(a) = 2W (a/2) −W (a). For a/2 ∈ (A, x1), W
′(a/2) > 0, while a > x1

gives W ′(a) < 0. Thus, z′(a) > 0 and z can have at most one zero with a/2 ∈
(A, x1). Since a0/2 must lie in this interval whenever u2(a0/2) = 0, this concludes the
proof.
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Proposition 2.17 rules out the possibility that a family of bump solutions both
arises and dies by passage of u2(a/2) through 0. However, it does not rule out the
possibility that the birth and the death of the family are associated with dips on the
interior of (0, a) switching from negative to positive and from positive to negative,
respectively. Indeed, it is possible that u2(a/2 − δ) = 0 for some δ ∈ (0, a/2), with
u2(a/2+δ) = 0 as well by Proposition 2.1. Thus, there are infinitely many positions at
which interior zeros of u2 could develop, always occurring in groups of even numbers
of dips, placed symmetrically about a/2.

An alternative to the internal tangency mechanism for birth and death of bumps
is that u′

2(0) (and by symmetry, u′
2(a)) may become zero and then negative (positive)

as a varies. We refer to this transition as the boundary tangency mechanism. Note
that u′

2(0) = w(0) − w(a), where a is the length of u2(x). Thus, u′
2(0) < 0 for

a ∈ (x1, x
′), and, since limx→∞ w(x) = 0, u′

2(0) < 0 for all a > x′′ (see Figure 3).
Hence, the boundary tangency mechanism ensures that the family of bumps can exist
only on a finite interval of positive a values.

Note further that u′′
2(0) = w′(0) + w′(a) = w′(a). If u′

2(0) = 0 for some a at
which a transition between bump existence and bump nonexistence occurs, then we
must have u′′

2(0) > 0 (see Figure 8 below). This implies that the boundary tangency
mechanism can apply only for a values such that w′(a) > 0, corresponding to bump
death for large a as −h is lowered toward 0 (see Figures 2 and 3). However, as we have
noted, u′

2(0) < 0 for a sufficiently close to (but above) x1. Thus, bumps must be born
through an internal transition from negativity to positivity (the internal tangency
mechanism discussed above) as a increases sufficiently beyond x1. We summarize the
above discussion in the following proposition, stated in terms of loss of existing bumps
as a decreases or increases.

Proposition 2.18. Suppose there exists a2 such that a bump solution u2(x)
exists, with u2(x) > 0 precisely for x ∈ (0, a2). Then as a decreases from a2, the
bump is lost through the internal tangency mechanism. As a increases from a2, the
bump is lost through either the internal tangency mechanism or the boundary tangency
mechanism. In the former case, at least one of the internal tangencies must be at
x �= a/2.

Remark 2.19. These birth and death mechanisms suggest that there may exist
multibump solutions that satisfy (1.2). The existence and stability of such solutions
remain open for future investigation. Note that the existence of multibumps cannot
be addressed using (2.1) directly, since multibumps are positive on multiple disjoint
regions.

We conclude this subsection by considering a numerical example of bump birth
and death. The example coupling function that we introduce here will also be con-
sidered in section 3. Define

w(x) = (x2 − c)w0(x) := (x2 − c)(De−dx2 −Be−bx2

).(2.10)

We will take c = 0.5, D = 11, d = 0.05, B = 6, and b = 0.035 as our parameter
values unless otherwise stated. This satisfies (H1)–(H5); the functions w0(x) and
w(x) for these parameters appear in Figure 5. We also show the corresponding func-
tion W (x) =

∫ x

0
w(t) dt on a range of positive x values. Note that in this example,

limx→∞ W (x) > 0.
For this example, we gradually increase a. We plot u(a/2) versus a in Figure

6, where u satisfies equation (2.2) with h such that equation (2.3) holds. A bump
solution is formed when u(a/2) reaches 0, at about a = ab ≈ 7.14.
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Fig. 5. Coupling functions from (2.10). The left plot shows w(x), w0(x) with parameter values
as given in the text following (2.10). The right plot shows W (x) for these parameters. The dashed
lines correspond to W (x) = 0 and to two special values of −h for which bumps exist with spatially
inhomogeneous coupling, discussed in section 3.
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Fig. 6. The value of u at a/2 plotted versus a for w(x) from (2.10). Note that u(a/2) > 0 is
necessary but not sufficient for bump existence. In this example, a family of bumps is born, as h
(and thus a) is varied, as soon as a increases through ab, such that u(a/2) becomes positive. The
bumps must die by a different mechanism, since u(a/2) > 0 for all a > ab.
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Fig. 7. Solution u2(x) at birthpoint ab ≈ 7.14 (left), and blowup (right) showing internal
tangency of the solution with the x-axis.

