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We develop geometric dynamical systems methods to determine how var-
ious components contribute to a neuronal network’s emergent population
behaviors. The results clarify the multiple roles inhibition can play in pro-
ducing different rhythms. Which rhythms arise depends on how inhibi-
tion interacts with intrinsic properties of the neurons; the nature of these
interactions depends on the underlying architecture of the network. Our
analysis demonstrates that fast inhibitory coupling may lead to synchro-
nized rhythms if either the cells within the network or the architecture
of the network is sufficiently complicated. This cannot occur in mutually
coupled networks with basic cells; the geometric approach helps explain
how additional network complexity allows for synchronized rhythms in
the presence of fast inhibitory coupling. The networks and issues con-
sidered are motivated by recent models for thalamic oscillations. The
analysis helps clarify the roles of various biophysical features, such as
fast and slow inhibition, cortical inputs, and ionic conductances, in pro-
ducing network behavior associated with the spindle sleep rhythm and
with paroxysmal discharge rhythms. Transitions between these rhythms
are also discussed.

1 Introduction

Neuronal networks often exhibit a rich variety of oscillatory behavior. The
dynamics of even a single cell may be quite complicated; it may, for exam-
ple, fire repetitive spikes or bursts of action potentials, each followed by a
silent phase of near-quiescent behavior (Rinzel, 1987; Wang & Rinzel, 1995).
The bursting behavior may wax and wane on a slower timescale (Destexhe,
Babloyantz, & Sejnowski, 1993; Bal & McCormick, 1996). Examples of pop-
ulation rhythms include synchronous behavior, in which every cell in the
network fires at the same time, and clustering, in which the entire population
of cells breaks up into subpopulations or blocks; the cells within a single
block fire synchronously while different blocks are desynchronized from
each other (Golomb & Rinzel, 1994; Kopell & LeMasson, 1994). Of course,
much more complicated population rhythms are also possible (Traub &
Miles, 1991; Terman & Lee, 1997). Activity may also propagate through the
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network in a wavelike manner (Kim, Bal, & McCormick, 1995; Destexhe,
Bal, McCormick, & Sejnowski, 1996; Golomb, Wang, & Rinzel, 1996; Rinzel,
Terman, Wang, & Ermentrout, 1998).

A network’s population rhythm results from interactions among three
separate components: the intrinsic properties of individual neurons, the
synaptic properties of coupling between neurons, and the architecture of
coupling (i.e., which neurons communicate with each other). These com-
ponents typically involve numerous parameters and multiple timescales.
The synaptic coupling, for example, can be excitatory or inhibitory, and its
possible turn-on and turn-off rates can vary widely. Neuronal systems may
include several different types of cells, as well as different types of cou-
pling. An important and typically challenging problem is to determine the
role each component plays in shaping the emergent network behavior.

In this article we consider recent models for thalamic oscillations (see, for
example, Destexhe, McCormick, & Sejnowski, 1993; Steriade, McCormick,
& Sejnowski, 1993; Golomb, Wang, & Rinzel, 1994; Terman, Bose, & Kopell,
1996; Destexhe & Sejnowski, 1997). The networks consist of several types of
cells and include excitatory as well as both fast and slow inhibitory coupling.
One interesting property of these networks is that they exhibit very different
rhythms for different parameter ranges. For some parameter values, the net-
work behavior resembles that of the spindle sleep rhythm: one population
of cells is synchronized at the spindle frequency, while another popula-
tion of cells exhibits clustering. If a certain parameter, corresponding to the
strength of fast inhibition, is varied, then the entire network becomes syn-
chronized. This resembles paroxysmal discharge rhythms associated with
spike-and-wave epilepsy. In other parameter ranges, the network behavior
is similar to that associated with the delta sleep rhythm; in this case, each
cell exhibits an entirely different behavior from before.

We develop geometric dynamical systems methods to analyze the mech-
anisms responsible for each of these rhythms and the transitions between
them. This approach helps determine each component’s contribution to the
network behavior and to clarify how the behavior changes with respect
to parameters. We are particularly interested in analyzing the role of in-
hibitory coupling in generating different oscillatory behaviors. This is done
by considering a series of networks with increasing levels of complexity.
Our analysis demonstrates, for example, how networks with distinct archi-
tectures can make different uses of inhibition to produce different rhythms.
The techniques we develop are quite general and do not depend on the de-
tails of the specific systems. For a given network, however, these techniques
lead to rather precise conditions for when a particular rhythm is possible.

Numerous work has considered the role of inhibition in synchronizing
oscillations (for example, Wang & Rinzel, 1992, 1993; Golomb & Rinzel,
1993; van Vreeswijk, Abbott, & Ermentrout, 1994; Whittington, Traub, &
Jefferys, 1995; Bush & Sejnowski, 1996; Gerstner, van Hemmen, & Cowan,
1996; Rowat & Selverston, 1997; Terman, Kopell, & Bose, 1998). Many of
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these articles used model neurons with very short spiking times. These in-
clude integrate-and-fire models along with alpha function–type dynamics
for the synapses. More biophysically based models for bursting neurons
were considered by, among others, Wang and Rinzel (1993) and Terman
et al. (1998). One conclusion of those works is that inhibition can lead to
synchrony only if the inhibition decays at a sufficiently slow rate; in par-
ticular, the rate of decay of the synapses must be slower than the rate at
which the neurons recover in their refractory period. These theoretical and
numerical studies, however, considered rather idealized networks: Each
cell contained only one channel state variable, and the network architecture
was simply two mutually coupled cells. By considering more realistic bio-
physical models, we demonstrate that fast inhibitory coupling can indeed
lead to synchronous rhythms. We show that this is possible in networks
with complicated cells but simple architectures and in networks with more
complicated architectures but simple cells.

Geometric singular perturbation methods have been used previously to
study the population rhythms of neuronal networks (for example, Somers
& Kopell, 1993; Skinner, Kopell, & Marder, 1994; Terman & Wang, 1995;
Terman & Lee, 1997; Terman et al., 1998; LoFaro & Kopell, in press). Each
of the relevant networks possess multiple timescales; this allows one to
dissect the full system into fast and slow subsystems. Often, however, there
is no clear-cut separation of timescales, so it is not obvious how one decides
which variables should be considered as fast or slow. This is particularly
the case when there are multiple intrinsic channel state variables and the
synaptic variables turn on and turn off at different rates. A primary goal of
this article is to demonstrate how one can make the singular reduction in
order to understand mechanisms responsible for the thalamic rhythms.

Two crucial issues are related to the geometric analysis. The first is con-
cerned with the existence of a singular solution corresponding to a particular
pattern. We assume that individual cells, without any coupling, are unable
to oscillate. The existence of network oscillatory behavior then depends on
whether the singular trajectory is able to “escape” from the silent phase.
An important point will be that greater cellular or network complexity en-
hances each cell’s opportunity to escape the silent phase when coupled. The
second issue is concerned with the stability of the solution. To demonstrate
stability of a perfectly synchronous state, for example, we must show that
the trajectories corresponding to different cells are brought closer together
as they evolve in phase space. As we shall see, this compression is usually
not controlled by a single factor; it depends on the underlying architecture
as well as nontrivial interactions between the intrinsic and synaptic proper-
ties of the cells (see also Terman et al., 1998). Our analysis demonstrates, for
example, why thalamic networks are well suited to use inhibitory coupling
to help synchronize oscillations and produce other, clustered, rhythms.

In the next section we describe in detail the types of models to be consid-
ered for individual neurons. We distinguish between basic and compound
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cells. As a concrete example, we consider recent conductance-based models
for thalamocortical relay (TC) cells (Golomb et al., 1994; Destexhe & Se-
jnowski, 1997 and references therein). Compound cells can be realized as
a model for a TC cell that includes three ionic currents: a low-threshold
calcium current (IT), the nonselective sag current (Isag), and a leak. A basic
cell does not include Isag. In this context, our results help to explain the role
of Isag in generating network activity; we shall see that this role depends on
the architecture of the network. We also discuss different forms of synaptic
coupling and different architectures.

In section 3, we show that synchronization is possible in mutually cou-
pled networks that include compound cells and fast synapses. This analysis
is similar to that done by Terman et al. (1998), which showed that syn-
chronization is possible in networks with basic cells and slow inhibitory
coupling. Those networks contain two types of slow processes: one corre-
sponds to an intrinsic ionic current and the other to a synaptic slow variable.
The main conclusion of the analysis here is that what is crucial for synchro-
nization is that the network possess at least two slow processes; one may
be intrinsic and the other synaptic, or both may be intrinsic.

In section 4, we consider networks with architectures motivated by re-
cent models for the thalamic spindle sleep rhythm. The more complex ar-
chitectures allow the network to use inhibition in different ways to produce
different population rhythms. In particular, inhibition can play an impor-
tant role in synchronizing the cells in a much more robust way than in the
mutually coupled networks. We demonstrate how tuning various parame-
ters allows the network to control the effect of inhibition and thereby control
the emergent behavior.

Consequences of these results for the full thalamic networks are pre-
sented in section 5. We consider the roles of various biophysical parameters
associated with fast and slow inhibition, the sag current, cortical inputs,
and other currents. These results help clarify the mechanisms responsible
for spindle and paroxysmal discharge rhythms and the ways that changes
in biophysical parameters lead to transitions between different rhythms. We
conclude with a discussion in section 6.

2 The Models

We begin by describing the equations corresponding to individual cells and
then describe the synaptic coupling between two cells. It is necessary to
explain which parameters determine whether the synapse is excitatory or
inhibitory and which other parameters determine whether the synapse is
fast or slow. It will also be necessary to distinguish between direct synapses
and indirect synapses. Finally, we describe the types of architectures to be
considered.



Population Rhythms 601

Figure 1: Nullclines of basic and compound cells. (A) The v- and w-nullclines
of a basic cell intersect at p0, on the middle branch of the v-nullcline, in the
oscillatory case. The closed curve indicates a singular periodic orbit, with double
arrows denoting fast pieces and single arrows denoting slow pieces. (B) The v-
nullcline and a singular solution of an excitable compound cell with a stable
critical point p0.

2.1 Single Cells. We model a basic cell as the relaxation oscillator

v′ = f (v,w)

w′ = εg(v,w), (2.1)

where ′ = d
dt . Here ε is assumed to be small; hence, w represents a slowly

evolving quantity. The active phase of the oscillation can be viewed as the
envelope of a burst of spikes. We assume that the v-nullcline, f (v,w) = 0,
defines a cubic-shaped curve, as shown in Figure 1A, and the w-nullcline,
g = 0, is a monotone decreasing curve that intersects f = 0 at a unique point
p0. We also assume that f > 0 ( f < 0) above (below) the v−nullcline and
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g > 0 (< 0) below (above) the w-nullcline. If p0 lies on the middle branch of
f = 0, then equation 2.1 gives rise to a periodic solution for all ε sufficiently
small, and we say that the system is oscillatory. In the limit ε → 0, one
can construct a singular solution as shown in Figure 1A. If p0 lies on the
left branch of f = 0, then the system is said to be excitable; p0 is a stable
fixed point, and there are no periodic solutions for all ε small. Note that the
thalamic cells we seek to model are typically excitable during the sleep state.
For some of our results, it will be necessary to make some more technical
assumptions on the nonlinearities f and g. We will sometimes assume that

fw > 0, gv < 0 and gw < 0 (2.2)

near the singular solutions.
By a compound cell we mean one that contains at least two slow pro-

cesses. We consider compound cells that satisfy equations of the form

v′ = f (v,w, y)

w′ = εg(v,w)

y′ = εh(v, y). (2.3)

Precise assumptions required on the nonlinear functions in equation 2.3 are
given later. For now, we assume that for each fixed value of y, the functions
f (v,w, y) and g(v,w) satisfy the conditions described for a basic cell. Then
{ f (v,w, y) = 0}defines a cubic-shaped surface. The system (see equation 2.3)
is said to be excitable if there exists a unique fixed point, which we denote
by p0, and this lies on the left branch of the cubic-shaped surface. One can
construct singular solutions of this equation, and one of these is shown
in Figure 1B. The singular solution shown begins in the silent phase, or
left branch, of the surface. It evolves there until it reaches the curve of
jump-up points that correspond to the left knees of the cubic surface. The
singular solution then jumps up to the active phase, or right branch, of the
surface. It evolves in the active phase until it reaches the jump-down points
or right knees of the surface. It then evolves in the silent phase, approaching
the stable fixed point at p0. A more formal description of certain singular
solutions is given in section 3.2.

