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We consider a fast-slow excitable system subject to a stochastic excita-
tory input train and show that under general conditions, its long-term
behavior is captured by an irreducible Markov chain with a limiting
distribution. This limiting distribution allows for the analytical calcu-
lation of the system’s probability of firing in response to each input,
the expected number of response failures between firings, and the dis-
tribution of slow variable values between firings. Moreover, using this
approach, it is possible to understand why the system will not have a
stationary distribution and why Monte Carlo simulations do not con-
verge under certain conditions. The analytical calculations involved can
be performed whenever the distribution of interexcitation intervals and
the recovery dynamics of the slow variable are known. The method can
be extended to other models that feature a single variable that builds
up to a threshold where an instantaneous spike and reset occur. We also
discuss how the Markov chain analysis generalizes to any pair of input
trains, excitatory or inhibitory and synaptic or not, such that the fre-
quencies of the two trains are sufficiently different from each other. We
illustrate this analysis on a model thalamocortical (TC) cell subject to
two example distributions of excitatory synaptic inputs in the cases of
constant and rhythmic inhibition. The analysis shows a drastic drop in
the likelihood of firing just after inhibitory onset in the case of rhyth-
mic inhibition, relative even to the case of elevated but constant in-
hibition. This observation provides support for a possible mechanism
for the induction of motor symptoms in Parkinson’s disease and for
their relief by deep brain stimulation, analyzed in Rubin and Terman
(2004).
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1 Introduction

There has been substantial discussion of the roles of excitatory and in-
hibitory synaptic inputs in driving or modulating neuronal firing. Compu-
tational analysis of this issue generally considers a neuron awash in a sea of
synaptic bombardment (Somers et al., 1998; van Vreeswijk & Sompolinsky,
1998; De Schutter, 1999; Tiesinga, Jose, & Sejnowski, 2000; Tiesinga, 2005;
Chance, Abbott, & Reyes, 2002; Tiesinga & Sejnowski, 2004; Huertas, Groff,
& Smith, 2005). In this work, we also investigate the impact of synaptic in-
puts on the firing of a neuron, but with a focus on the effects of single inputs
within stochastic trains. This investigation is motivated by consideration of
thalamocortical relay (TC) cells, under the hypothesis that such cells are
configured to reliably relay individual excitatory inputs, arising from either
strong, isolated synaptic signals or tightly synchronized sets of synaptic
signals, during states of attentive wakefulness, yet are also modulated by
inhibitory input streams (Smith & Sherman, 2002). This viewpoint leads to
the question of how different patterns of inhibitory modulation affect the
relationship between the activity of a neuron and a stochastic excitatory
input train that it receives.

The main goal of this letter is to introduce and illustrate a mathemati-
cal approach to the analysis of this relationship. Our approach applies to
general excitable systems with separation of timescales, including a sin-
gle slow variable and fast onset and offset of inputs. These ideas directly
generalize to other neuronal models featuring a slow buildup of potential
interrupted by instantaneous spikes and resets. We harness these features
to reduce system dynamics to a one-dimensional map on the slow variable.
Each iteration of the map corresponds to the time interval from the arrival
of one excitatory input to the arrival of the next excitatory input (Othmer &
Watanabe, 1994; Xie, Othmer, & Watonabe, 1996; Ichinose, Aihara, & Judd,
1998; Othmer & Xie, 1999; Coombes & Osbaldestin, 2000). From this map,
under the assumption of a bounded excitatory input rate, we derive a tran-
sition process based on the evolution of the slow variable between inputs.
In general, such a process would be non-Markovian, because the transition
probabilities would depend on the arrival times of all inputs the cell had
received since it last spiked. However, we derive an irreducible Markov
chain by defining states that are indexed by both slow variable values and
numbers of inputs received since last firing.

In the case of a constant inhibition level, we prove the key result
that under rather general conditions, this Markov chain is aperiodic and
hence has a limiting distribution. This limiting distribution can be com-
puted from the distribution of input arrival times. Once obtained, it can
be used to deduce much about the firing statistics of the driven cell, in-
cluding the probability that the cell will fire in response to a given exci-
tatory input, the expected number of response failures that the cell will
experience between firings, and the distribution of slow variable values
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attained after any fixed number of unsuccessful inputs arriving between
firings.