In Figure 7, we plot the solution u2(x) with a = ab. As a increases from ab, the
bumps that are born persist for an interval of a values; those found for two values
of a appear in the top panels of Figure 8. Figure 8 also displays the death of the
family of bumps as a continues to increase. At a = ad ≈ 12.89, w(a) = w(0) such
that u′

2(0) = u′
2(a) = 0. For a > ad, bumps cannot exist; careful inspection shows

that a representative solution to equations (2.2), (2.3), shown in the lower right plot,
goes negative for small x > 0 and for x close to, but less than, a. This is not a valid
bump solution.

2.5. Linear stability of the bump and bistability. To analyze the linear
stability of the bump solution u2(x), we linearize (1.2) about u2(x). To compute the
correct form of linearized equation, substitute u = u2(x) + v(x, t) into (1.2). This
yields

∂u

∂t
=

∂v

∂t
= −u2(x) − v(x, t) +

∫ ∞

−∞
w(x− y)H(u2(y) − v(y, t)) dy + h.

Derivation of the linear equation satisfied to first order by v requires expansion of the
Heaviside function H about u2. The result of this expansion yields [29, 19]

∂v
∂t

= −v +
w(x)[v(0, t) − u2(0)]

|u′
2(0)| +

w(x− a2)[v(a2, t) − u2(a2)]
|u′

2(a2)|

= −v +
w(x)v(0, t)

u′
2(0)

− w(x− a2)v(a2, t)
u′

2(a2)
,

(2.11)

since u2(0) = u2(a2) = 0 by construction. Note that if v has its zeros in the same
place as those of u, that is, v(0) = v(a2) = 0, then v′ = −v and linear stability is
immediate.

More generally, for linear stability, we consider perturbations of the form v(x, t) =
eλtv(x). Substitution of this expression into (2.11) and cancellation of eλt terms yield
the algebraic eigenvalue equation

(λ + 1)v(x) = w(x)v(0)/u′
2(0) − w(x− a2)v(a2)/u

′
2(a2).(2.12)

Recall that u′
2(x) = w(x) − w(x− a2). Thus, (2.12) is equivalent to

(λ + 1)v(x) =
w(x)v(0) + w(x− a2)v(a2)

w(0) − w(a2)
.(2.13)
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Fig. 8. Solutions to equations (2.2), (2.3) at ε = 0 : a = 7.24 (upper left) just after bump birth,
a = 12 (upper right) just before bump death, a = 12.89 (lower left) where bump death occurs, and
a = 13 (lower right) just after bump death. Note that the solution shown in the lower right is not a
valid solution to (2.1).

Eigenvalues occur at those λ values for which (2.13) has a nontrivial solution
v(x). (Note that any such solution decays to 0 asymptotically, since w(x), w(x− a2)
do.) Substitution of x = 0 and x = a2 into (2.13) yields a pair of equations in the
unknowns v(0) and v(a2), namely,

(λ + 1)v(0) =
w(0)v(0) + w(a2)v(a2)

w(0) − w(a2)
,(2.14)

(λ + 1)v(a2) =
w(a2)v(0) + w(0)v(a2)

w(0) − w(a2)
.

If v(a2) = 0, then v(0) = 0, and only the trivial solution v ≡ 0 satisfies (2.13). We
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have already observed that perturbations with v(0) = v(a2) = 0 cannot cause an
instability, based on (2.11). Thus, assume that v(a2) �= 0. We use the first equation
in (2.14) to write v(0) as a function of v(a2). Upon substitution of this expression into
the second equation in (2.14), cancellation of the nonzero quantity v(a2) multiplying
each term, and algebraic manipulation, we obtain the following quadratic equation in
λ:

λ2 (w(0) − w(a2))
2

+ λ
(
(w(0) − w(a2))

2
+ w2(a2) − w2(0)

)
= 0.(2.15)

The solution λ = 0 of (2.15) corresponds to translation invariance of the bump. The
other solution of (2.15) satisfies

λ =
2w(a2) (w(0) − w(a2))

(w(0) − w(a2))
2 .(2.16)

Recall that w(a2) < w(0) < 0. Thus, the unique solution λ of equation (2.16) is real
and negative, and the bump solution is linearly stable.