2.2 Synaptic Coupling. Consider the network of two mutually coupled
cells: E1 ↔ E2. The equations corresponding to this network are

v′1 = f (v1, q1)− gsyns2(v1 − vsyn)

q′1 = ε3(v1, q1)

v′2 = f (v2, q2)− gsyns1(v2 − vsyn)

q′2 = ε3(v2, q2). (2.4)
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Here, qi = wi and 3 = g if the cells are basic, while qi = (wi, yi) and 3 =
(g, h) if the cells are compound. In equation 2.4, gsyn > 0. It is the parameter
vsyn that determines whether the synapse is excitatory or inhibitory. If vsyn <

v along each bounded singular solution, then the synapse is inhibitory.
The coupling depends on the synaptic variables si, i = 1, 2. We consider

two choices for the si. Each si may satisfy a first-order equation of the form

s′i = α(1− si)H(vi − θsyn)− βsi. (2.5)

Here, α and β are positive constants, H is the Heaviside step function, and
θsyn is a threshold above which one cell can influence the other. Note that
α and β are related to the rates at which the synapses turn on or turn off.
For fast synapses, we assume that α is O(1) with respect to ε. It may seem
natural also to assume that β is O(1), and this is, in fact, what we will do
in the next section. However, when we consider the thalamic networks in
sections 4 and 5, it will be necessary to assume thatβ = Kε, where K is a large
constant. The reason for choosing the fast synaptic variables in this way is
discussed in more detail later. (The model for slow synapses is discussed in
section 5.2.)

If the synaptic variables satisfy equation 2.5, then we say that the synapse
is direct. We will also consider indirect synapses. These are modeled by
introducing a second synaptic variable xi (see Golomb et al., 1994; Terman
et al., 1998). The equations for (xi, si) are:

x′i = εαx(1− xi)H(vi − θsyn)− εβxxi

s′i = α(1− si)H(xi − θx)− βsi. (2.6)

Here, αx and βx are positive constants. Note that indirect synapses have
the effect of introducing a delay in the synaptic action, and this delay takes
place on the slow timescale. If, say, the cell E1 fires, then x1 will activate once
v1 crosses the threshold θsyn. The activation of s1 must wait until x1 crosses
the second threshold θx. Note also that an indirect synapse can be fast if α
and β are O(1), as discussed above.

2.3 Globally Inhibitory Networks. Besides mutually coupled networks,
we also consider networks with the architecture shown in Figure 2. This net-
work contains two different types of cells, labeled E-cells and J-cells. Each
E-cell sends fast excitation to some of the J-cells, and each J-cell sends inhi-
bition to some of the E-cells. The inhibition may be fast or slow (or both).
There is no communication among different E-cells; however, the J-cells
communicate with each other via fast inhibitory coupling.

This network is motivated by recent models for the thalamic sleep rhythms
discussed in section 1. The E- and J-cells correspond to thalamocortical relay
(TC) and thalamic reticularis (RE) cells, respectively.
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Figure 2: Network of inhibitory J-cells and excitatory E-cells.

3 Mutually Coupled Compound Cells with Fast Inhibitory Synapses

Rubin and Terman (1998) proved that stable synchronous oscillations are not
possible in mutually coupled networks with fast inhibitory coupling and
only one slow variable corresponding to each cell. This holds regardless
of whether the cells are excitable or oscillatory and whether the synapses
are direct or indirect. These results are for networks with relaxation-type
neurons, as discussed in the previous section.

Here we demonstrate that when the mutually coupled cells are com-
pound, they can exhibit synchronized oscillations when connected with fast
inhibitory coupling. The synchronous solution may exist if the synapses are
direct, but as in Terman et al. (1998), it can be stable only if the synapses
are indirect (see section 3.3). We assume that each cell is excitable for fixed
levels of input; however, there is no problem in extending the analysis if this
does not hold. We analyze the network by constructing singular solutions,
done by piecing together solutions of reduced fast and slow subsystems.
Since the cells are compound, there will be at least two slow variables cor-
responding to each cell. The multiple slow variables are needed for both
the existence and the stability of the synchronous solution. For existence,
the multiple slow variables allow the singular trajectory to escape from the
silent phase, despite the fact that each cell is excitable. The multiple slow
variables also allow for several mechanisms that lead to compression of cells
as they evolve in phase-space.

We do not give precise conditions on the parameters and nonlinearities
in the equations to specify when the synchronous solution is stable, as was
done in Terman et al. (1998). This will be done elsewhere. Here we describe
the geometric mechanisms that allow the cells to escape the silent phase so
a synchronous solution is possible and then characterize the compression
mechanisms that act to stabilize the synchronous solution. A primary aim
of this article is to compare how inhibition is used in different networks
with different architectures to produce stable synchrony. By identifying the
compression mechanisms here, we are able to evaluate the robustness of the
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synchronous solution. As we shall see, the compression mechanisms for the
mutually coupled architecture are considerably less robust than those that
arise in the globally inhibitory thalamic networks.

The analysis here is similar to but more general than that in Terman
et al. (1998), where it is demonstrated that stable synchrony can arise in
networks with basic cells but slow synapses. It is assumed in Terman et al.
(1998) that the synapses activate on the fast timescale and that the evolution
of the cells in the active phase does not depend on the level of synaptic
input. These assumptions imply that the slow system corresponding to the
active phase is one-dimensional. We do not make these assumptions here
and demonstrate that the resulting richer dynamics may lead to additional
compression mechanisms for stabilizing the synchronous solution.

3.1 Singular Solutions. We analyze the network by treating ε as a small,
singular perturbation parameter and constructing singular solutions. These
consist of various pieces, each piece corresponding to a solution of either
fast or slow equations. The fast equations are obtained by simply letting
ε = 0 in equation 2.4 and in either equation 2.5 or 2.6. The slow equa-
tions are obtained by replacing t with τ = εt as the independent vari-
able and then letting ε = 0. We assume here that both α and β are in-
dependent of ε. There is no problem in extending this analysis if β =
O(ε); this is actually an easier case since the additional slow variable then
provides additional opportunities for compression. Here we derive the
reduced slow equations valid when the synapses are direct. The equa-
tions for indirect synapses are similar, but there are more cases to con-
sider.

The slow equations are

0 = f (vi,wi, yi)− gsynsj(vi − vsyn)

ẇi = g(vi,wi)

ẏi = h(vi, yi)

0 = α(1− si)H(vi − θsyn)− βsi, (3.1)

where ˙ = d
dτ . One can reduce this system to equations for just the slow

variables (yi,wi). There are several cases to consider depending on whether
both cells are silent, both are active, or one is silent and the other is active. We
assume that the solution of the first equation in 3.1 defines a cubic-shaped
surface Cs, and the left and right branches of this surface can be expressed
as vi = 8L(wi, yi, si) and vi = 8R(wi, yi, si), respectively.

If both cells are silent, then each vi < θsyn and si = 0. Let GL(w, y, s) ≡
g(8L(w, y, s),w) and HL(w, y, s) ≡ h(8L(w, y, s), y). Then each (wi, yi) satis-
fies the equations

ẇ = GL(w, y, 0) ẏ = HL(w, y, 0). (3.2)
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If both cells are active, then each vi > θsyn and the last equation in 3.1
implies that si = σA ≡ α/(α + β). Let GR(w, y, s) ≡ g(8R(w, y, s),w) and
HR(w, y, s) ≡ h(8R(w, y, s), y). Then each (wi, yi) satisfies the equations

ẇ = GR(w, y, σA) ẏ = HR(w, y, σA). (3.3)

Finally suppose that one cell, say cell 1, is silent and cell 2 is active. Then
the slow variables satisfy the reduced equations

ẇ1 = GL(w1, y1, σA) ẇ2 = GR(w2, y2, 0)

ẏ1 = HL(w1, y1, σA) ẏ2 = HR(w2, y2, 0). (3.4)

We may view the singular solution as two points moving around in the
(y,w) slow phase-space. Each point corresponds to the projection of one
of the cells onto the slow phase plane. The points evolve according to one
of the reduced slow systems until one of the points reaches a jump-up or
jump-down curve. The cells then jump in the full phase-space; however,
the slow variables remain constant during the fast transitions. The points
then “change directions” in slow phase-space and evolve according to some
other reduced slow equations.

Since the cells are excitable, the reduced system, equation 3.2, with s = 0
has a stable fixed point, which we denote by P0. The slow phase-space
corresponding to equation 3.2 is illustrated in Figure 3A. Note that while
some of the trajectories are attracted toward P0, others are able to reach
the jump-up curve. That is, although the uncoupled cells are excitable, it is
possible for a cell to begin in the silent phase and still fire. This will be impor-
tant in the next section, when we discuss the existence of the synchronous
solution.

The following lemma characterizes the left and right folds (or jump-
up and jump-down curves) of Cs. We assume here that fy > 0 on the left
branch of Cs while fy < 0 on the right. This assumption is justified, based
on biophysical considerations, in remark 4 (in appendix A).

Lemma. The left and right folds of Cs can be expressed as JL = {(vL(y, s),
wL(y, s), y)} and JR = {(vR(y, s),wR(y, s), y)}where ∂wL

∂y < 0, ∂wL
∂s > 0, ∂wR

∂y > 0,

and ∂wR
∂s > 0.

Proof. Since vL(y, s) = 8L(wL(y, s), y, s), it follows from equation 3.1 and
the definition of folds that

0 = f (8L(wL(y, s), y, s),wL(y, s), y)− gsyns(8L(wL(y, s), y, s)− vsyn)

0 = fv(8L(wL(y, s), y, s),wL(y, s), y)− gsyns (3.5)
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Figure 3: Singular solutions for compound cells. (A) The slow phase-space of
an uncoupled compound cell, bounded by the jump-up curve JL and the jump-
down curve JR of the slow manifold Cs. The solid (dashed) curves represent
evolution in the silent (active) phase. P0 is a stable fixed point. (B) Numer-
ically generated synchronous solution for mutually coupled compound cells
that are separately excitable, in (y,w)-space. The inset (v versus t) shows the
voltage traces as two cells approach synchrony. These curves, as well as those
in other figures, were generated using the program XPPAUT, developed by G.
B. Ermentrout, with parameter values given in appendix A. The solid curve
is the synchronous solution, the dashed curves are the jump-up (labeled) and
jump-down (approximately horizontal, unlabeled) curves for s = 0.2, and the
dash-dotted curves (partially obscured) are those for s = σA = 0.8. Note that
the curves for s = 0.8 lie at larger w-values than those for s = 0.2. Since ε 6= 0,
the synchronous solution does not jump up [y′ = 0, near (y,w) = (0.08, 0.07)]
immediately on reaching the jump-up curve.
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Differentiating the first equation in 3.5 with respect to w and using the
second equation, we obtain

0 = ∂ f
∂w

∂wL

∂s
− gsyn(8L(wL(y, s), y, s)− vsyn).

Hence,

∂wL

∂s
= gsyn(8L(wL(y, s), y, s)− vsyn)

fw
. (3.6)

The right-hand side of this expression has a positive numerator because
the coupling is inhibitory and a positive denominator from equation 2.2, so
∂wL
∂s > 0. Analogously, ∂wR

∂s > 0.
Similarly, differentiating with respect to y in equation 3.5 yields 0 =

∂ f
∂w

∂wL
∂y +

∂ f
∂y , or ∂wL

∂y = −
fy
fw

, with fy and fw evaluated on JL. Analogously,
∂wR
∂y = −

fy
fw

, with fy, fw evaluated on JR. The above assumptions on fy,
together with equation 2.2, yield the desired result.

Remark 1. In the thalamic networks of interest, the jump-down curve JR
is nearly horizontal (see Figure 3B). This holds because the y current has
a much smaller reversal potential and maximal conductance than the w
current; when a cell is in the active phase, this implies that | fy| ¿ | fw|, so
| ∂wR
∂y | is quite small. (See remark 5 in appendix A.)

3.2 Existence of the Synchronous Solution. Here we illustrate why it
is possible for a synchronous solution to exist in a network of mutually
coupled compound cells even when the individual cells are excitable. A
numerically generated picture of such a solution, projected onto the slow
variables (y,w), is shown together with certain jump-up and jump-down
curves in Figure 3B. We also show a solution with initial conditions slightly
perturbed from the synchronous solution. The precise equations that this
solution satisfies and the parameter values used numerically are given in
appendix A.