We emphasize that, a priori, it is not certain that such a limiting distri-
bution exists. Therefore, Monte Carlo methods, which rely on the assumed
existence of a limit, may fail to converge and hence may give misleading
results about firing statistics and the distribution of slow variable values
at input arrival times. In addition to providing conditions that guarantee
the existence of a limiting distribution for the Markov chain, our analysis
shows how convergence failure can arise in the case of a stochastic train of
excitatory inputs that is close to periodic. When our existence conditions are
satisfied, our approach yields an analytical calculation of the limiting dis-
tribution, eliminating the need for simulations as well as the complications
of transients and slow convergence, and the eigenvalues of the transition
matrix used to compute the limiting distribution give information about
convergence rate. Moreover, this approach provides a framework for the
analysis of how changes in the statistics of the inputs affect the output of
a cell. Finally, the Markov chain analysis allows for the identification of bi-
furcation events in which variation of model parameters can lead to abrupt
changes that affect long-term statistics, although we do not pursue this in
detail in this work (see Doi, Inoue, & Kumagai, 1998; Tateno & Jimbo, 2000,
which we comment on in section 9).

We discuss the Markov chain approach in the particular case of con-
stant inhibition, which may be zero or nonzero, and extend it to the case
of inhibition that undergoes abrupt switches between two different levels,
at a lower frequency than that of the excitatory signal. These choices are
motivated by the analysis of TC cell relay reliability in the face of varia-
tions in inhibitory basal ganglia outputs that arise in Parkinson’s disease
(PD) and under deep brain stimulation (DBS), applied to combat the motor
symptoms of PD. An important point emerging from experimental results
is that parkinsonian changes induce rhythmicity in inhibitory basal gan-
glia outputs (Nini, Feingold, Slovin, & Bergman, 1995; Magnin, Morel, &
Jeanmonod, 2000; Raz, Vaadia, & Bergman, 2000; Brown et al., 2001),
while DBS regularizes these outputs, albeit at higher-than-normal levels
(Anderson, Postpuna, & Ruffo, 2003; Hashimoto, Elder, Okun, Patrick, &
Vitek, 2003). In recent work, Rubin and Terman (2004) provided computa-
tional and analytical support for the hypothesis that, given a TC cell that can
respond reliably to excitatory inputs under normal conditions, the parkin-
sonian introduction of repetitive, fairly abrupt switches between high and
low levels of inhibition to the TC cell will disrupt reliable relay. On the other
hand, regularized basal ganglia activity, even if it leads to unusually high
levels of inhibition, can restore reliable TC responses. While their compu-
tational results focused on finite time simulations of two TC models with
particular choices of excitatory and inhibitory input strengths, frequencies,
and durations, the general framework presented here can be used to ana-
lyze how a model TC cell responds to any train of fast excitatory inputs in
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the presence of inhibition that stochastically makes abrupt jumps between
two levels. Furthermore, the results of this letter yield more detailed sta-
tistical information about the firing of the driven TC cells, particularly just
after the onset of inhibition.

The letter is organized as follows. In section 2, we review the way in
which the dynamics of a fast-slow excitable system under pulsatile drive
can be reduced to a map. In section 3, we use these ideas to construct a
Markov chain that captures the relevant aspects of the dynamics of the
system. We consider the existence of limiting densities for the constructed
Markov chain and their interpretation in section 4. Further, we discuss the
application of these ideas to responses of a population of cells, as well as
their extension to populations with heterogeneities and to related models,
in section 5. The specific example of determining the reliability of a reduced
model TC cell under various types of inputs is addressed, as an application
of the theory, in sections 6 and 7, while an explicit connection to PD and
DBS is made in section 8. Some details of the calculations underlying the
results of these sections are contained in the appendixes. Section 9 provides
a summary of our results, a discussion of their relation to past work, and
some ideas on possible generalization and future directions.

In the two examples that we present, one with a uniform and one with
a normal distribution of excitatory inputs, a significant decrease in the
responsiveness of the model TC cell and a significant increase in its likeli-
hood of being found far from firing threshold result after the onset of the
inhibitory phase of a time-varying inhibitory input, relative to the cases of
high or low but constant inhibition. These findings are in agreement with
Rubin and Terman (2004) and, based on the generality of our approach,
appear to represent general characteristics of the TC model with a single
slow variable.

2 Reduction of the Dynamics to Maps of the Interval

In this section we introduce a general relaxation oscillator subject to synaptic
input. Under certain assumptions on the form of the input, the dynamics
of the oscillator is accurately captured by a map of an interval.

2.1 A General Relaxation Oscillator. Consider a model system of the
form

v′ = f (v,w) + I (v, t)

w′ = εg(v,w), (2.1)

where 0 < ε � 1. In the neuronal context, the fast variable v models the
voltage, while the slow variable w typically models different conductances
(Rubin & Terman, 2002). The input to the oscillator is modeled by the term
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Figure 1: The nullclines of system 2.1 under the assumptions discussed in the
text. The upper and lower v-nullclines correspond to sexc = 0 (excitation off)
and sexc = 1 (excitation on), respectively.