Note from (1.2) that u = c := h +
∫∞
−∞ w(x) dx is a stationary, spatially uniform

solution, provided that c > 0. When this solution exists, the same linearization cal-
culation that yields (2.11) yields the linearized stability equation dv/dt = −v, since
for small perturbations c−v > 0, such that H(c−v) = 1. Thus, the spatially uniform
state is linearly stable, when it exists, which implies that (1.2) features bistability, at
least in terms of linear analysis. This is consistent with the findings of [20], in which a
network of bursting thalamic cells with an effectively off-center form of coupling dis-
played bistability between a spatially localized and a spatially uniform state. In [20],
however, the spatially uniform state corresponded to a complete absence of activity.

3. Spatially inhomogeneous coupling. It has been argued that the coupling
between cells should be spatially inhomogeneous, reflecting local structural variations
[2, 3]. In this section, we use analysis and numerics to consider how such a modification
affects properties of bump solutions of (1.2). To this end, we consider bump solutions
of the equation

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)p(y)H(u(y, t)) dy + h.(3.1)

To allow for concrete calculations and numerics, we mostly consider a spatial inho-
mogeneity used, for example, in [2], namely,

p(x) = 1 + ε(1 + cos(ρx + φ)) .(3.2)

Without loss of generality, we take ρ = 1.
In subsection 3.1, we will consider the special case of φ = 0, restricting our

attention to bumps on (0, a). In subsection 3.2, we will address the general bump
existence question for p(x) given by (3.2). We shall see that, in contrast to the
spatially homogeneous case, the presence of inhomogeneity implies that for fixed p(x),
for each bump starting point, there is only a small, discrete set of background input
levels for which bumps can occur, each with a unique corresponding size. Based on
the mechanisms that we observe with p(x) given by (3.2), we expect qualitatively
similar results for nonperiodic p(x) = 1 + εp0(x) (see Remark 3.4 at the end of the
section). Further, at least for the case of p(x) given by (3.2) and w(x) given by (2.10),
we find that among the possible bump sizes, there is a certain invariant size selected
independent of φ and of bump starting position. Possible functional implications of
these results are considered in the discussion in section 4.
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3.1. Bumps on (0, a) with no phase shift (φ = 0). Note that spatial inho-
mogeneity in coupling may destroy spatial translation invariance of bump solutions.
For clarity, we first consider the special case of bumps on (0, a) with phase shift φ = 0.
We will illustrate the key observation that for a fixed spatial pattern of coupling (fixed
ρ and φ) and a fixed starting point of an activity bump (here x = 0), there is only
a small, discrete set of possible bump sizes that can be selected. That is, the spatial
inhomogeneity induces a form of bump pinning.

As previously, a bump must satisfy u(0) = u(a) = 0 and u(x) > 0 if and only if
x ∈ (0, a), for some positive number a. If a bump solution u(x) exists for some a, the
Heaviside function H in equation (3.1) implies that u(x) must satisfy

u(x) =

∫ a

0

w(x− η)p(η) dη + h(3.3)

for that a. Thus, to find a bump solution, we first seek a for which u(0) = u(a) = 0,
with u(x) specified by (3.3).

The corresponding equations are

0 =

∫ a

0

w(η)p(η) dη + h(3.4)

and

0 =

∫ a

0

w(a− η)p(η) dη + h.(3.5)

Subtracting these two equations, i.e., (3.5)−(3.4), yields

g(a) :=

∫ a

0

w(a− η)p(η) dη −
∫ a

0

w(η)p(η) dη = 0.(3.6)

To find candidate values of a, we first seek solutions of g(a) = 0, given by∫ a

0

w(η)p(η) dη =

∫ a

0

w(a− η)p(η) dη.(3.7)

Now, from the substitution y = a− η, note that∫ a

0

w(a− η)p(η) dη =

∫ a

0

w(y)p(a− y) dy.