One constructs the singular synchronous solution as follows. We begin
when the cells are in the silent phase, just after they have jumped down.
The slow variables then evolve according to equation 3.2. If they are able to
reach the jump-up curve, then they jump up according to the fast equations.
While in the active phase, the slow variables satisfy equation 3.3 until they
reach the jump-down curve. They then jump down according to the fast
equations, and this completes one cycle of the synchronous solution. Note
that w and y are decreasing in the active phase and then increase just after
jump-down; we use this in the next subsection.
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It is not clear how to choose the starting point (yi(0),wi(0)) so that the
singular orbit returns precisely to this point after one cycle. Note, however,
that the variables yi relax very close to yi = 0 during the active phase. If
we suppose that yi ≈ 0 at the jump-down point, then the value of wi is
determined; that is, for the coupled cells, wi ≈ wR(0, σA). A straightforward
fixed-point argument shows that the synchronous solution will therefore ex-
ist if the solutions of equation 3.2, which begin near (yi,wi) = (0,wR(0, σA)),
are able to reach the curve of jump-up points.

The reason that a synchronous solution can exist even when the uncou-
pled cells cannot oscillate is that the synchronous solution lies on a different
cubic during the active phase than the uncoupled cells. For this reason,
the synchronous solution jumps down along a different curve than the un-
coupled cells do. From the lemma, the jump-down curve JR(σA) has larger
values of w than the jump-down curve JR(0) (see Figure 3B). It is therefore
possible for the coupled cells to jump down to a point from which they
are able eventually to escape the silent phase, although the uncoupled cells
jump down to a point from which they cannot escape.

There is a nice biophysical interpretation for why coupled excitable cells
may be able to oscillate. Recall that a thalamocortical relay cell is an ex-
ample of a compound cell. (See section 5 for a more detailed discussion.)
Then w corresponds to the inactivation variable of the IT current. A larger
value of w means that this current is more deinactivated. This implies that
if the cells jump down at a larger value of w, then it is easier for the
cells to become sufficiently depolarized so they can reach threshold and
fire.

The construction of the synchronous solution for indirect synapses is very
similar. The only difference is that after the cells jump up or jump down,
there is a delay until the inhibition either turns on or turns off. The cells
switch their cubic surface while in the silent and active phases, assuming
that the delay is shorter than the time that the cells spend in each of their
silent and active phases. We will assume that this is the case throughout the
remainder of this article.

3.3 Stability of the Synchronous Solutions. We assume throughout this
section that the synapses are indirect. The synchronous solution cannot be
stable if the synapses are direct for the following reason. Suppose we start
with both oscillators in the silent phase and assume that cell 1 jumps up. If the
synapse is direct, then s2 jumps instantly (with respect to the slow timescale)
to s2 = 1. The effect of this is to move cell 2 instantly away from its firing
threshold, thus destabilizing the synchronous solution. Indirect synapses
are needed for stability since they provide a window of opportunity for both
cells to jump up during the same cycle. However, this does not guarantee
that the synchronous solution is stable. One must still show that cells that
are initially close together are brought closer together, or compressed, as
they evolve in phase-space.
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It is not at all obvious how to define compression. We need to demonstrate
that the cells are brought closer together; however, this requires that we
have a notion of distance between the cells. There are several possible met-
rics, each with certain advantages on different pieces of the solution. One
obvious metric is the Euclidean distance between the points in phase-space
corresponding to the cells. It is sometimes convenient to work with a time
metric; the “distance” between the cells is then the time it takes for one cell
to reach the initial position of the other cell. This was used previously in
Somers & Kopell (1993), Terman & Wang (1995), Terman et al. (1998), and
LoFaro & Kopell (in press).

Here, we describe several mechanisms for compression, each correspond-
ing to a different piece of the singular solution. These mechanisms illus-
trate how the geometry of the two-dimensional slow subsystem, notably its
curves of knees, allows for compression in the presence of inhibitory cou-
pling. By identifying the compression mechanisms, we can then understand
how changing parameters in the equations influences the stability of solu-
tions. We can also compare the robustness of the compression mechanisms
for this network with that for other networks with other architectures.

3.3.1 The Jump Up. Suppose that cell 1 lies on the jump-up curve when
τ = 0. After cell 1 fires, there is a delay in the onset of inhibition. We assume
that cell 2 begins in the silent phase so close to the jump-up curve that it
fires before it feels this inhibition. Suppose that cell 2 fires when τ = T0. We
now need to make an assumption on the nonlinearities. Let (y∗,w∗) be the
point where the synchronous solution jumps up. We assume that

(A) |GL(y∗,w∗, 0)|< |GR(y∗,w∗, 0)| and |HL(y∗,w∗, 0)|< |HR(y∗,w∗, 0)|

Note that this assumption implies that the w and y coordinates of both cells
change at a faster rate in the active phase after the jump up than in the
silent phase before the jump up. This is certainly satisfied for the example
described in appendix A and is similar to assumptions in previous work
(see, for example, Somers & Kopell, 1993, where the notion of fast threshold
modulation is introduced).

There are now several cases to consider depending on the orientation of
the cells both before and after they jump up. We work out two of these in
detail. These are the cases that arise most often for the system described in
appendix A. Similar analysis applies to other cases.

Assume that w1(0) < w2(T0) < w2(0) and y2(0) < y1(T0) < y1(0)
(see Figure 4A). These assumptions, together with the lemma, imply that
|y1(T0)−y2(T0)| < |y1(0)−y2(0)| so there is compression in the y-coordinates
after the jumps. From assumption A, there is also compression in a time met-
ric corresponding to the y-coordinate. For each τ0, let ρy(τ0) be the time it
takes for cell 2 to evolve from its position at τ = τ0 until its y-coordinate is
that of cell 1 when τ = τ0. It then follows that ρy(T0) < ρy(0).
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Figure 4: Compression mechanisms for mutually coupled compound cells.
(A) Compression in the time metric ρw can occur between mutually coupled
compound cells in the jump-up. Note that w1(0) < w2(T0) < w2(0) and
y2(0) < y1(T0) < y1(0). The Euclidean distances dw(0), dw(T0) are used to com-
pute the time metrics ρw(0), ρw(T0), respectively. (B) A reversal of orientation
in the active phase (solid lines) can lead to compression in the jump-down; the
dashed line indicates evolution of cell 1 in the silent phase. (C) Numerically
computed trajectories of a pair of mutually coupled compound cells undergo-
ing order reversal. Cells 1, 2 correspond to c1, c2 respectively in (B). Parameter
values are given in appendix A.
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We now show that there is also a compression in the time metric corre-
sponding to the w-coordinate. This is denoted by ρw(τ ). Let a− = |GL(y∗,
w∗, 0)| and a+ = |GR(y∗,w∗, 0)|. Then

ρw(0) ≈ w2(0)− w1(0)
a−

= w2(0)− w2(T0)

a−
+ w2(T0)− w1(0)

a−

≈ T0 + w2(T0)− w1(0)
a−

> T0 + w2(T0)− w1(0)
a+

≈ w1(0)− w1(T0)

a+
+ w2(T0)− w1(0)

a+
≈ ρw(T0). (3.7)

Now suppose that w1(0) < w2(T0) < w2(0) and y1(T0) < y2(0). The exact
same calculation given in equation 3.7 shows that there is compression in
the time metric ρw across the jump up. A simple calculation also shows that
there is compression in ρy.

3.3.2 The Active Phase. Next assume that the cells are active with xi > θx.
Then each (yi,wi) satisfies equation 3.3. It is easy to see why the cells are
compressed in the Euclidean metric if we make some simplifying assump-
tions concerning the nonlinear functions g and h. These assumptions arise
naturally if one considers the network in appendix A; it is also a simple
matter to extend this analysis to more general systems.

Suppose that g and h are of the form g(v,w) = (w∞(v) − w)/τw(v) and
h(v, y) = (y∞(v) − y)/τy(v). Note that while in the active phase, y∞(v) and
w∞(v) are very small. Moreover, τy(v) and τw(v) are nearly constant. We
assume here that while in the active phase, g(v,w) = −w/τw and h(v, y) =
−y/τy, where τw and τy are positive constants. It follows that each (wi, yi)

satisfies simple linear equations. If we ignore the jump-down curve, then
each slow variable decays to 0 at an exponential rate. In particular, the
distance between the cells decays exponentially. Actually, more is true. Each
(yi,wi) approaches the origin tangent to the weakest eigendirection.

Now suppose that the jump-down curve passes close to the origin. The
Euclidean distance between the cells still decreases exponentially, and both
cells jump down at nearly the same point. This is the point where the jump-
down curve crosses the weakest eigendirection.

We note that there is also a more subtle source of compression while
the cells are active. There will be some period of time when cell 2 receives
inhibition but cell 1 does not; that is, s1 = σA but s2 = 0. During this time,
the (yi,wi) satisfy different equations. It is then possible that the trajectories
(yi(τ ),wi(τ )) cross in the slow phase-space. This leads to a reversal of ori-
entation between the cells, as shown in Figure 4B. Next, we discuss why a
reversal of orientation can lead to compression in the cells’ trajectories.
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3.3.3 The Jump Down. We now show that if the cells reverse their orien-
tation while in the active phase, this can lead to a form of compression after
the cells jump down. Let Ti be the time when cell i jumps down. As above,
assume that cell 1 jumped up first with w1(0) < w2(0). We will assume that
w1(τ ) < w2(τ ) as long both cells are active. Moreover, from remark 1, the
jump-down curve is nearly horizontal. Hence, cell 1 jumps down first; that
is, T1 < T2.

If the cells’ trajectories cross while in the active phase, then y1(T1) <

y2(T2). This is shown in Figure 4B. Let ρA
y (T1) be the time it would take

for the solution of equation 3.3 starting at (y2(T1),w2(T1)) to reach the y-
coordinate y1(T1). It follows that ρA

y (T1) > T2 − T1.
For T1 < τ < T2, cell 1 evolves in the silent phase with y increasing,

while cell 2 evolves in the active phase with y decreasing. If y1(T2) < y2(T2),

then |y2(T2) − y1(T2)| < |y2(T1) − y1(T1)| so there is compression in the y-
coordinates of the cells across the jump. Now suppose that y1(T2) > y2(T2),
as shown in Figure 4B. Let ρS

y (T2) be the time it would take for the solution
of equation 3.2 starting at (y2(T2),w2(T2)) to reach the y-coordinate of cell 1.
Since y2(T1) > y1(T1), it follows that ρS

y (T2) < T2−T1.We have now demon-
strated that ρS

y (T2) < T2 − T1 < ρA
y (T1). That is, there is compression in the

time metric corresponding to the y-coordinate. We note that since the jump-
down curve is nearly horizontal, any compression in the w-coordinates is,
to first order, neutral.

A numerical example of orientation reversal in two cells’ trajectories in
(y,w)-space is shown in Figure 4C. At the top of the figure, the cells are in the
silent phase. Each cell jumps up where the corresponding y′i = 0; chronolog-
ically, cell 1 jumps up first. In the active phase, the trajectories cross, because
the cells experience different levels of inhibition; cell 2 receives inhibition
first. The paths cross again at the bottom left of the figure after the leading
cell, cell 1, falls down to the silent phase.

3.3.4 The Silent Phase. Suppose that both cells lie in the silent phase
with xi < θsyn. Then each (yi,wi) satisfies equation 3.2 until one of them
reaches the jump-up curve. We now define a metric between the cells and,
in appendix B, we analyze how to choose parameters to guarantee that the
metric decreases as the cells evolve in the silent phase. This metric is similar
to that introduced by Terman et al. (1998).

Suppose that cell 1 reaches the jump-up curve first, and this is at the
point (y∗1,w∗1). (See Figure 13 in appendix B.) Fix some time τ0, and let
wτ0

L be the physical translate of the jump-up curve such that (y∗1,w∗1) is
translated to the point (y1(τ0),w1(τ0)). Then the “distance” between
(y1(τ0),w1(τ0)) and (y2(τ0),w2(τ0)) is the time it takes for the solution of
equation 3.2, which begins at (y2(τ0),w2(τ0)), to cross wτ0

L . This is
certainly well defined as long as the two cells are sufficiently close to each
other.
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One can compute explicitly how this metric changes as the cells evolve
in the silent phase. (The computation, rather technical, is in appendix B.) A
more complete discussion of how this metric is used to prove the stability
of the synchronous solution of two mutually coupled basic cells with slow
synapses is given in Terman et al. (1998).