I (v, t). We will assume that if I (v, t) = C for a constant C in a range of
interest, then the v-nullcline, given implicitly by f (v,w) = −C , has a three-
branched, or N-like, shape (see Figure 1). We will refer to the different
branches of this nullcline as the left, middle, and right branch, respectively.
Under assumptions on the form of f and g that typically hold in practice
(Rubin & Terman, 2002), it is well known that if the w-nullcline, given
implicitly by g(v,w) = 0, intersects the v-nullcline at the middle branch,
then equation 2.1 has oscillatory solutions, known as relaxation oscillations.
If the w-nullcline meets the v-nullcline at the left branch, then there are no
oscillatory solutions, but the system is excitable. In this case, a kick in the
positive v direction can trigger an extended excursion (a spike). In the
following, we consider the case when the two nullclines intersect on the left
branch of the v-nullcline in the absence of input.

In the work system presented here, equation 2.1 will be used as a model
of a neuronal cell, and I (v, t) will model synaptic input, so that

I (v, t) = −gexcsexc(t)(v − vexc) − ginhsinh(t)(v − vinh), (2.2)

where v − vexc < 0 and v − vinh > 0 over the relevant range of v-values.
The two terms in the sum represent effects of excitatory and inhibitory
currents, respectively. We will assume that the synaptic variables sexc(t)
and sinh(t) switch between values of 0 (off) and 1 (on) instantaneously and
independently (Somers & Kopell, 1993; Othmer & Watanabe, 1994). This is
a reasonable approximation in a situation where the input cells fire action
potentials of stereotypical duration, sufficiently widely separated in time
to allow for synaptic decay to a small level between inputs, and where the
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synaptic onset and offset rates are rapid. We need not consider other aspects
of the dynamics of the neurons supplying inputs to the model cell, as only
the input timing will be relevant.

If the magnitude of I is not too large, then each of the four possible choices
for (sexc, sinh) yields a different v-nullcline of system 2.1, each of which has
an N-like shape. For simplicity, we first consider the case sinh = 0, so that
the cell receives only excitatory input. We label the resulting nullclines as
N i , with i ∈ {E, 0} corresponding to the values of sexc = 1 and sexc = 0,
respectively. The case when sinh �= 0 can be treated similarly, resulting in
two additional nullclines, N I+E and N I .

We refer to the left (right) branch of each v-nullcline N i as the silent
(active) phase. Each left branch terminates where it coalesces with the middle
branch in a saddle node bifurcation of equilibria for the v-equation. We
denote these bifurcation points, or left knees, by (vi

L K , wi
L K ), and we denote

the analogous right knees as (vi
RK , wi

RK ), with i ∈ {E, 0} as above. Since
v − vexc < 0, increasing sexc lowers the v-nullcline in the (v,w) phase plane.
See Figure 1 for an example of the arrangement of the nullclines and the
different knees.

We have assumed that system 2.1 is excitable when excitation is off, with
a stable critical point (v0

FP , w0
FP ) on the left branch of N 0. All solutions of

equation 2.1 will therefore approach (v0
FP , w0

FP ) in the absence of input. We
assume that the critical point (vE

FP , wE
FP ) lies on the middle branch of N E ,

so that the system is oscillatory in the presence of a constant excitatory
input. This second assumption is not essential, and the analysis is easily
generalized.

Note that in the singular limit, if w ∈ (wE
L K , w0

FP ], then an excitatory input
results in a large excursion of v, corresponding to a spike. If excitatory inputs
are brief, then any interesting dynamics is the consequence of synaptic
inputs that result in such spikes. In remark 4, we comment further on the
necessity of the assumptions made here.

2.2 Timing of the Synaptic Inputs. We denote the times at which the
excitatory synaptic inputs occur by ti , and we assume that each input has
the same duration, which we call t∗. We will assume that ti+1 − ti > t∗, so
that the inputs do not overlap, and that the inputs are of equal strength,
such that

sexc(t) =
{

1 if ti < t < ti + t∗,
0 otherwise.

We comment on trains of inputs with variable durations and amplitudes in
remarks 4 and 5.

Of fundamental interest in the following analysis will be the timing be-
tween subsequent excitatory inputs, which gives rise to the distribution
of interexcitatory intervals Ti = ti+1 − ti . We will assume that the Ti are
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Figure 2: Schematic representation of a typical trajectory starting on the left
branch ofN 0 with w = w0, where w0 is in the interval j = (wE

L K , w0
FP ), and ending

on the same branch after time T (left). MT (w0) is defined as the w coordinate of
the end point of the trajectory (right). Note that the trajectory from w̃E

L K itself
fails to reach the active phase, such that w̃E

L K · t∗ = wE
L K and MT (w̃E

L K ) > wE
L K .

independent and identically distributed random variables, with corre-
sponding density ρ(t). Excitation that is T-periodic in time is a special
case, corresponding to the singular distribution ρ(t) = δ(T).