But p(a − y) = 1 + ε(1 + cos(a − y)) = 1 + ε(1 + cos a cos y + sin a sin y). Hence, if
a = 2nπ for any integer n, then p(a− y) = p(y), and we find

g(2nπ) =

∫ a

0

w(y)p(y) dy −
∫ a

0

w(η)p(η) dη = 0.

Thus, a = 2nπ solves g(a) = 0 for any integer n (see Figures 9 and 11). However, we
also need (3.4), (3.5) to hold such that u(0) = 0 and u(a) = 0, which occurs only for

those special values of n such that −h =
∫ 2nπ

0
w(η)p(η) dη (=

∫ 2nπ

0
w(2nπ− η)p(η) dη

since g = 0), which may or may not be positive, as required.
Remark 3.1. This does not imply there is a special biological significance to bump

sizes that are even integer multiples of π. If ρ �= 1, then other zeros result here. The
point is that the nature of the spatial variation p(x) selects possible bump sizes.
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Fig. 9. The function g(a), defined in (3.6), for w(x) from (2.10) with our usual parameter
values. Note that g(0) = g(2π) = g(4π) = 0 and that there are other zeros of g that are not even
integer multiples of π.

There also may be other solutions of g(a) = 0. We seek these numerically. To do
so, we apply Matlab directly, and we also check our results by using XPPAUT [12]
to solve an ordinary differential equation for g(a), derived in the second subsection of
the appendix.

We consider now the coupling function w(x) defined in equation (2.10) in the
previous section and shown in Figure 5, namely,

w(x) = (x2 − c)w0(x) := (x2 − c)(De−dx2 −Be−bx2

),

with c = 0.5, D = 11, d = 0.05, B = 6, and b = 0.035 as usual.

The resulting g(a), for ε = 0.01, appears in Figure 9. Numerically, the zeros of
g(a) in the set of positive a are {2π, 7.25, 4π, 14.23, 6π, . . .}, where the zeros that are
not integer multiples of π form a single sequence in which the difference between sub-
sequent elements tends to 2π, since w(x) tends to 0 as x → ∞. We find qualitatively
similar results, namely, a countable collection of isolated zeros with similar behavior
as a → ∞, for a variety of other parameter sets for w(x) with ε > 0.

We note that in general, g′(0) = g′′(0) = g′′′(0) = 0 (see subsection 5.2 of the
appendix for a proof). Moreover, we find from (5.8) in the appendix that

g(4)(a) = −g′′(a) − 3w′′(a)p′(a) − 2w′(a)p′′(a) + w′′′(a)(p(0) − p(a)),
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so g(4)(0) = 0, while

g(5)(a) = −g′′′(a)− 4w′′′(a)p′(a)− 5w′′(a)p′′(a)− 2w′(a)p′′′(a) +w(4)(a)(p(0)− p(a)),

so g(5)(0) = −5w′′(0)p′′(0) = 5εw′′(0) > 0. This gives a sense of the behavior of g
near a = 0, which depends on ε.

Since p(x) = 1 +O(ε), it is obvious that the zeros of g do not depend on ε. More
explicitly, the function g(a) defined in (3.6) can be rewritten as

g(a) =

∫ a

0

w(η)p(a− η) dη −
∫ a

0

w(η)p(η) dη.

Upon substitution of definition (3.2) for p with ρ = 1 and φ = 0 and application of a
trigonometric identity for cos(a− η), this yields

g(a) = ε

[
(cos a− 1)

∫ a

0

w(η) cos(η) dη + sin a

∫ a

0

w(η) sin(η) dη

]
,(3.8)

which will also be useful below.
Once we have found the zeros of g for a particular choice of parameters (including

ε), it remains to check whether these really correspond to a values for which (3.4),
(3.5) hold, for some h < 0. Only in that case will a bump possibly exist. Note that
we restrict further to those a values such that

d

da

∫ a

0

w(η)p(η)dη = w(a)p(a) < 0,(3.9)

since only a2, but not a1, gives a valid bump in the ε = 0 case. In the example
shown, the zeros a ≈ 7.25 and a = 4π of g are the only ones which satisfy (3.4), (3.5),
and (3.9) for some h < 0. The corresponding h values for ε = 0 are h ≈ −76.09
and h ≈ −26.45, respectively, although these depend on ε. The intersections of these
values of h with W (x) for ε = 0 are displayed in Figure 5. In Figure 10, we plot the
corresponding bump solution for a ≈ 7.25 with ε = 0.1. Figure 11 shows the bump
solutions for a = 4π with ε = 0, 0.1, and 0.2, respectively. Note that the bump with
a ≈ 7.25 loses its symmetry for ε > 0, while the bump with a = 4π is symmetric
about a/2 = 2π for all ε by the 2π-periodicity of cos(x) and sin(x). Further, in both
cases, the bump widths are independent of ε.