3.4 Further Remarks. The compression of cells can take place as the
cells evolve along the multidimensional slow manifold or as they jump up
or down. The compression during the jumping process depends on the ge-
ometry (or slope) of the curve of knees and the orientation of the cells both
before and after the jumps. Parameters that determine this slope may there-
fore have subtle effects on the stability of the synchronous solution; gsyn is
one such parameter (see equation 3.6). The results in Terman et al. (1998)
provide precise conditions on combinations of parameters that ensure that
the synchronous solution is stable when the inhibition is slow. Increasing
gsyn, for example, may sometimes stabilize the synchronous solution; how-
ever, when other parameters satisfy a different relationship, increasing gsyn
may destabilize the synchronous solution.

The size of the domain of attraction of the synchronous solution is, to
a large extent, determined by the delay in the onset of inhibition. The two
cells are able to fire together if the trailing cell lies within the window of
opportunity determined by this delay. If the trailing cell lies outside this
window, then the network typically exhibits antiphase behavior in which
the cells take turns firing, although other network behavior is possible.
The system may crash, for example, since the completely quiescent state is
asymptotically stable.

In our analysis, we assumed that the cells and coupling are homoge-
neous. The effect of heterogeneities on mutually coupled basic cells with
slow synapses was studied in several papers (Golomb & Rinzel, 1993; White,
Chow, Ritt, Soto, & Kopell, 1998; Chow, 1998). These found that the syn-
chronous solution is not very robust to mild levels of heterogeneities; a 5%
variation in parameters was sufficient to destroy synchronous behavior. We
have done a number of numerical simulations in order to study the effects
of heterogeneities on the network considered in this section. Our numerical
results are consistent with those in previous studies.

4 Globally Inhibitory Networks

We now consider the network described in section 2.3. Recall that in this
network, E-cells excite J-cells, which in turn inhibit E-cells. The thalamic
networks involved in sleep rhythms, discussed in section 5, are examples
of such a network, with compound cells, to which the results of this section
apply. We assume for now that there are just two E-cells, denoted by E1 and
E2, and there is one J-cell, which we denote as J. Larger networks are con-
sidered later. Initially, each cell is assumed to be a basic cell; generalization
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for compound cells is discussed in section 4.4. The E-cells are identical to
each other, but they may be different from the J. Each cell is also assumed
to be excitable for fixed levels of input.

The system of equations corresponding to each Ei is

v′i = f (vi,wi)− ginhsJ(vi − vinh)

w′i = εg(vi,wi)

s′i = α(1− si)H(vi − θ)− βsi, (4.1)

while the equation for J is

v′J = fJ(vJ,wJ)− 1
2
(s1 + s2)gexc(vJ − vexc)

w′J = εgJ(vJ,wJ)

s′J = αJ(1− sJ)H(vJ − θJ)− εKJsJ. (4.2)

Here, each synapse is direct. Indirect synapses will be needed when we
discuss the stability of solutions. Note that the inhibitory variable sJ turns off
on the slow timescale. The reason that we write the equations this way will
become clear in the analysis. We assume that β = O(1); however, there is no
problem in extending the analysis if β = O(ε). If vi > θ , then si → σA ≡ α

α+β
on the fast timescale.

Two types of network behavior are shown in Figures 8 and 9. A syn-
chronous solution, in which each cell fires during every cycle, is shown in
Figure 9. In Figure 8, each excitatory cell fires every second cycle, while J fires
during every cycle. This type of solution is referred to as a clustered solu-
tion. In the following sections, we construct singular orbits corresponding
to each of these solutions and then analyze their stability. The construc-
tions then lead to conditions for when the different solutions exist and are
stable.

4.1 Existence of the Synchronous Solution. We now construct a singu-
lar trajectory corresponding to a synchronous solution in phase space. As
before, the trajectory for each cell lies on the left or right branch of a cubic
nullcline during the silent and active phases. Which cubic a cell inhabits
depends on the total synaptic input that the cell receives. Nullclines for the
Ei are shown in Figure 5A and those for J in Figure 5B. Note in Figure 5A
that the sJ = 1 nullcline lies above the sJ = 0 nullcline, while in Figure 5B,
the stot ≡ 1

2 (s1 + s2) = σA nullcline lies below the stot = 0 nullcline. This is
because the Ei receive inhibition from J while J receives excitation from the
Ei. We will make several assumptions concerning the flow in the following
construction. These are justified later.

We begin with each cell in the active phase just after it has jumped up.
These are the points labeled P0 and Q0 in Figure 5. Each Ei evolves down
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Figure 5: Nullclines for (A) E-cells and (B) J-cells in a globally inhibitory network
with basic cells. The closed curves and points Pi,Qi correspond to the singular
synchronous solution discussed in the text. Note that sJ decays on the slow
timescale.

the right branch of the sJ = 1 cubic, while J evolves down the right branch
of the stot = σA cubic. We assume that the Ei have a shorter active phase
than J, so each Ei reaches the right knee P1 and jumps down to the point P2
before J jumps down. We also assume that at this time, J lies above the right
knee of the stot = 0 cubic. J must then jump from the point Q1 to the point
Q2 along the stot = 0 cubic. On the next piece of the solution, J moves down
the right branch of the stot = 0 cubic while the Ei move up the left branch
of the sJ = 1 cubic. When J reaches the right knee Q3, it jumps down to the
point Q4 along the left branch of the stot = 0 cubic.

Now the inhibition sJ to the Ei starts to turn off on the slow timescale.
Thus, the Ei do not jump to another cubic. Instead, the trajectory for the Ei
moves upward, with increasing wi, until it crosses the w nullcline. Then each
wi starts to decrease. If this orbit is able to reach a left knee, it jumps up to
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Figure 6: Slow phase plane for an E-cell. The curve wL(sJ) is the jump-up curve,
which trajectories reach if KJ is large enough (− ·− ·− path; cell jumps up from
the point marked *). The dotted curve WF(sJ) consists of zeros of GL(w, sJ) in
system 4.3; trajectories tend to the stable critical point WF(0) as sJ → 0 for small
KJ (− · · − · · − path). Note that w′ < 0 for w > WF.

the active phase, and this completes one cycle of the synchronous solution.
When the Ei jump up, J also jumps up if it lies above the left knee of the
stot = σA cubic.

We now derive more quantitative conditions for when the singular syn-
chronous solution exists. It is not at all obvious, for example, why we needed
to assume that the active phase of J is longer than that for the Ei. It is also
not clear what conditions are needed to ensure that the Ei are able to reach
a jump-up curve and escape once they are released from inhibition. These
two issues are actually closely related.

We first discuss how the Ei can reach the jump-up curve. For this, it is
convenient to derive equations for the evolution of the slow variables (wi, sJ)

as was done in section 3.1. Let τ = εt, denote the left branch of the cubic
f (v,w)−ginhs(v−vinh) = 0 by v = 8L(w, s) and let GL(w, s) ≡ g(8L(w, s), s).
Then each (wi, sJ) satisfies the slow equations,

ẇ = GL(w, sJ)

ṡJ = −KJsJ. (4.3)

The phase plane corresponding to this system is illustrated in Figure 6.
There are two important curves shown in the figure. The first is the jump-
up curve w = wL(sJ); this is the curve of “left knees.” The second curve,
denoted by WF(sJ), corresponds to the fixed points of the first two equations
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in 4.1 with the input sJ held constant. This corresponds to the w-nullcline of
equation 4.3.

We need to determine when a solution (w(τ ), sJ(τ )) of equation 4.3 begin-
ning with sJ(0) = 1 and w(0) < WF(1) can reach the jump-up curve wL(sJ).
This is clearly impossible if WF(1) < wL(0), so we shall assume that WF(1) >
wL(0). If w(0) > wL(0) and KJ is sufficiently large, the solution will certainly
reach the jump-up curve; this is because the solution will be nearly vertical,
as shown in Figure 6. If, on the other hand, KJ is too small, the solution will
never be able to reach the jump-up curve. This is because the solution will
slowly approach the curve WF(sJ) and lie very close to this curve as sJ ap-
proaches zero. This is also shown in Figure 6. We conclude that the cells are
able to escape the silent phase if the inhibitory synapses turn off sufficiently
quickly and the w-values of the cells are sufficiently large when this deacti-
vation begins. Escape is not possible for very slowly deactivating synapses
(although it would be possible with slow deactivation if the cells were os-
cillatory for some levels of synaptic input). A biophysical interpretation of
this is that escape is possible for GABAA synapses and will occur if the cell’s
IT current is sufficiently deinactivated when inhibition begins to wear off.

We assume that KJ is large enough so that escape is possible. Choose
Wesc so that the solution of equation 4.3 that begins with sJ(0) = 1 will be
able to reach the jump-up curve only if w(0) > Wesc. The existence of the
singular synchronous solution now depends on whether the Ei lie in the
region where wi > Wesc when J jumps down to the silent phase. We claim
that this requires that the active phase of J be sufficiently long. One can give
a simple estimate on how long this active phase must be as follows.

Suppose that all the cells jump up when τ = 0, the Ei jump down when
τ = τE, and J jumps down when τ = τJ. We require that wi(τJ) > Wesc.
Since the time the Ei spend in the silent phase before they are released from
inhibition is τJ−τE, this implies that τJ−τE must be sufficiently large. Hence,
J’s active phase must be sufficiently longer than the Ei’s. More precisely, let
wRK be the value of w at the right knee of the sJ = 1 cubic, and let τL be the
time it takes for the solution of the first equation in 4.1 with sJ = 1 to go
from w = wRK to w =Wesc. We require that

τJ − τE > τL. (4.4)

4.2 Stability of the Singular Synchronous Solution. We now demon-
strate that the synchronous solution is stable if the synapse sJ is indirect and
the active phase of J is sufficiently long. We start with the Ei a small distance
apart, just after both have jumped up to the active phase. Assume that this
causes J to fire. We will show that after one cycle, both of the Ei are so close
that they must fire together again. Moreover, there is a contraction in the
distance between the E-cells during each cycle.

The analysis proceeds as in the previous section. We assume that the
active phases of the Ei are shorter than that of J, so that the Ei return to
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the silent phase and proceed up the left branch of the sJ = 1 cubic before J
jumps down. As the Ei move up this left branch, they approach the point
PL where the sJ = 1 cubic intersects the w-nullcline. (See Figure 5A.) If the
active phase of J is sufficiently long, then the Ei lie as close as we please
to PL, and therefore to each other, when J jumps down. This is precisely
what is required to guarantee that both will fire together during the next
cycle. While in the silent phase, the Ei approach PL at an exponential rate (in
the slow timescale). This leads to a very strong compression of Euclidean
distance between the cells while in the silent phase. This compression is
certainly stronger than any possible expansion over the remainder of the
cycle. After the J-cell falls down, sJ decays on the slow timescale. This allows
the J-cell to recover so that it can fire when excited by the firing of the E-cells,
and the whole cycle repeats.

We need to assume that sJ corresponds to an indirect synapse for the same
reason as we did previously. When one of the E-cells fires, this causes J to fire,
which sends inhibition back to the other E-cell. If sJ is direct, this causes the
second E-cell to be “stepped on” on the fast timescale, and the synchronous
solution cannot be stable. Note that the time between the firings of the E-
cells is determined by KJ, the rate at which sJ decays. If KJ is large, the time
between firings is short; it is then easier for the second cell to pass through
the window of opportunity provided by the indirect synapse.

Our analysis has shown that the dynamics of the J-cell can influence
the domain of attraction of the synchronous solution in several ways. If J’s
active phase is long, then the E-cells lie close to each other, near PL, when
J jumps down and releases them from inhibition. Moreover, if J recovers
quickly in the silent phase, then KJ can be chosen to be large. Both factors
make it easier for the E-cells, once they are released from inhibition, to pass
through a window of opportunity and fire during the same cycle. Hence,
both enlarge the domain of attraction of the synchronous solution.

Remark 2. There are important differences between the ways in which
mutually coupled and globally inhibitory networks use inhibition to syn-
chronize oscillations. In mutually coupled networks, a second slow variable
is required for the existence of the synchronized solution; it allows the cells
to escape from the silent phase. The second slow variable is also required
for the compression of the cells as they evolve in phase space. The existence
and stability of the synchronous solution in globally inhibitory networks,
on the other hand, are controlled by the dynamics of the J-cell. If the J-
cell’s active phase is long enough, then this pushes the E-cells, in their silent
phase, to a position from which they can escape; moreover, this provides
a strong compression of the E-cells. For this network, we require that the
inhibition decays on the slow timescale; however, the reason is so that the
J-cell can recover sufficiently. The slow recovery is not needed to allow the
E-cells to escape or for compression. In fact, the domain of stability of the
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synchronous solution is increased if the recovery of the J-cell and the decay
of the synapses occur quickly, on the slow timescale.