2.3 Reduction of the Dynamics to a Map. For the purposes of analysis,
we consider that the active phase of the cell is very fast compared to the
silent phase. More specifically, we treat the neuron as a three-timescale
system. The first timescale, on the order of tenths of milliseconds, governs
the evolution of the fast variable (the voltage) during spike onset and offset.
The second, intermediate timescale, on the order of milliseconds, governs
the evolution of the slow variable on the right-hand branch, while the third,
slow timescale, on the order of tens of milliseconds, governs its evolution
on the left-hand branch. We assume that the duration of excitation is greater
than or equal to the duration of the active phase (Stuart & Häusser, 2001).
Correspondingly, we measure input duration on the slowest timescale.

Using ideas of singular perturbation theory, these simplifications allow
us to reduce the response of an excitable system to a one-dimensional
map on the slow variable w in the singular limit. Similar maps have been
introduced previously (Othmer & Watanabe, 1994), in the setting of two
rather than three timescales. Since we measure the duration of excitation
on the slow timescale, cells that spike are reinjected at wE

RK , and the only
accessible points on the left branch of N 0 lie in the interval I = [wE

RK , w0
FP )

(see Figure 2).
A common dynamical systems convention is to denote the solution ob-

tained by integrating a differential equation for time t, from initial condition
x0, by x0 · t. Using this convention, we denote the w coordinate at time t,
of a point on the trajectory with initial condition (v0, w0), by w0 · t. We now
define a map MT : I → I by MT (w0) = w0 · T , where it is assumed that an
excitatory input is received at time t = 0, at the start of the map cycle, and
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no other excitatory inputs are received between times 0 and T . We claim
that in the singular limit, there is no ambiguity in the definition of the map
MT . Indeed, in the singular limit, the initial point (v0, w0) can be assumed
to lie on the left branch of the nullcline N 0. Since the evolution on the right
branch of N E occurs on the intermediate timescale and the time T exceeds
the duration of excitation t∗, the trajectory starting at (v0, w0) again ends
on the left branch of N 0 at time T . We emphasize that when we repeat-
edly iterate a map MT or compose a sequence of maps MTi , we assume for
consistency that an input arrives at the start of each map cycle and that no
other inputs arrive during each cycle.

Figure 2 (left) shows a schematic depiction of part of a typical trajectory,
starting on N 0 with w = w0, during an interval of length T following an
excitatory input. The trajectory jumps to the right nullcline after excitation
is received. The jumps between the branches occur on the fast timescale
(triple arrows), while the evolution on the right and left nullcline are inter-
mediate and slow, respectively (double and single arrows). A possible form
of the resulting map MT is shown on the right. Note that this map has three
branches. Let w̃E

L K ≤ wE
L K denote the infimum of the set of w-values from

which a cell will reach the active phase, when given an excitatory input of
duration t∗. Orbits with initial conditions in the interval j = (wE

L K , w0
FP ) will

jump to the active phase as soon as excitation is received. Meanwhile, orbits
with initial conditions in n = [wE

RK , w̃E
L K ] will be blocked from reaching the

active phase, by the left branch of the N E nullcline. Intermediate initial
conditions, in g = (w̃E

L K , wE
L K ], will yield trajectories that jump to N E and

then make a second jump, to the active phase, after a time 0 ≤ t < t∗. In the
singular limit, the region j is compressed to a single point under MT , so that
MT ( j) = MT (wE

RK ) = wE
RK · T . Since the times of entry into the active phase

vary continuously across initial conditions in g, MT (g) has a nonzero slope.
Finally, note that on n, the map MT has slope less than one, corresponding
to the fact that w′ decreases as w approaches the fixed point w0

FP along the
left branch of N 0.

Remark 1. The definition of the map MT (w) can be extended to the case
when the system is excitable rather than oscillatory under constant excita-
tion, that is, when the point (vE

FP , wE
FP ) is on the left branch of N E . In this

case, MT (w) < w may occur for w near wE
FP if T is close to t∗, due to the

stability of the fixed point (vE
FP , wE

FP ) on N E .

2.4 Periodic Excitation. Although the case of periodic excitation has
been analyzed in much detail elsewhere, we review it here since the analysis
shares a common framework with the developments in the subsequent
sections.

First, consider the limit as the duration of excitation goes to zero, with
respect to the slow timescale, such that w̃E

L K ↑ wE
L K and the middle branch
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Figure 3: Examples of the map MT . (Left) An example with t∗ = 0, for which,
after a finite number of iterations, all initial conditions will be mapped to a
periodic orbit of period N = 4. (Right) An example with t∗ > 0, with M1

T (w̃E+
L K )

defined as limw↓w̃E
L K

M1
T (w). This example exhibits contraction of the interval g,

since M5
T (g) ⊂ M1

T (g) and |M5
T (wE

L K ) − M5
T (w̃E+

L K )| < |M1
T (wE

L K ) − M1
T (w̃E+

L K )|. Note
that in both cases, M1

T (wE
L K ) = M5

T (wE
L K ).

of MT is eliminated. As shown in the left panel of Figure 3, the fact that
j = (wE

L K , w0
FP ) is contracted to a single point under MT implies that all

points w0 ∈ I get mapped to a periodic orbit of MT in a finite number
of iterations. A simple analysis shows that there exists a natural number
N such that a population of cells with initial conditions distributed on I
will form N synchronous clusters under N applications of the map MT . The
periodic orbit is obtained from applying N iterations of MT to MT (wE

RK ), and
it consists of the points {Mi

T (wE
RK )}N

i=1, where MN
T (wE

RK ) ∈ j (see Figure 3).
Every trajectory is absorbed into this orbit, possibly after an initial transient.
This clustered state persists away from the singular limit.