3.2. General case: Bumps on (b1, b2) with arbitrary φ. In this section,
we will arrive at the following result: Given a spatial inhomogeneity of coupling of the
form (3.2), with φ fixed, for any bump starting point b1, there is a small, discrete set
of possible bump sizes. Moreover, there is a subset of these sizes (possibly empty, but
nonempty for the main example that we have been considering) which are possible
for all choices of b1 and φ.

In the general case, the bump existence equations become

0 =

∫ b2

b1

w(b2 − η)p(η) dη + h(3.10)

and

0 =

∫ b2

b1

w(b1 − η)p(η) dη + h,(3.11)
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Fig. 10. Solution at a ≈ 7.25 and ε = .1 (left) and blowup (right). Note that the solution is
not symmetric around x = a
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when ε > 0 and a is not an even multiple of π.
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Fig. 11. Solutions at a = 4π and ε = 0 (solid curve), ε = .1 (dashed curve), and ε = .2 (long
dashed). Note that solutions are symmetric around x = a

2
when ε > 0 and a is an even multiple of

π.

where we use (b1, b2) to denote the interval on which the bump is positive to avoid
confusion with our earlier use of a1, a2. Again, we subtract to obtain

0 =

∫ b2

b1

w(b2 − η)p(η) dη −
∫ b2

b1

w(b1 − η)p(η) dη.(3.12)

We seek solutions of (3.12), which are exactly the solutions of the following equa-
tion, attained by change of variables and by setting zi = bi − φ for i = 1, 2:

0 = g(z1, z2) :=

∫ z2−z1

0

w(y)p(b2 − y) dy +

∫ z2−z1

0

w(y)p(b1 − y) dy.(3.13)

It is not apparent by inspection that g(z1, z2) as defined in (3.13) is a function of z1, z2

only. However, using the definition of p in (3.2) and trigonometric sum and difference
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Fig. 12. The function g(z1, z2) given in (3.14). Each single curve in each plot shows g(z1, z2)
versus z2−z1 for fixed z1. Different curves correspond to different z1 values. Note that z2−z1 ≈ 7.25
is a zero of g(z1, z2) for all z1. The right plot shows a closer view around z2 − z1 ≈ 7.25, with fewer
curves shown than on the left.

identities, one can calculate that

g(z1, z2) = ε

∫ z2−z1

0

w(y) [cos y(cos z2 − cos z1) + sin y(sin z2 + sin z1)] dy.(3.14)

Note that (3.8) corresponds to a special case of (3.14), with z1 = 0. Further, as noted
in subsection 3.1, the zeros of g(z1, z2) are independent of ε > 0.

Again, the realizable bump sizes, determined by (3.10), (3.11) with the restriction
h < 0, are a subset of the set of the zeros of g. For fixed φ, if we start with b1 = φ
(that is, z1 = 0), then we recover exactly the bump sizes found with φ = 0. As b1 is
varied from φ (or, equivalently, z1 is varied from 0), then we may pick out different
bump sizes. Some of these, however, may be invariant under changes in z1. Indeed,
Figure 12 shows plots of g(z1, z2) for w(x) from (2.10) and p(x) from (3.2). To produce
this figure, z1 was systematically varied (increasing from 0), and for each fixed z1, z2

was varied from z1 up to z1 + 10 to form an individual curve. The figure shows the
resulting g(z1, z2) values for each fixed z1 plotted versus z2 − z1; that is, each curve
has been translated so that it begins at z2 − z1 = 0, with g = 0 correspondingly. The
value z2 − z1 = z∗ ≈ 7.25 gives a zero of g, corresponding to the existence of a bump
solution with h < 0, for each starting position z1. The close-up in the right panel of
the figure shows how ∂g(z1, z1 + z∗)/∂z2 passes through 0 as z1 is varied. Note that
similar results were obtained with various other choices of parameter values in w(x).