4.3 Clustered Solution. We now describe the geometric construction of
the singular antiphase, or clustered, solution. It suffices to consider half of
a complete cycle. During this half-cycle, E1 fires and returns to the initial
position of E2, J fires and returns to its initial position, and E2 evolves in the
silent phase to the initial position of E1. By symmetry, we can then continue
the solution for another half-cycle with the roles of E1 and E2 reversed.

When E1 jumps up, it forces J to jump up to the right branch of the
stot = 1

2σA cubic. Then E1 moves down the right branch of the sJ = 1 cubic,
while J moves down the right branch of the stot = 1

2σA cubic and E2 moves
up the left branch of the sJ = 1 cubic. We assume, as before, that E1’s active
phase is shorter than J’s active phase, so E1 jumps down before J does so. It
is possible that J lies below the right knee of the stot = 0 cubic at this time, in
which case J also jumps down. If J lies above this right knee, then it moves
down the right branch of the stot = 0 cubic until it reaches the right knee
and then jumps down. During this time, both E1 and E2 move up the left
branch of the sJ = 1 cubic.

After J jumps down, sJ(τ ) slowly decreases. If E2 is able to reach the
jump-up curve, then it fires, and this completes the first half-cycle of the
singular solution. Suppose that τ = τF when this occurs. For this to be one-
half of an antiphase solution, we need w2(τF) = w1(0), w1(τF) = w2(0), and
wJ(τF) = wJ(0). We now derive conditions for when the antiphase solution
exists. These will imply that the active phase of J cannot be too long or too
short, compared with the active phase of the Ei. If J’s active phase is too long,
then the network exhibits synchronous behavior as described before. If J’s
active phase is too short, then the system approaches the stable quiescent
state.

Suppose that E1 and J jump up when τ = 0, E1 jumps down when τ = τE,
and J jumps down when τ = τJ. Let τL and Wesc be as defined in the previous
section. To have a clustered solution, we require that

w1(τJ) < Wesc < w2(τJ). (4.5)

The second inequality is necessary to allow E2 to fire during the second half-
cycle. The first inequality guarantees that E1 does not fire during this half-
cycle. It follows from the definitions that the first inequality is equivalent
to

τJ − τE < τL. (4.6)

Next we derive a similar expression for the second inequality in equa-
tion 4.5. For w0 < w1, let ρ(w0,w1) to be the time it takes for a solution of the
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first equation in 4.3 with sJ = 1 to go from w0 to w1. The second inequality
is equivalent to ρ(wRK,w2(τJ)) > τL. Now,

ρ(wRK,w2(τJ)) = ρ(wRK,w2(0))+ ρ(w2(0),w2(τJ)).

Moreover, wRK = w1(τE) and w2(0) = w1(τF). Hence,

ρ(wRK,w2(τJ)) = ρ(w1(τE),w1(τF))+ ρ(w2(0),w2(τJ)).

Clearly, ρ(w2(0),w2(τJ)) = τJ, because E2 lies on the sJ = 1 cubic for 0 <
τ < τJ. It is not true that E1 lies on the sJ = 1 cubic for τE < τ < τF;
however, if the first equation in 4.3 is weakly dependent on sJ, then we
have that ρ(w1(τE),w1(τF)) ≈ τF − τE. In this case, the second inequality in
equation 4.3 is equivalent to

τF − τE + τJ > τL. (4.7)

One can simplify this formula if the parameter KJ is rather large. In this case,
τF − τJ is small; that is, E2 escapes the silent phase as soon as it is released
from inhibition. Then equation 4.7 is approximately equivalent to

τJ >
1
2
(τE + τL). (4.8)

Combining equation 4.6 and 4.8 leads to the following condition for the
existence of a clustered solution if the synaptic variable sJ turns off quickly:

1
2
(τE + τL) < τJ < τE + τL. (4.9)

Remark 3. It is possible for both stable synchrony and stable clustering to
exist for the same parameter values. Note that the domain of stability of the
synchronous solution is controlled to a large extent by the size of the delay
caused by the indirect inhibitory synapses. If this delay is small, the domain
of stability will also be small. In this case, the synchronous solution will
still be stable; however, most solutions will converge to a stable clustered
solution.

4.4 Globally Inhibitory Networks with Compound Cells. The discus-
sion in the previous subsections generalizes to globally inhibitory networks
with compound cells, such as the model thalamic network in the next sec-
tion. The primary difference is that each cell contains an additional slow
variable, yi, so it is necessary to consider a higher-dimensional slow phase-
space. As a consequence, the jump-up curves of the previous subsections are
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Figure 7: Three-dimensional slow phase-space for a singular synchronous pe-
riodic orbit of the globally inhibitory network. Double (single) arrows denote
evolution on the fast (slow) timescale, solid (dashed) lines indicate the silent
(active) phase, and points Pi are as discussed in the text. The shaded region
represents the jump-up surface w = wL(y, sJ).

replaced by jump-up surfaces {w = wα(y, sJ)}, α = L or R, where wα(y, sJ) is
as in the lemma in section 3.

Figure 7 illustrates the evolution of the slow variables (wi, yi, sJ) for the
singular synchronous solution. We begin at the point labeled P1 on the jump-
up surface w = wL(y, sJ). The E-cells then jump up, and this forces J to jump
up. Hence, sJ → 1. This corresponds to the segment in Figure 7 that connects
P1 to the point P2 on the sJ = 1 surface. Each cell then evolves in the active
phase with sJ = 1. As before, we assume that the active phases of the E-cells
are shorter than that of J. Hence, the E-cells jump down when the (wi, yi)

reach the jump-down curve wi = wR(yi, 1). This is at the point labeled P3
in Figure 7. While J lies in the active phase, the E-cells evolve in the silent
phase, but sJ = 1 still holds. At P4, J jumps down and the (wi, yi, sJ) evolve
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until they reach the jump-up curve. This then completes one cycle of the
singular solution.

The stability analysis proceeds just as in section 4.2. What is crucial for
stability is that J remains active long enough. The E-cells then approach the
stable fixed point on the left branch of the sJ = 1 surface while J is active.
This provides the compression needed for stability. The construction of a
clustered solution is also very similar to that described in section 4.3. We
do not describe the construction here; some comments are given in the next
section.

4.5 Further Remarks. The geometric constructions of the synchronous
and clustered solutions extend in a straightforward manner to globally in-
hibitory networks with an arbitrary number of excitatory cells Ei. Of course,
in a larger network there are more possibilities for clustered solutions; how-
ever, if each cluster contains (approximately) the same number of cells, then
inequalities similar to equation 4.9 must be satisfied. This is similar to anal-
ysis of Terman and Wang (1995), which yields precise conditions for the
existence of clustered states in a locally excitatory and globally inhibitory
network model for scene segmentation. Further analysis of clustered solu-
tions in inhibitory networks is given in Rubin and Terman (1999).

The analysis leads to simple formulas for the periods of the synchronous
and clustered solutions. Let τJ be, as above, the time cell J spends in the ac-
tive phase, and let τS be the time for the E-cells to reach the jump-up curve
after the J-cell jumps down. Then the period of the synchronous solution is
simply τJ + τS. Now τJ is determined by the dynamics of the J-cell, while
τS is primarily controlled by the rate at which the synapses turn off; this is
the parameter KJ in equation 4.2. Also see Figure 11. Other parameters play
a secondary role. Note, for example, that the parameter gsyn influences the
period by controlling the slope of the jump-up curve, as shown in equa-
tion 3.6.

The synchronous and clustered solutions can exist only if trajectories are
able to escape from the silent phase. Previous work on mutually inhibitory
neurons has emphasized the distinction between “release” and “escape”
in producing both synchronous and antiphase solutions (Wang & Rinzel,
1993). “Release” refers to the case in which the active phase of one cell ends
and this releases another silent cell from inhibition. “Escape” refers to the
case in which the dynamics of the inactive cell allows it to fire even if that
cell receives inhibition. As pointed out in Terman et al. (1998), there is no
clear distinction between escape and release when there are multiple slow
processes. A silent E-cell is in some sense released when the J-cell jumps
down to the silent phase. The rhythms can continue, however, only if this
E-cell is able to escape the silent phase. Here we are assuming that each
E-cell is excitable for constant levels of inhibition. Both escape and release
are therefore needed to maintain oscillations.
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5 Thalamic Network

The model for the thalamic spindle sleep rhythm falls into the framework
of the network analyzed in the preceding section. The two populations of
cells in the model are the thalamocortical relay (TC) cells and the thalamic
reticularis (RE) cells, corresponding to the E-cells and J-cells, respectively.
One difference between the spindle model and those considered earlier
is that the spindle model contains numerous RE as well as TC cells. The
RE cells communicate with each other through fast inhibitory synapses, as
illustrated in the network shown in Figure 2.

During spindling, the network exhibits behavior similar to the clustered
solution discussed in the previous section. The RE population is synchro-
nized, while the TC cells break up into groups; cells within each group are
synchronized, while cells within different groups are desynchronized. The
network also exhibits completely synchronized rhythms. The synchronized
rhythms arise, for example, when fast inhibition is removed from the entire
network or from between the RE cells only. Recent results have also shown
that the synchrony can arise if the RE population receives additional phasic
excitation, corresponding to cortical input, at the delta frequency. Hence, the
network can transform from clustering to synchronized behavior without
any change in the inhibitory synapses.

In this section, we demonstrate how the geometric analysis helps to ex-
plain the dynamical mechanisms responsible for these rhythms and transi-
tions between them. We begin by presenting a concrete model for the sleep
rhythms and then present results of numerical simulations of this model.
The numerical simulations clearly show that solutions of the model behave
as predicted by the singular perturbation analysis; in particular, solutions
jump up and jump down when they reach a curve (or surface) of knees. This
confirms that the decomposition into fast and slow variables, as described in
the previous section, provides the correct singular perturbation framework
for analyzing these rhythms.

We also demonstrate how the geometric analysis leads to quantitative
statements concerning the behavior of solutions. In particular, the analysis
predicts correctly how the frequency of oscillations depends on parameters.
The analysis also leads to precise conditions for when the network exhibits
either synchronous or clustered solutions. For example, factors that enable
the TC cells to synchronize are a long RE active phase, a relatively fast RE
recovery, and a fast decay of inhibition. Some of these factors are inconsis-
tent with mechanisms for synchronization in mutually coupled inhibitory
networks. Finally, the analysis clarifies the roles of the various intrinsic and
synaptic currents in generating a particular rhythm. We illustrate this in
section 5.3, where we consider the role of the sag current, which also dif-
fers from the role of the second slow intrinsic current in mutually coupled
networks.
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5.1 Model. The following model contains many parameters and nonlin-
ear functions (these are given in appendix A). The cells are modeled using
the Hodgkin-Huxley formalism (Hodgkin & Huxley, 1952); the equations
are very similar to those in Golomb et al. (1994).

The equations of each TC cell are:

v′i = −IT(vi, hi)− Isag(vi, ri)− IL(vi)− IA − IB

h′i = (h∞(vi)− hi)/τh(vi)

r′i = (r∞(vi)− ri)/τr(vi). (5.1)

This describes a compound cell, with hi and ri corresponding to w and
y, respectively, and ε absorbed in τh, τr rather than mentioned explicitly.
The terms IT, Isag, and IL are intrinsic currents; they are given by IT(v, h) =
gCam2∞(v)h(v − vCa), Isag(v, r) = gsagr(v − vsag), and IL(v) = gL(v − vL). The
terms IA and IB represent the fast (GABAA) and slow (GABAB) inhibitory
input from the RE cells. We model the fast inhibition IA as in previous
sections; that is, IA = gA(vi−vA)

1
NTR

∑
sj

A, where gA and vA are the maximal
conductance and the reversal potential of the synaptic current. The sum is
over all RE cells that send input to the ith TC cell and NTR represents the
maximum number of RE cells that send inhibition to a single TC cell. Each
synaptic variable sj

A satisfies the first-order equation

sj
A

′ = αR(1− sj
A)H(v

j
R − θR)− βRsj

A, (5.2)

where vj
R is the membrane potential variable of the jth RE cell. Motivated by

recent experiments (Destexhe, Bal, McCormick, & Sejnowski, 1996; Destexhe
& Sejnowski, 1997), we model the slow inhibition IB somewhat differently
from IA. We first discuss, however, the model for the RE cells.