More precisely, consider the following intervals, or bins,

ji =
(

M−i
T

(
wE

L K

)
, M−(i−1)

T

(
wE

L K

)]
i = 1, 2, . . . (2.3)

Note that the ith iterate of ji under MT is contained in j . Therefore, since
Mi

T ( ji ) ⊂ j , it follows that Mi+1
T ( ji ) = MT (wE

RK ) or, more generally, Ml
T ( ji ) =

Ml−i
T (wE

RK ) for l > i .
We can interpret this as follows. Consider a collection of identical oscil-

lators subject to identical input, under the assumption that all oscillators
have initial conditions in ji . This collection will get mapped to the interval
j just prior to the ith input. It will then respond to the ith input by firing
in unison and will form a synchronous cluster after i + 1 excitatory inputs,
since the interval j collapses to a single point after the cells fire.

If the bin ji contains a fraction q of the initial conditions, then this fraction
of cells will fire at the ith input, as well as on every Nth input after that.
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Therefore, without knowing the distribution of initial conditions, it is not
possible to know what fraction of the cell population will respond to a
given input. Consider the two extreme examples: if all cells have initial
conditions lying in one bin, the population of cells will respond only to
every Nth input. On the other hand, if initially every bin ji contains some
fraction of cells, then each input will induce a response by some fraction of
the population.

Now consider the effect of t∗ > 0, corresponding to a nonzero duration
of excitation. As long as t∗ is sufficiently small, or the slope of the middle
branch of MT is sufficiently shallow, then MT will be contracting on g, as
shown in the right panel of Figure 3. In this case, a similar clustered state
arises away from the t∗ = 0 limit as well. Moreover, the definitions and
clustering phenomenon described here carry over identically to the case
of periodic excitation with inhibition held on at any constant level. In that
case, the system will evolve on the nullclines N I and N I+E in the singular
limit. The bins are defined in terms of the points w I+E

L K and w I+E
RK , rather

than wE
L K and wE

RK as above.
We will show in the next section that under general conditions, the

situation can be quite different when the times between onsets of successive
excitatory inputs, which we will call interexcitation intervals (IEIs), are
random and the possibility of sufficiently long IEIs exists.

Remark 2. The map MT resembles a time T map of the voltage obtained
from an integrate-and-fire system. In our case, the map is defined on the
slow conductance w, however. If an excitatory input fails to elicit a spike
and g(v,w) depends weakly on v, then the input may have little effect on
the slow conductance. This is unlike the typical integrate-and-fire model,
in which excitatory inputs move the cell closer to threshold.

3 The Construction of a Markov Chain

We next analyze the long-term statistical behavior of a cell that receives
excitatory input that is not periodic in time. Our goals are to determine the
probability that the cell fires in response to each subsequent input since it
last fired and the number of inputs the cell is expected to receive between
firings or, equivalently, the average number of failures before a spike occurs.
Our results can be interpreted in the context of a population of cells as well,
and this is discussed in section 5.

A key point in our approach is that, as noted in section 2, all firing events
lead to reinjection at wE

RK . Therefore, the system has only limited memory,
since after a cell fires, all information about its prior behavior is erased. This
allows us to describe the evolution of the variable w through the interval
[wE

RK , w0
FP ) as a Markov process with a finite number of states. The steps

in this process will be demarcated by the arrival times of excitatory inputs.
Each IEI is defined as the time from the onset of one excitatory input to the
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L K and w0
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equation 3.2.

onset of the next. The length of this interval includes the duration of the
input that occurs at the start of the IEI.

We assume that the lengths of the IEIs, which we denote by T , are
independent and identically distributed random variables with density
ρ. Fundamental in our analysis is the assumption that the support of ρ

takes the form [S, U], where 0 < S < U < ∞. As long as the frequency of
the cells providing excitatory inputs is bounded, this assumption is not
unreasonable. If ρ satisfies this assumption, then the long-term behavior
of a population of cells is accurately captured by the asymptotics of a
corresponding Markov chain with finitely many states. We show that under
certain conditions, this Markov chain is aperiodic and irreducible and thus
has a limiting distribution. This distribution can be used to describe the
firing statistics of the cell.