Remark 3.2. Since the bump size z2 − z1 ≈ 7.25 is realized for all z1, and since
zi = bi − φ, this size is invariant under changes in φ. That is, for any choice of φ and
starting position b1, if b2 ≈ b1 + 7.25, then there is a bump solution u(x) of width
approximately equal to 7.25 such that u(x) > 0 precisely for x ∈ (b1, b2). Although
this solution retains its width, it will occur at different levels of h for different choices
of b1, b2, φ.
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Fig. 13. Components of (3.16) for w(x) given in (2.10) with usual parameter values. The left
plot shows I1(δ) + I2(δ) (middle curve, solid), I1(δ) (upper curve, dashed), and I2(δ) (lower curve,
dash-dotted), graphed versus δ. Note that zeros δ of I1(δ) that are not even multiples of π, such as
δ ≈ 7.25, are also zeros of I2(δ). Since the plot appearance suggests that I1(δ), I2(δ) might be shifted
translates of each other, we illustrate graphically in the right plot that this is not the case.

To understand why there is an invariant bump size, set δ = z2−z1 in (3.14), such
that g becomes

g(z1, δ) = ε

∫ δ

0

w(y) [ cos z1 (cos y(cos δ − 1) + sin y sin δ)(3.15)

+ sin z1 (sin y(cos δ + 1) − cos y sin δ)] dy.

The function g(z1, δ) has some obvious nontrivial zeros, such as (z1, δ) = ((4m +
3)π/4, (4n + 1)π/2) and (z1, δ) = ((4m + 1)π/4, (4n + 3)π/2) for any integers m,n,
but these do not give bumps, as they do not solve (3.10), (3.11).

Note that when z1 = 0, the definition of g(z1, δ) in (3.15) reduces to (3.8) for g(a)
in the φ = 0 case, which for w(x) given by (2.10) with our usual parameter values has
a zero at a = z∗ ≈ 7.25. Indeed, we can factor out cos z1 from the first term on the
right-hand side of equation (3.15) and sin z1 from the second term to write

g(z1, δ) = ε(cos z1I1(δ) + sin z1I2(δ)),(3.16)

where I1(δ) = 0 for δ = 2π, z∗, 4π, . . . . If there are zeros of I2(δ) within this set, then
these represent potential bump sizes that are independent of starting position and
phase (which were encoded in z1). Numerical experiments suggest that the zeros of
I1(δ) that are not even multiples of π are also zeros of I2(δ); see Figure 13.

Remark 3.3. Although we have not explored what happens with coupling func-
tions w(x) other than that given in (2.10), the form of (3.14), (3.15) strongly suggests
that the phenomena observed here do not depend on the exact form of w(x).

Remark 3.4. For general p(x) = 1 + εp0(x) with p0(x) not necessarily periodic,
(3.10), (3.11) still apply, with bumps occurring when both are satisfied. One can also
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solve (3.12) to find candidate bump endpoints b1, b2, with solutions independent of
ε as above. Thus, we expect that for each fixed p0(x) and bump starting position
b1, there will be a small number of possible bump sizes selected. We do not know
whether or not there will exist an invariant size, independent of starting position, for
general p0(x), however.

4. Discussion. In this paper, we consider localized, stationary activity bump
solutions of the rate model (1.1), which describes the evolution of activity in a neu-
ronal population. Following previous work stemming from [1], we take f(u(y, t)) =
H(u(y, t)), the Heaviside step function, which is an analytically tractable case that
has been shown to organize solution structure for some more general forms of f [15].
A key new feature in this paper is that the coupling function w(x) represents off-
center coupling. Off-center coupling models the effective pattern of synaptic inputs to
an excitatory population in an excitatory-inhibitory (E-I) network with no recurrent
excitation, but rather E to I, I to E, and I to I connections.

In this setting, under certain assumptions, we prove that for nonzero h, (1.1)
has exactly one time-independent, localized solution satisfying u(x) > 0 if and only
if x ∈ (0, a) for a positive, finite constant a. This shows that coupling need not
be locally positive to allow for the existence of such a sustained, localized solution.
Earlier results showed that the combination of recurrent excitation and long-range
inhibition yields the existence of a pair of bump solutions, a linearly stable wider one
and an unstable narrower one, to (1.1) [1, 13, 17, 4, 5]. Here we find that for off-center
coupling, the unstable bump does not exist, while the single bump that does exist
is linearly stable. The nonlinear stability of these bump solutions remains open for
investigation.