The equations of each RE cell are:

vi
R
′ = −IRT(vi

R, hi
R)− IAHP(vi

R,mi)− IRL(vi
R)− IRA − IE

hi
R
′ = (hR∞(vi

R)− hi
R)/τRh(vi

R)

mi
′ = µ1[Ca]i(1−mi)− µ2mi

[Ca]′i = −νIRT − γ [Ca]i. (5.3)

The IRT, IAHP, and IRL represent intrinsic currents. These are given by
IRT(v, h) = gR

Cam2
R∞(v)h(v− vR

Ca), IAHP(v,m) = gAHPm(v− vK), and IRL(v) =
gRL(v − vRL). More details concerning the biophysical significance of each
term are given in Golomb et al. (1994) and Terman et al. (1996).

In equation 5.3, IRA represents the inhibitory input from other RE cells. It
is modeled as IRA = gRA(vi

R − vRA)
1

NRR

∑
sj

RA where the sum is over all RE

cells that send input to the ith RE cell. Each synaptic variable sj
RA satisfies a
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first-order equation similar to 5.2. The term IE represents excitatory (AMPA)
input from the TC cells and is expressed as IE = gE(vi

R−vE)
1

NRT

∑
sj

E, where
the sum is over all TC cells that send excitatory input to the ith RE cell. The
synaptic variables sj

E are fast and also satisfy first-order equations similar
to 5.2.

It remains to discuss how we model the slow inhibitory current IB. Sim-

ilarly to Destexhe et al. (1996), we assume that IB = gB
s4

bi
s4

bi+λ
(vi − vB) where

sbi, along with variable xbi, satisfies

s′bi = k1H(xbi − θxb)(1− sbi)− k2sbi

x′bi =
k3

NTR

[∑
H(vi

R − θRb)
]
(1− xbi)− k4xbi.

The parameters are such that xbi can become activated (i.e., exceed θxb) only
if a sufficiently large number of RE cells have their membrane potentials vi

R
above the threshold θRb. The threshold is chosen rather large so the RE bursts
must be sufficiently powerful to activate xbi. Once xbi becomes activated, it
turns on the synaptic variable sbi; the expression s4

bi in IB further delays the
effect of the inhibition on the postsynaptic cell.

5.2 Numerical Simulations. A clustered solution is shown in Figure 8.
There are three RE cells in this example, and they oscillate in synchrony
at about 12.5 Hz; one of the RE cells is shown in Figure 8A. The RE cells
synchronize due to excitation from the TC population. (This is discussed
in more detail in section 5.3.) There are six TC cells, and they form two
clusters, each oscillating at half of the RE oscillation frequency, as shown in
Figure 8B. In Figure 8C, we show the time courses of the fast (sA) and slow
(sb) inhibitory synaptic variables, respectively. Note that the fast inhibition
activates during every cycle, providing the hyperpolarizing current needed
to deinactivate each TC cell’s IT current. The fast inhibition is also needed
to desynchronize the TC cells so they can form clusters. The slow current IB
never activates during this solution because the RE cells do not fire powerful
enough bursts; that is, the membrane potentials vi

R do not rise above the
threshold θRb = −25 mV long enough to activate the variables xbi.

A synchronous solution is shown in Figure 9. The parameters are exactly
as in Figure 8 except we set gRA = 0; that is, we have turned off the fast
inhibition between RE cells. Note in Figure 9 that each TC cell fires during
every cycle along with the RE cells. The slow inhibitory current IB now
activates during every cycle. Comparing the slow inhibitory variable with
the fast inhibitory variable in Figure 9C, we see that the slow inhibition
stays on longer and both turns on and turns off more gradually. Geometric
analysis is useful in understanding why removing fast inhibition allows
slow inhibition to activate and why this leads to synchronization of the
network. This is discussed in the next subsection.
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Figure 8: Numerical solution, with two TC clusters, of the thalamic network
(parameter values are given in appendix A). Voltages are in mV and time is in
msec. (Top) RE cell (the time course of which matches that of the RE population
of three cells). (Middle) TC population of six cells, forming two clusters of three
cells each. (Bottom) Inhibitory synaptic variables sA (dashed) and sb (solid). Note
that sb ≡ 0, since the RE cell bursts are not powerful enough to activate slow
inhibition in this case.

In Figure 10 we plot the trajectory (hi(τ ), ri(τ ), sb(τ )) corresponding to
the synchronous solution shown in Figure 9. We also plot the numerically
computed surface of knees corresponding to the jump-up points; there is a
similar jump-down surface, but it is not shown. The behavior of the trajec-
tory is consistent with that discussed in the previous section. For example,
the cells jump up when the trajectory crosses the jump-up surface of knees
(approximately, since ε 6= 0 numerically) (see Rubin & Terman, 1998, for a
similar plot for the clustered solution).

Figure 11 shows a plot of the period of synchronous TC oscillations as the
rate of decay of inhibition, the rate of change of h, and the parameter gB are
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Figure 9: Numerical synchronous solution of the thalamic network (parameter
values are given in appendix A). Voltages are in mV and time is in msec. (Top) RE
cell (the time course of which matches that of the RE population of three cells).
(Middle) TC population of six cells (synchronized). (Bottom) Inhibitory synaptic
variables sA (dashed) and sb (solid). Note that sA turns on and off faster than sb,
which in turn stays on longer.

separately varied. These relations can be derived from our analysis, as can
predictions about the dependence of the period on other model parameters.
As noted earlier, the period is given by the duration of the RE active phase
(τJ) plus the time it takes for inhibition to decay sufficiently that the TC
cells can jump up (τS); hence, the period drops relatively sharply as the
inhibitory decay rate increases. The same strong dependence, which our
analysis explains, was found in the modeling work of Destexhe (1998). As
the rate of change of h increases, there is essentially no change in the length
of the TC silent phase (not shown) or in the period. This reflects the fact that
over the parameter range considered, the TC cells are compressed close to
their silent phase rest state while the RE cells are active, and then the TC cells
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Figure 10: Numerical trajectory of a TC cell, together with jump-up surface of
knees (shaded), in the (h, r, sb) slow phase-space. The TC cell shown belongs to
the synchronized population of six TC cells shown in Figure 9. Note that sb does
not immediately increase when the cell jumps up, since we have taken slow
inhibitory synapses to be indirect.

evolve with little change in h after the RE cells jump down. Interestingly, gB
has little effect on period because it has little influence on τJ, τS. The mild
effect that does occur is due to the subtle influence of gB on the slope of the
curve of knees for the TC silent phase. This actually causes the period to
increase as gB, and hence the strength of slow inhibitory coupling, increases
(see also Golomb et al., 1994).

Our numerical studies show that the synchronous and clustered solu-
tions are robust to moderate levels of heterogeneities and variations in the
parameters. This is due to the strong TC compression provided by the RE
cells. For example, these solutions were not affected by heterogeneities of
about 20% in sag conductances and about 5% in the TC IT conductance.
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Figure 11: Period of synchronous TC oscillations versus rate of decay of inhibi-
tion (k2 = βR, solid curve), rate of change of h (dashed line), and gB (dotted line)
for the population shown in Figure 9. The parameters k2, βR were varied from
0.04 to 0.14 and were held at 0.1 for the other two curves. A parameter φ was
factored out from τh0, τh1 in the h-equation and was varied from 1.5 to 2.5; φ was
held at 2.0 for the other curves. The parameter gB was varied from 0.03 to 0.07
and was held at 0.05 for the other two curves. Other parameter values as given
in appendix A.

Stronger TC heterogeneities tend to promote TC clustering in this model.
In the resultant patterns, TC cells with similar properties fire together, in-
dependent of the way they are initially perturbed from synchrony.

5.3 Further Implications of the Analysis.

5.3.1 Removing Fast Inhibition. Fast inhibition occurs in two places: the
RE cells inhibit themselves as well as the TC cells. Removing fast inhibi-
tion has different consequences for each of these synaptic connections, and
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both of these help to synchronize the TC cells (see also Golomb et al., 1994;
Destexhe & Sejnowski, 1997). Removing the RE-TC fast inhibition is clearly
helpful for synchronization among the TC cells. This holds because the fast
inhibition has a very short rise time, which follows since the fast inhibitory
synapses are direct in equations 5.1 and 5.2. This short rise time corresponds
to a small domain of attraction of the synchronous solution. In fact, it is pre-
cisely this inhibition that is responsible for desynchronizing the TC cells
during the clustered solution.

Removing the RE-RE fast inhibition appears to be even more crucial for
synchronizing the TC cells (see also Steriade, McCormick, & Sejnowski,
1993; Huguenard & Prince, 1994; Destexhe, Bal, McCormick, & Steriade,
1996; Destexhe, 1998). This allows the RE cells to fire longer, more powerful
bursts, which activate the slow inhibitory current IB. The analysis in section 4
demonstrates that long, powerful bursting of the RE cells is needed for the
TC cells to synchronize, unless the desynchronizing effect of inhibition is
somehow removed as discussed in Terman et al. (1996). Our numerical sim-
ulations (e.g., Figures 9–12) show, in fact, that the TC cells will synchronize
even if fast inhibition is removed from within the RE population but not
from the RE-TC connections.

Why removal of inhibition leads to stronger RE bursts can be easily un-
derstood by our analysis of trajectories in phase-space. This removal forces
the RE cells to lie on the right branch of a different cubic while in the active
phase. The cubic of the disinhibited cells lies below the cubic of the cells
with inhibition. The disinhibited cells therefore jump up to larger values
of membrane potential; moreover, their jump-down point (right knee) lies
below the jump-down point of the inhibited cells. The disinhibited RE cells
therefore have a longer active phase.

Note that the slow inhibitory current IB, activated when RE-RE fast in-
hibition is removed, has slower rise and decay times than IA. The slow rise
time enhances the domain of attraction of the synchronous solution by ex-
panding the window of opportunity. The slow decay time can help to bring
the cells closer together while in the silent phase, as discussed in section 3.3
and appendix B. Hence, both effects improve the ability of the TC cells to
synchronize in the absence of fast inhibition.

5.3.2 Role of the Sag Current. We view the TC cells as examples of com-
pound cells. If one removes the sag current Isag or keeps it constant, then they
become basic cells. Hence, questions concerning the differences between
networks with basic or compound cells are closely related to issues pertain-
ing to the role of the sag current. The analysis in section 3 shows that in
mutually coupled networks, whether the cells are basic or compound is sig-
nificant. Added complexity allows the cells to escape from the silent phase
and also leads to possible compression mechanisms. In globally inhibitory
networks, the dynamical mechanisms responsible for the synchronous and
clustered solutions are basically the same for basic or compound cells. We
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therefore do not view the sag current as playing a direct role in the gen-
eration of these rhythms. Recall that oscillations arise when the cells are
capable of escaping from the silent phase. The sag current helps modulate
the intrinsic properties of the TC cells, and this can determine whether es-
cape is even possible. From a more biophysical viewpoint, the sag current
depolarizes the TC cells while they are silent. Hence, a stronger sag current
raises the TC’s resting potential. If this resting potential is too large, then
inhibitory input from the RE cells may not be capable of hyperpolarizing the
TC cells sufficiently to deinactivate the IT current. If this is the case, then the
TC cells will not be able to fire (i.e., escape the silent phase). We note that this
relates closely to some theories about mechanisms responsible for waxing
and waning behavior during the spindle rhythm (Destexhe, Babloyantz, &
Sejnowski, 1993; Bal & McCormick, 1996).

Within the range where escape is possible, increasing the sag current
tends to enhance the TC synchronization. This occurs because the increased
sag current tends to depolarize the TC cells more rapidly, leading to stronger
compression.