3.1 The States of the Markov Chain. We start by again assuming that
the cell receives only excitatory input. To simplify the exposition, we now
assume that the input is instantaneous on the slow timescale, so that it
causes a cell to spike if and only if w > wE

L K . In the singular limit, such an
input has no effect on the slow variable w of a cell unless a spike is evoked.
This assumption will be relaxed subsequently.

In the case of periodic excitation, we considered bins defined by back-
ward iterations of wE

L K , as in equation 2.3. For notational reasons, it is now
more convenient to consider forward iterations of wE

RK to form bins used
in the definition of the Markov chain (see Figure 4). Let N be the smallest
number such that wE

RK · NS > wE
L K , where S > 0 is the lower bound of
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the support of ρ mentioned above. Therefore, N is the maximal number of
excitatory inputs that a cell starting at any point w0 ∈ [wE

RK , w0
FP ] can receive

before firing. Set

Ik = [
wE

RK · kS, wE
RK · (k + 1)S) if 1 ≤ k ≤ N − 2, (3.1)

and define two additional bins:

IN−1 = [
wE

RK · (N − 1)S, wE
L K

]
IN = (

wE
L K , w0

FP

) = j.
(3.2)

If T is a random variable, then the map MT transfers ensembles of cells
between bins. This process is non-Markovian, in that transition probabilities
depend on the full set of IEIs that have occurred since a cell last spiked,
and not just current bin membership. That is, a cell that enters a bin after
fewer inputs will be more likely to lie in the lower part of the bin than
a cell that enters the same bin after more inputs. Hence, the number of
inputs that a cell has received since its last spike can significantly affect its
transition probabilities between bins. Therefore, to form a Markov chain
from MT , a further refinement is needed. To that effect, we define Markov
chain states (Ik, l) as follows. A cell is in state (Ik, l) if w ∈ Ik and l complete
IEIs have passed since the cell last fired. Note that by construction, the first
of these IEIs (l = 1) actually corresponds to the duration of the input that
made the cell fire, together with the pause between that input and the next,
since the actual firing and reset occur relative to the slow timescale.

As in the case of periodic excitation, the analysis carries over directly to
the case of constant inhibition. In this case, the nullclines N I and N I+E are
used instead of N 0 and N E above. The remainder of the above construction
is identical, with the superscripts I and I + E replacing the superscripts 0
and E , respectively.

Remark 3. For the remainder of this section, we continue to denote the
states of the Markov chain by (Ik, l), to emphasize that the first index refers
to an interval of slow variable values. For simplicity, we use (k, l) instead of
(Ik, l) in the examples of the analysis that appear later in the letter.

Remark 4. Up to this point, we have made several assumptions that can in
fact be weakened in the following ways:

� For ε �= 0, the actual jump-up threshold lies below wE
L K and is given

by the minimal level of w for which an input current pushes the point
(v,w) on the left branch of N 0 into the active phase. As long as all
inputs are the same (otherwise, see the next point and remark 5),
this value is uniquely defined and can be used to replace wE

L K in the
definitions of IN−1 and IN in equation 3.2.
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� If the excitatory input is not instantaneous in time, then the bins have
to be adjusted. For instance, the top bin will include all cells that fire
by jumping to the left branch of N E and then reaching wE

L K with the
input still on. Each IEI will consist of the duration of the excitatory
input beyond reset (see the next point), plus the time until the arrival
of the next input. The distribution of IEIs must be adjusted accordingly.
These steps are incorporated in the examples presented in section 6.

� As stated in section 2, when inputs are not instantaneous, input dura-
tion is measured on the slowest timescale. It is possible, however, that
the input duration, in milliseconds, is only slightly longer than the
active phase, which transpires on our intermediate timescale. What
we refer to here as the input duration is therefore really the duration
of the part of the input that extends beyond the cell’s return to the
silent phase, which we measure on the slow timescale.

� If the input turns on and off gradually, then the analysis becomes more
complicated, although additional simplifying assumptions could re-
duce this complexity.

3.2 Transition Probabilities. To complete the definition of the Markov
chain, we need to compute the transition probabilities between the different
states. The transitions occur at times at which the cell receives excitatory
inputs. One way to think about this probability is to imagine a large pool of
noninteracting cells, each of which receives a different train of inputs with
IEIs chosen from the same distribution. To start, assume that each cell is in
bin IN and receives its next excitatory input at slow time 0. By the definition
of IN, these inputs cause the cells to spike, and they get reinjected at wE

RK ,
still at slow time 0. The assumption that all cells are reset to the same point
is essential in the definition of the Markov chain.