We show that the range of activity levels h over which bumps can exist, and
correspondingly the range of possible bump widths, is finite. Since there is at most
a single bump for each h, this brings up the question of how bumps are born and
disappear as h varies. We have discussed two types of mechanisms by which this may
occur. One mechanism, which can apply to bump birth or death, is the appearance of
a point or points inside (0, a) at which u becomes negative. This fits in well with our
results showing that a bump can develop an internal local minimum while remaining
a valid bump, with u > 0 on (0, a). The second mechanism, which can generate
only bump death, not bump birth, is a loss of positivity at the edges x = 0 and
x = a of u. Numerically, we observe bump birth via the former mechanism and bump
death via the latter. These mechanisms will not occur when the coupling function
w(x) is not off-center (i.e., when there is recurrent excitation). Further, we do not
consider temporally dynamic solutions. It is possible that there may be interactions
of time-dependent solutions with stationary bumps, which remain to be explored.

We also do not consider temporal details of synaptic dynamics. Our results require
sufficiently strong long-range inhibition for bumps to exist with off-center coupling.
Thus, our analysis supports the idea that when long-range inhibition is weak [10],
slow synaptic dynamics may be necessary to allow for localized activity [20]. Even
richer forms of pattern formation can be expected when models incorporating such
additional features are considered in future work.

In section 4, we allow for spatial variations in coupling strength, which may
correspond to regional structural variations in the brain [2]. Numerically, we observe
that this induces bump pinning, such that for each fixed starting position, bumps
exist for only a small, discrete set of background input levels h, each with a single
corresponding width. Moreover, a unique invariant width is selected, which is possible
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at all starting positions. The form of the relevant equations suggests that these results
do not depend on the exact form of the coupling function w(x) or on the fact that it is
off-center, although this remains to be thoroughly explored. We provide mathematical
insight into this size invariance (e.g., Figure 13), but we do not provide analytical proof
that this size invariance must occur.

Is it physiologically plausible that spatial inhomogeneities in coupling strength
could so severely limit the possible background input levels needed for bumps? We
can only speculate on this issue. Since it is believed that attention has significant
effects on neuronal activity across wide areas (for example, [11]), it seems possible
that the background input level to a brain region could be related to attention. We
know from experience that attention is needed to allow for effective working memory
or navigation, for example; one needs to first pay attention to a stimulus if one wishes
to remember it, and one needs to maintain focus on the memory of this stimulus to
keep it “in mind” until it is internalized. Perhaps attention is the process of bringing
overall network activity in an appropriate brain region to a level at which a bump can
form and subsequently maintaining this level to sustain the localized bump. Since
bump sizes are selected by integral conditions relating the spatially homogeneous and
inhomogeneous parts of the coupling pattern, perhaps some part of cognitive decline
with aging or disease could be associated with a loss of effectiveness of a subset of
synaptic connections, which could compromise the “orthogonality” of the system.

Similarly, while a severe limitation on the number of possible bump sizes might
initially seem computationally restrictive, there would be advantages to this limita-
tion. In particular, suppose that only a unique bump size were realizable in a certain
brain area and that bumps were always symmetric about their centers. If an activity
level u > 0 were observed from one cell in that area (e.g., by a neuron postsynaptic
to it from another area), this would immediately indicate the exact distance of the
presynaptic cell from the center of any bump to which it belonged, and activity levels
of two cells would suffice to indicate exactly which other cells were in the bump and
with which activity levels. This allows for highly efficient decoding by the postsy-
naptic cell. Note that we observe the development of asymmetric bumps when the
coupling is spatially inhomogeneous and the bump length is not an even integer mul-
tiple of 2π. Even without symmetry, inputs from a small number of cells in a bump
would effectively convey information about the entire bump. Of course, this requires
that the postsynaptic cell somehow “knows” that a bump exists in the presynaptic
area, and is highly speculative, but nonetheless it suggests that there might be some
computational relevance to the bump pinning phenomenon that we have observed.