Note that while the sag current is depolarizing during the silent phase,
it is hyperpolarizing in the active phase. Hence, increasing the sag conduc-
tance lowers the left branch of the cubic corresponding to the TC cells but
raises the right branch of the cubic. This decreases the voltage level to which
TC cells jump up and hence the overall amplitude of TC oscillations (see
Figure 12); at jump-down, the sag current is essentially deactivated, so the
size of gsag has little effect there. Increasing gsag also tends to decrease the
level of deinactivation of IT at firing, as we can show using arguments sim-
ilar to the proof of the lemma in section 3, and to decrease the period of
the TC cells (see Figure 12). To analyze this dependence of the period more
carefully, note that the evolution of the inactivation variable h for IT is al-
most linear for most of the silent phase; we can model this by h′ = φ(1− h),
independent of the inhibition level. From this equation, we can approxi-
mate the time τk it takes for the cell to reach the curve of knees. This de-
pends on gsag, since the location of the curve of knees does. We find that
τk ≈ − 1

φ
ln(1+hf −hk), where hf is the h-value when the cell falls down and

hk is the h-value when it hits the curve of knees to jump up. Incorporating
the dependence of hf and hk on gsag implies that ∂τk/∂gsag < 0; in fact, since
hf − hk is small relative to 1 and hf , hk depend close to linearly on gsag, the
dependence of τk on gsag is almost linear as well. An analogous argument
shows that the time spent in the active phase also has a roughly linear re-
lation to gsag. These nearly linear dependencies sum to yield a nearly linear
relationship between overall oscillation frequency and gsag, as appears in
Figure 12.

5.3.3 Synchronization Among the RE Cells. The RE cells are synchronized
during the spindle rhythm, primarily due to the excitation they receive from
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Figure 12: The effect of gsag on synchronous TC oscillations. Six TC cells and
three RE cells were simulated with parameter values given in appendix A.

the TC cells. Although only about half of the TC cells fire during each cycle,
if each TC cell sends excitation to several RE cells, then every RE cell will
receive a sufficient amount of excitation to fire during every cycle.

Experiments have also shown that the RE cells can sustain synchronized
rhythms when these cells are completely isolated (Steriade, Domich, Oak-
son, & Deschênes, 1987; Steriade, Jones, & Llinás, 1990). In fact, these are
the experiments that motivated many of the theoretical studies concerning
how synchronization can arise in a population of inhibitory cells. If one con-
siders the RE cells to be modeled as basic cells, then the conclusion of these
studies is that synchronization is possible only if the decay of inhibition is
sufficiently slow. However, modeling the RE cells as in equation 5.3, we con-
sider them to be compound cells; the slow variables are hi

R and mi. We then
conclude from our analysis of mutually coupled inhibitory cells in section 3
that synchronization is possible even if the inhibition decays quickly.
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5.3.4 Cortical Inputs. Our results clearly demonstrate that globally in-
hibitory networks provide a natural framework for analyzing RE-TC inter-
actions in the generation of thalamic sleep rhythms. These results are also
consistent with recent work about the impact of cortical inputs in the de-
velopment and manifestation of the sleep rhythms (Steriade, Curró Dossi,
& Nuñez, 1991; Steriade, Nuñez, & Amzica, 1993; Steriade, 1994; Contreras,
Destexhe, Sejnowski, & Steriade, 1996; Timofeev & Steriade, 1996; Contr-
eras, Destexhe, & Steriade, 1997; Destexhe, Contreras, & Steriade, 1998).
Here we review some of this work and briefly describe how it relates to our
analysis.

Recent work has emphasized the importance of the cortex in the trans-
formation of spindle oscillations into spike-and-wave-like (SW) epilepti-
form oscillations in the thalamus (Steriade, 1994; Steriade, Contreras, &
Amzica, 1994; Contreras, Destexhe, & Steriade, 1996; Destexhe, Contreras,
Sejnowksi, & Steriade, 1996; Destexhe & Sejnowski, 1997; Steriade, Con-
treras, & Amzica, 1997; Destexhe, 1998). The experiments and modeling
described in these works have suggested that this can arise without the
removal of fast inhibition from the thalamus. Recall that in the mecha-
nism we have discussed, disinhibition of the RE cells leads to more pow-
erful RE bursts, and this permits the TC cells to synchronize. Our analy-
sis supports the finding (Contreras, Destexhe & Steriade, 1996; Destexhe
et al., 1996; Steriade et al., 1997; Destexhe, 1998) that if one does not re-
move the fast inhibition among the RE cells but instead induces sufficiently
strong excitation from the cortex, then this will have the same effect: the
RE cells will fire more powerful bursts because of the additional excita-
tion (their cubics are lowered). Hence, GABAB inhibition of the TC cells
ensues and the TC cells can synchronize, even though they receive fast
inhibition from the RE cells. In particular, this explains the mechanism be-
hind the results of Destexhe (1998), in which sufficiently strong corticotha-
lamic excitation (achieved by blocking only cortical GABAA) is found to
be crucial for triggering powerful RE bursts. These bursts in turn lead to
the activation of GABAB in the thalamus and the generation of synchro-
nized ∼ 3 Hz oscillations in TC and RE cells. It is interesting to note that
SW discharges of pyramidal cells and interneurons in the cortex, as mod-
eled by Destexhe, apparently result from a related interaction: excitation
from TC cells induces the “spike” of prolonged firing of pyramidal cells
and interneurons in the cortex, and resulting GABAB inhibition from the in-
terneurons to the pyramidal cells enhances synchronization and maintains
the subsequent “wave” of inactivity until the TC rebound and restart the
cycle.

Our analysis has shown that it is possible for the TC cells to synchronize
even in the presence of fast inhibition if the RE cell bursts are powerful
enough. This does not, however, contradict the argument in Terman et al.
(1996) that the effect of fast inhibition to the TC cells must be removed
during delta. Since the RE cells fire at the slow rhythm in delta, their bursts
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are completely absent (after the first cycle) while the TC cells fire. Hence,
the RE cells do not produce the powerful bursts that would be needed to
synchronize the TC cells if the effect of the fast inhibition remained.

5.3.5 Variations in Synchronous Oscillations. The thalamic network may
exhibit other types of solutions than those discussed. This is because as-
sumptions required for the geometric constructions of the solutions may
not be satisfied for some ranges of parameter values. Subtle variations in
network behavior can arise as parameters that change the underlying ge-
ometry of phase space are varied.

One possibility that arises, for certain biophysically relevant parameter
values, is that the right knees of each RE cell’s family of cubics lie very close
to the left knees of the RE cell’s cubics. In this case, each RE cell recovers al-
most instantly on jump-down (after a long, gradual decrease in vR during the
active phase). If the TC cells approach sufficiently close to the stable equilib-
rium in the silent phase while the RE cells are still active, then they can all fire
as soon as they are disinhibited by RE jump-down. Hence, stable synchrony
can occur here without activation of slow inhibition, even if fast inhibition
decays on the fast timescale, since slow decay of inhibition was needed only
to allow the RE cells to recover; this holds even though RE-TC fast inhibitory
synapses are direct. (For more details, see Rubin & Terman, 1998.)

6 Discussion

Numerous articles have considered models for thalamic oscillations and
mechanisms for synchronization. The RE-TC model studied here is closely
related to that in Golomb et al. (1994); however, those results are based pri-
marily on numerical studies. Here we develop, for the first time, a system-
atic approach for analytically studying models as complex as the thalamic
networks. Related articles that deal with the role of inhibition in synchroniz-
ing bursting-like oscillations are Wang and Rinzel (1993) and Terman et al.
(1998). Their conclusion is that a slow decay of inhibition is needed to obtain
synchrony. This does not account, however, for synchronization of the RE-
TC network in the presence of GABAA inhibition. By extending the analysis
in Terman et al. (1998) to more complex networks, we are able to understand
the mechanisms responsible for this. Several other articles, including van
Vreeswijk et al. (1994) and Gerstner et al. (1996), have also shown that in-
hibition can lead to synchrony. These articles considered integrate-and-fire
type models and therefore do not directly apply to the thalamic networks.
One of their conclusions is that the synchronous solution must be unstable
if the synapses have instantaneous onset. This is consistent with our result
(also in Terman et al., 1998) that indirect synapses are needed for synchrony.
Our analysis shows, however, that parameters not in the integrate-and-fire
models, such as the time on the excited branch or the geometry of the curves
of knees, can strongly influence when synchrony arises.
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Our results clarify the multiple roles that inhibition can play in pro-
ducing different rhythms. Inhibition may help to synchronize or desyn-
chronize oscillations, depending on several factors. Fast onset of inhibition
tends to desynchronize the cells, because when one cell fires, it then quickly
“steps on” other cells. For this reason, we generally need to assume that the
synapses are indirect for stable synchronization to occur. Slow offset of in-
hibition may help to synchronize the oscillations; it can lead to compression
of the cells while they evolve in the silent phase. Compression (or expan-
sion) can also take place as the cells jump up or down between the silent
and active phases. This depends on the geometry of curves (or surfaces) of
knees, which in turn depends on both the intrinsic and the synaptic param-
eters, such as gsyn and gsag. A more powerful source of compression arises
in the globally inhibitory networks. While the inhibitory cell J is active, it
produces sustained inhibition to the E-cells. This forces the E-cells close to
a stable fixed point and therefore close to each other. In these networks, fast
offset of inhibition also helps to synchronize the cells; it helps to get cells
through the narrow window of opportunity for firing.

We have demonstrated that mutually coupled networks of excitable cells
with indirect fast inhibitory coupling can produce synchronized rhythms.
This is not possible if the network contains only basic cells. The geometric
approach helps explain why additional cellular complexity allows for syn-
chronized rhythms. The additional complexity translates, within the frame-
work of the geometric approach, to higher-dimensional slow manifolds.
This allows the cells to escape from the silent phase. It also leads to addi-
tional sources of compression. We conclude that synchronization is possible
in mutually coupled inhibitory networks if there are at least two slow vari-
ables in the intrinsic or synaptic dynamics. This has relevance for isolated
RE cell populations, which can synchronize even though they include fast
inhibition (Steriade et al., 1990).

Globally inhibitory networks can produce different rhythms depending
on the intrinsic dynamics of the J-cells, which controls the amount of inhi-
bition sent back to the E-cells. A rapid rate of synchronization, and a large
domain of attraction for the synchronous solution, are achieved when the
following factors are present: indirect synapses to provide a window of op-
portunity, a long J-cell active phase to enhance compression among E-cells,
and a fast J-cell recovery coupled with relatively fast synaptic decay. Less
powerful inhibition, or a smaller window of opportunity relative to synaptic
decay rate, results in clustering among the E-cells. The network crashes if the
amount of inhibition is too small. In the models for sleep rhythms, there are
several possible ways to control the RE cells’ bursts and therefore the emer-
gent network behavior. More powerful RE bursts result from removal of
fast inhibition from among the RE cells (Steriade, McCormick, & Sejnowski,
1993; Huguenard & Prince, 1994; Destexhe, Bal, McCormick, & Sejnowski,
1996; Destexhe, 1998) or from the addition of excitatory input from the cor-
tex (Contreras, Destexhe, & Steriade, 1996; Destexhe, Contreras, Sejnowski,
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& Steriade, 1996; Steriade et al., 1997; Destexhe, 1998). Other intrinsic RE
parameters, such as a leak conductance, may also greatly influence the RE
cells’ dynamics. We have seen how such considerations help explain the
transition between spindling, delta, and paroxysmal discharges in RE-TC
networks.

The geometric analysis can lead to precise statements for when a particu-
lar rhythm is possible. For example, a TC cell can fire only if it is sufficiently
hyperpolarized; this deinactivates the IT current. A geometric interpretation
is that a TC cell can fire only if, during the silent phase, it lies in the region
where trajectories are able to reach the jump-up curve of knees. By con-
sidering the slow equations corresponding to the TC cells (the compound
analogue of equation 4.1), one can then derive conditions for when a TC will
fire. In this sense, the geometric analysis helps clarify how different param-
eters influence the rhythms. For example, we have seen how the analysis
demonstrates that the sag current plays different roles in generating syn-
chronized rhythms in mutually coupled and globally inhibitory networks.

We note that the geometric approach used here (see also Terman & Wang,
1995; Terman & Lee, 1997; Terman et al., 1998) is somewhat different from
that used in many dynamical systems studies. All of the networks con-
sidered here consist of many differential equations, especially for larger
networks. Traditionally, one would interpret the solution of this system as a
single trajectory evolving in a very large-dimensional phase-space. Instead,
we consider several trajectories, one corresponding to each cell, moving
around in a much lower-dimensional phase-space. After reducing the full
system to a system for just the slow variables, the dimension of the lower-
dimensional phase-space equals the number of slow intrinsic variables and
slow synaptic variables corresponding to each cell. In the worst case con-
sidered here, there are two slow variables for each compound cell and one
slow synaptic variable; hence, we never have to consider phase-spaces with
dimension more than three. Of course, the particular phase-space we need
to consider may change, depending on whether the cells are active or silent
and also depending on the synaptic input that a cell receives.