Recall that we have defined the length T of an IEI as the time between
the onsets of two subsequent inputs and that these times are independent
and drawn from the distribution ρ. Focus on a particular cell, and denote
the length of its next IEI by T1. Just before the cell’s next input arrives, it
will be at wE

RK · T1. Similarly, if we check the locations of all other cells after
their respective IEIs, we will find that the population of cells is distributed
in some interval starting at wE

RK · S, as shown in Figure 5. The transition
probability from the state (IN, k) to the state (I j , 1) equals the fraction of
the population of cells that are in bin I j at the ends of their respective
IEIs. This fraction is independent of the number of inputs k a cell received
before firing, by our assumption that all information about prior dynamics
is erased once a cell has fired.

Let us return to the cell at wE
RK · T1, and let T2 denote its second IEI

since time 0, also chosen from the distribution ρ. After this IEI, the example
cell will be at wE

RK · (T1 + T2). The fraction of the population lying in bin
I j after one IEI since time 0 and in bin Ik after two IEIs since time 0 is
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E
LKw E

LKw

1MS RK
E(w    )

MS RK
E(w    )2

M RK
E(w    )3 MS RK

E(w    )3

MS RK
E(w    )2

1MS RK
E(w    )

E
LKw

1MS RK
E(w    )

MS RK
E(w    )2

MS RK
E(w    )3

E
LKw

MS RK
E(w    )3

MS RK
E(w    )2

1MS RK
E(w    )

S

Figure 5: An example of the state of the population of cells that start in IN

and immediately receive inputs and fire. After one subsequent IEI, the cells are
at wE

RK · T , where T is distributed according to ρ. Therefore, all cells lie in an
interval bounded below by M1

S(wE
RK ) = wE

RK · S, as shown in the left-most part
of the figure. For this example, we have assumed that supp(ρ) ⊂ [S, 2S), such
that all cells are below M2

S(wRK ) = wE
RK · 2S, as shown. After a second IEI, each

cell is at wE
RK · (T1 + T2), where both T1 and T2 are chosen from the distribution

ρ. After a third IEI, some cells will lie above wE
L K , such that they fire to their

next inputs, while others will not. The distributions of cells after the third and
fourth IEIs are the right-most two distributions shown above.

the transition probability between the states (I j , 1) and (Ik, 2). This process
can be continued to compute all the transition probabilities. In the example
shown in Figure 5, we have assumed that supp(ρ) ⊂ [S, 2S) and that there
are five accessible states, which we order as (I1, 1), (I2, 2), (I3, 3), (I4, 3), and
(I4, 4). Hence, N = 4, and the matrix of transition probabilities has the form

A =




0 1 0 0 0
0 0 ∗ ∗ 0
0 0 0 0 1
1 0 0 0 0
1 0 0 0 0


 , (3.3)

where Ai j gives the transition probability from the ith state in the list to the
j th state in the list.

If initial conditions are selected randomly, then some cells may initially
lie in transient states that cannot be reached subsequent to reset from wE

RK .
We neglect such states in the Markov chain, since including them does not
affect the statistics we consider.

We now are ready to compute the transition probabilities for the gen-
eral Markov chain that we have defined. We first compute transition
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probabilities between the states (I j , l) and (Ik, l + 1) for l ≤ j < k ≤ N. Con-
sider independent and identically distributed random variables Ti , each
with probability density ρ. Let σl = ∑l

i=1 Ti denote the sum of these random
variables. The transition probability between the states (I j , l) and (Ik, l + 1)
is given by

p( j,l)→(k,l+1) = P[(Ik, l + 1)|(I j , l)]

= P
[
σl+1 ∈ [kS, (k + 1)S)

∣∣ σl ∈ [ j S, ( j + 1)S)
]
. (3.4)

Since the probability density ρ(l) of the sum σl can be computed recursively
by the convolution formula,

ρ(l)(t) =
∫

ρ(l−1)(u)ρ(t − u)du,

the conditional probabilities in the expression above can be evaluated. In
particular, since

P
[
σl+1 ∈ [z, z + �z] & σl ∈ [w,w + �w]

] ≈ ρ(l)(w)ρ(z − w)�w�z,

it follows that

p( j,l)→(k,l+1) =
∫ (k+1)S

kS

∫ ( j+1)S
j S ρ(l)(w)ρ(z − w)dwdz∫ ( j+1)S

j S ρ(l)(z)dz
. (3.5)

Next, we define the transition probabilities from the states (IN, l). By our
assumption, a cell in one of these states fires when it receives an excitatory
input. Therefore, the next state must be of the form (I j , 1). As discussed
above, once a cell fires, it has no memory of the number of excitatory
inputs it received prior to this event. Therefore, the transition probability
from (IN, l) to (I j , 1) is the same for all l. This transition probability can be
obtained as

p(N,l)→( j,1) = P[(I j , 1)|(IN, l)] =
∫ ( j+1)S

j S
ρ(t)dt.