5. Appendix.

5.1. Coupling profile. The activity levels uE(x, t) and uI(x, t) of coupled ex-
citatory and inhibitory populations satisfy the model equations [28, 1, 19]

∂uE

∂t = −uE + wEE ∗ fE(uE) − wIE ∗ fI(uI) + hE ,

τ ∂uI

∂t = −uI + wEI ∗ fE(uE) − wII ∗ fI(uI) + hI ,
(5.1)

where w ∗ f(u) denotes the convolution
∫∞
−∞ w(x− y)f(u(y, t)) dy, fi(u) is the firing

rate function for population i, and wij denotes the synaptic connection function from
population i to population j, which we take here to be nonnegative for all i, j. We
consider (1.1) to represent a reduction of (5.1), with wEE ≡ 0, to a single equation for
the activity level of the excitatory population. The connection function w(x) that we
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consider in (1.1), as shown in Figure 1, corresponds to the time-independent input to
the excitatory population that results when precisely those excitatory cells at x = 0
are active.

To derive the function shown in Figure 1, we therefore set the time derivatives in
system (5.1) to zero. This gives uE = hE − wIE ∗ fI(uI). We assume hE > 0 and
aim for an activity profile of uE which has the form of w(x) shown in Figure 1. This
will imply that the activity of cells at x = 0 has the desired effect on the activity
of the other cells in the excitatory population. For simplicity, assume that wIE(x)
has a simple profile; for example, suppose that each inhibitory cell inhibits only those
excitatory cells that share its x-coordinate. Then we seek an activity profile of uI

which has the qualitative form of −w(x), for w(x) shown in Figure 1.
Time-independence implies that uI = hI +wEI ∗ fE(uE)−wII ∗ fI(uI). Further,

the assumption that only those cells at x = 0 are active gives

uI(x) = hI + wEI(x) − wII ∗ fI(uI),(5.2)

although other positive coefficients of wEI may result from non-Heaviside choices of
fE . Thus, the mathematical justification of off-center coupling for (1.1), as in Figure
1, may be achieved by finding a consistent solution of (5.2) having the qualitative
form of −w(x), for an appropriate firing rate function fI . Note that (5.2) has a form
very similar to that of the steady state equation (2.1) analyzed in this paper, but
with a spatially varying input function, as studied, for example, in [1]. The desired
solution would be positive on (−∞,−b) ∪ (−a, a) ∪ (b,∞) for some b > a > 0. The
proof of the existence of such a solution remains open.

5.2. Derivation of ODE. Recall that for p(x) = 1 + ε(1 + cosx), we define

g(a) =

∫ a

0

w(a− η)p(η) dη −
∫ a

0

w(η)p(η) dη .(5.3)

Thus, using integration by parts, the fact that w(x) is even, and the fact that w′(0) =
0, we have

g′(a) = p(a)(w(0) − w(a)) +
∫ a

0
w′(a− η)p(η) dη

= w(a)(p(0) − p(a)) +
∫ a

0
w(a− η)p′(η) dη.

(5.4)

Similarly,

g′′(a) = −w(a)p′(a) + w′(a)(p(0) − p(a)) +

∫ a

0

w(η − a)p′′(η) dη(5.5)

and

g′′′(a) = − 2w′(a)p′(a) − w(a)p′′(a) + w′′(a)(p(0) − p(a)) + w(a)p′′(0)(5.6)

+

∫ a

0

w(η − a)p′′′(η) dη .

But since

p′′′(η) = −p′(η),

(5.6) and (5.4) can be combined to give

g′′′ + g′ = w(a)[p(0)−p(a)+p′′(0)−p′′(a)]− 2w′(a)p′(a)+w′′(a)(p(0)−p(a)) .(5.7)
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Finally, the fact that

p′′(x) = −ε cosx

yields p(x) + p′′(x) = 1 + ε for any x, such that p(0) + p′′(0) − (p(a) + p′′(a)) = 0.
Thus, the ODE (5.7) simplifies to

g′′′+g′ = −2w′(a)p′(a)+w′′(a)(p(0)−p(a)) = ε(2w′(a) sin a+w′′(a)(1−cos a)).(5.8)

Note that from (5.3), (5.4), (5.5), (5.6), it follows that

g(0) = g′(0) = g′′(0) = g′′′(0) = 0 .
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