We assumed throughout that the networks were completely homoge-
neous. The analysis certainly extends to network models with mild hetero-
geneities. In this case, cells within each cluster will no longer be perfectly
synchronized. They may lie on different branches of different cubic surfaces.
If the cubics are sufficiently close to each other, however, the jumps will be
very close to each other and almost synchrony will result.

Appendix A

The equations for the TC and RE cells in the thalamic network are given
in section 5.1. As our biophysical mutually coupled network of compound
cells, we considered a pair of TC cells, each governed by equation 5.1; note
that in the case of basic cells without slow inhibition, these could be thought
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of as simplified RE cells or TC cells. The synaptic variables in this model
satisfy equation 2.6. For numerical simulations, we approximated Heaviside
functions by functions of the form

H∞(v) = 1
1+ exp(−κ(v− θ)) .

The functions h∞(v), m∞(v), r∞(v), hR∞(v), and mR∞(v) are assumed to be of
the same form: if ξ = h,m, r, hR or mR, then ξ∞(v) = 1

1+exp((v+θξ )/σξ ) . Further,
we take

τh(v) = τh0 + τh1

1+ exp((v+ vτh)/στh)

with τRh(v) having an analogous form, and

τr(v) = τr0 + τr1

exp((v+ vτ r0)/στ r0)+ exp(−(v+ vτ r1)/στ r1)
.

To generate our numerical figures, we started cells under a slight pertur-
bation from a synchronous state. For Figures 3B and 4C, we used the follow-
ing parameter values, based on Golomb et al. (1994) and Terman et al. (1996).
IT : gCa = 2.5, θm = 57.0, σm = −6.0, vCa = 140.0, θh = 81.0, σh = 4.0, τh0 =
10.0, τh1 = 73.3̄, vτh = 78.0, στh = 3.0; Isag : gsag = 0.2, vsag = −50.0, θr =
75.0, σr = 5.5, τr0 = 20.0, τr1 = 1000.0, vτ r0 = 71.5, στ r0 = 14.2, vτ r1 =
89.0, στ r1 = 11.6; IL : gL = 0.025, vL = −75.0; IA : gA = 0.4, vA = −79.0, α =
16.0, β = 4.0, θx = 0.1, κ = 100.0, εαx = 0.3, εβx = 0.1, θsyn = −50.0. We did
not include slow inhibition here.

To generate the clustered solution displayed in Figure 8, we used the
following parameter values, also based on Golomb et al. (1994) and Ter-
man et al. (1996). Six TC cells: IT : gCa = 1.5, θm = 59.0, σm = −9.0, vCa =
90.0, θh = 82.0, σh = 5.0, τh0 = 66.6̄, τh1 = 333.3̄, vτh = 78.0, στh = 1.5; Isag :
gsag = 0.15, vsag = −40.0, θr = 75.0, σr = 5.5, τr0 = 20.0, τr1 = 1000.0, vτ r0 =
71.5, στ r0 = 14.2, vτ r1 = 89.0, στ r1 = 11.6; IL : gL = 0.2, vL = −76.0;
IA : gA = 0.1, vA = −84.0, αR = 8.0, βR = 0.05, θR = −50.0, κA = 2.0;
IB : gB = 0.05, vB = 95.0, λ = 10−4, k1 = 0.1, k2 = 0.05, θxb = 0.8, κxb =
0.02, k3 = 0.5, k4 = 0.005, θRb = −25.0, κb = 2.0. Three RE cells: IRT :
gR

Ca = 2.0, θR
m = 52.0, σR

m = −9.0, vR
Ca = 90.0, θR

h = 72.0, σR
h = 2.0, τR

h0 =
66.6̄, τR

h1 = 333.3̄, vR
τh = 78.0, σR

τh = 1.0; IAHP : gAHP = 0.1, vK = −90.0, µ1 =
0.02, µ2 = 0.025, ν = 0.01, γ = 0.08; IRL : gRL = 0.3, vRL = −76.0; IRA :
gRA = 0.25, vRA = −84.0, other parameters as in IA for the TC cells; IE :
gE = 0.6, vE = 0, αE = 2.0, βE = 0.05, θE = −35.0, κE = 2.0. [Note that in
the current IE, the variables sj

E satisfy an equation of the form (5.2), with the
parameters αE, . . . replacing αR, . . . .]
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To generate the synchronous solution displayed in Figures 9 and 10, we
used the same parameter values except α = 16, β = 0.2, στh = 3.0, σR

τh =
2.0, gRA = 0. By setting gRA = 0, we removed the RE-RE fast inhibition;
for αR = 16, βR = 0.2 with the same initial conditions and gRA = 0.25, the
solution forms two clusters, but slow inhibition is slightly activated and it
eventually destabilizes, while for gRA = 0.5, the solution forms two clusters
without activation of slow inhibition. Finally, for Figures 11 and 12, we
used the above parameter values except certain parameters were varied as
discussed in the text and figure captions and τh0 = 100.0, τh1 = 500.0, στh =
3.0, τR

h0 = 100.0, τR
h1 = 500.0, σR

τh = 2.0.

Remark 4. We assumed in the proof of the lemma in section 3 that for
compound cells, fy > 0 in the silent phase, while fy < 0 in the active phase.
This is justified for the TC cell model for the following reason. Note that
y corresponds to the variable r; hence, fy = −gsag(v − vsag). Since vsag ≈
−40 mV typically, while v ranges from around −80 mV in the silent phase
to at least −30 mV in the active phase, the result follows.

Remark 5. We claimed in remark 1 that | ∂wR
∂y | is quite small. This is also

shown numerically in Figure 3B. We can understand analytically why this
is so by recalling, from the proof of the lemma, that ∂wα

∂y = −
fy
fw

for α =L or R
corresponding to the silent or active phase respectively. From equation 5.1,

∂wα

∂y
= − gsag(v− vsag)

gCam2∞(v)(v− vCa)
. (A.1)

Typical values are gsag ≈ .04 up to 2.0, vsag ≈ −40 mV, gCa ≈ 2.5, vCa ≈
140 mV. In the silent phase, m∞(v) is small, so the numerator and denomi-
nator in equation A.1 have similar magnitudes, even though v ≈ −80 mV.
In the active phase, however, m∞(v) ≈ 1 while v ≈ 0, typically. Hence, | ∂wR

∂y |
is quite small.

Appendix B

Consider a pair of compound cells in the active phase, with mutual in-
hibitory coupling. Suppose that the cells are perturbed from synchrony such
that the lead cell falls down to the silent phase at time τ1 and the following
cell falls down at time τ2 > τ1. Assume slow decay of inhibition (β = εK),
although the analysis simplifies otherwise (see below). During the silent
phase, for τ ≥ τ2, the slow dynamics of the two cells are given by

ẇ = g(v,w)

ẏ = h(v, y)

ṡ = −Ks, (B.1)
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Figure 13: The set-up for analysis of compression in the silent phase in two
dimensions (i.e., assuming s is fixed). The picture generalizes naturally to 3D
when s is included as another slowly evolving variable. Cell 1 jumps up first,
with τ = T1, at (y∗1,w∗1). The larger dotted square shows a blow-up of the smaller
dotted square, in which the vectors V and (η, ρ) are defined.

where v satisfies v = 8L(w, y, s)and˙= d
dτ . Let V(τ ) = (g(w, v), h(y, v),−Ks).

The equation of variations that describes the evolution of tangent vectors
to the flow of equation B.1 is

˙δw = −awδw− bwδy− cwδs

δ̇y = −ayδw− byδy− cyδs

δ̇s = −Kδs, (B.2)

where aw = −∂g/∂w, bw = −∂g/∂y = −∂g/∂v · ∂8L/∂y, and so on.
Fix the cell that jumps up out of the silent phase first as cell 1 and call

the other cell 2. Let Ti denote the jump-up time of cell i and restrict to
τ ∈ [τ2,T1]. Let (η(τ ), ρ(τ ), σ (τ )) denote the vector from the position of cell
1 to that of cell 2, such that (η, ρ, σ ) satisfies equation B.2; see Figure 13 for
a two-dimensional representation of this set-up.

Next, let wL(y, s) denote the projection of the left surface of knees to
(w, y, s)-space and let (a, b, c) = ∇[wL(y1(T1), s(T1)) − w(T1)] = (−1,
∂wL
∂y (y1(T1), s(T1)),

∂wL
∂s (y1(T1), s(T1))). Let wτ

L denote the physical translate
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of wL(y, s) to the position of cell 1 at time τ ; for example, at time τ2, cell 1
lies in wτ2

L . Again, see Figure 13.
We define the time T(τ ) as the time for cell 2 to flow to its first intersection

with wτ
L. This satisfies

(a, b, c) ·
[
(η, ρ, σ )+

∫ T(τ )

0
V(τ + ξ)dξ

]
= 0, (B.3)

where V is evaluated along the path of cell 2 (see Figure 13), but

∫ T(τ )

0
V(τ + ξ)dξ =

∫ T(τ )

0
(V(τ )+ ξ V̇(τ )+O(ξ2))dξ

= V(τ )T(τ )+O(T2). (B.4)

For small perturbations from synchrony, if the vector field of equation B.1
is O(1), then the O(T2) term in equation B.4 can be neglected. Substituting
the approximation equation B.4 into B.3 yields, at leading order,

T(τ ) = − (a, b, c) · (η, ρ, σ )
(a, b, c) · V = η − bρ − cσ

−g(w2, v2)+ bh(y2, v2)− cKs2
, (B.5)

since a = −1. Henceforth, we omit the arguments indicating evaluation
along the path of cell 2 when this is clear.

A sufficient condition for compression in the silent phase is that Ṫ(τ ) < 0
for τ ∈ [τ2,T1]. Thus, we proceed to compute Ṫ(τ ). Since (η, ρ, σ ) and V(τ )
satisfy equation B.2, we differentiate, substitute from B.2, and simplify to
obtain

Ṫ(τ ) = [V(τ )× (η, ρ, σ )] · [((a, b, c) ·DV)× (a, b, c)]†

((a, b, c) · V(τ )†)2 , (B.6)

where † denotes transpose.
Geometrically, the determinant of three vectors gives the volume of the

parallelepiped they bound. The numerator of Ṫ(τ ) consists of such a deter-
minant, with the three edges of the parallelepiped given by the vector field,
the vector from the position of cell 1 to that of cell 2, and a third vector. This
last vector relates the linearization of the vector field to the gradient of the
translate of the surface of knees.

Next, consider

Z ≡ (Z1,Z2,Z3) := V × (η, ρ, σ )
= (σh+ ρKs,−σg− ηKs, ρg− ηh)

= ((h,−Ks) ∧ (ρ, σ ), (η, σ ) ∧ (g,−Ks), (g, h) ∧ (η, ρ)). (B.7)
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Differentiating equation B.7 and using B.2 gives, in system form,

Ż1 = −(by + K)Z1 + ayZ2

Ż2 = bwZ1 − (aw + K)Z2

Ż3 = cwZ1 + cyZ2 − (aw + by)Z3. (B.8)

For basic cells, without the current y, equation B.6 simplifies to

Ṫ(τ ) = σg+ ηKs
(g+ cKs)2

(c(aw − K)+ cw) = −Z2

(g+ cKs)2
(c(aw − K)+ cw).

Moreover, Z1 ≡ 0, so Ż2 = −(aw+K)Z2. Hence, the sign of Z2(τ ) is invariant
for τ ∈ [τ2,T1]. In Terman et al. (1998), Z2(τ2) = (w1(τ2)−w2(τ2))Ks2(τ2) < 0,
which implies that −Z2(τ2) > 0. Thus, the sign of Ṫ(τ ) matches that of
(c(aw − K) + cw) (Terman et al. use λ1 to denote c). By showing that this
quantity is negative for all relevant τ for K < a− (case I in Terman et al.,
1998), Terman et al. achieve a sufficient condition for compression in the
silent phase.

In general, one can compute the signs of a, b, c as well as aw, bw, . . . (see,
e.g., the lemma in section 3) and then can use equations B.6 and B.8 to derive
compression conditions for the silent phase. Simplifications facilitate this
process in certain cases even for compound cells. For example, σ = σ̇ =
0 during the silent phase for E cells in a globally inhibitory network as
well as for much of the silent phase for mutually coupled cells with fast
synaptic decay. In the latter case, however, an adjustment must be made to
compensate for the fact that one cell loses inhibition before the other; we
omit details and explicit computations here.
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