Since no transitions other than the ones described above are possible,
this completes the definition of the Markov chain. As a final step, let Iki

denote the highest bin, with respect to values of the slow variable, that can
be reached through i IEIs after reset. To form the transition matrix A for the
Markov chain, we simply order the states of the Markov chain in the list

(I1, 1), (I2, 1), . . . , (Ik1 , 1), (I2, 2), (I3, 2), . . . , (Ik2 , 2), . . . , (IN, N).
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The transition from the mth state to the nth state in the list is taken to be
the (m, n) element of the matrix A, as was done in matrix 3.3 in the above
example.

Remark 5. As mentioned in remark 4, the threshold wE
L K in equation 3.2

depends on input amplitude and duration. If input amplitudes are not con-
stant, then there will no longer be a single value N such that a cell fires to
its next input if and only if it is in a state of the form (IN, j), no matter how
IN is defined. In such a case, we can, for example, use the threshold defined
for the maximal relevant input amplitude to define IN. Then the probabil-
ity distribution of input amplitudes can be used to compute probabilities
p(N,l)→(N,l+1) and p(N,l)→( j,1). For some range of l values, p(N,l)→(N,l+1) will be
nonzero, and there will be a maximal value l such that no cell requires more
than l inputs to fire, and hence (IN, l) is the last state in the chain.

4 Limiting Distributions of the Markov Chain and Their Interpretation

We next consider the long-term behavior of the Markov chains defined
above and interpret this behavior in terms of the original fast-slow sys-
tem. For a finite-state Markov chain with M states and transition matrix
A, the probability distribution π = (π1, . . . πM) is a stationary distribution if∑

i πi Ai, j = π j for all j . The stationary distribution π is a limiting distribu-
tion if

lim
n→∞{An}i, j = π j .

A Markov chain is irreducible if for any two states i and j , there exists a
finite n such that {An}i, j > 0. In other words, there is a nonzero probability of
transition between any two states in a finite number of steps. An irreducible
finite state Markov chain has a unique stationary distribution (Hoel, Port,
& Stone, 1972). The period di of the state i in a Markov chain is the greatest
common divisor of the set {n|{An}i,i > 0}. For an irreducible chain, all states
have the same period d . Such a chain is called aperiodic if d = 1 and periodic
if d > 1. A key point is made in the following theorem:

Theorem 1 ((Hoel et al., 1972), p. 73). For an aperiodic, irreducible Markov chain,
the stationary distribution is a limiting distribution.

4.1 Conditions for the Existence of a Limiting Distribution. We next
show that under very general conditions, the Markov chain constructed
in the previous section is irreducible and aperiodic and therefore has a
limiting distribution. First, recall that the chain was constructed to include
precisely those states that can be reached with nonzero probability in a finite
number of steps after a cell is reset. Since a cell in any state will fire and
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be reset after a finite number of steps, this implies that there is a nonzero
probability of transition from any state to any other state in the chain in a
finite number of steps. Therefore, the Markov chain under consideration is
always irreducible.

We next consider conditions under which the Markov chain is aperiodic.
It is sufficient to start with a continuum ensemble of cells at wE

RK . If these
cells are subject to different realizations of the input, and a nonzero fraction
of cells occupies every state after a finite number inputs, then the transition
matrix is aperiodic.

To start, note that if ρ is supported on a single point T , so that the input
is periodic, then the Markov chain will be periodic. Each point Mj

T (wE
RK ) is

contained in bin I j . Therefore the states of the Markov chain are {(Ii , i)}N
i=1.

In the case depicted in Figure 3, for example, the transition matrix has the
form

A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 . (4.1)

Consider next what happens as the support of ρ is enlarged to [T, T + δ]
in this example. For small δ, there is no change in the structure of
the transition matrix. For some δ0 sufficiently large, however, we have
M3(T+δ0)(wE

RK ) = wE
L K , and when δ > δ0, as shown in Figure 5, a fraction

of the cells will be in state (I3, 3) after three IEIs, while another fraction
will be in state (I4, 3). When their next excitatory input arrives, the cells
in state (I4, 3) will fire and transition to (I1, 1), whereas the cells in (I3, 3)
will require two more inputs to fire. Therefore, in addition to the states
(I1, 1), (I2, 2), (I3, 3), (I4, 4) that were relevant in the periodic case, the new
state (I4, 3) becomes part of the Markov chain. The transition matrix be-
tween these five states for δ > δ0 has the form

A =




0 1 0 0 0
0 0 1 − ε(δ) ε(δ) 0
0 0 0 0 1
1 0 0 0 0
1 0 0 0 0


 , (4.2)

where ε(δ0) = 0, ε increases with δ, and the states are ordered as
(I1, 1), (I2, 2), (I3, 3), (I4, 3), and (I4, 4). It can be checked directly that this
transition matrix is aperiodic. This is also a consequence of the following
general theorem:

Theorem 2. Suppose that the support of the distribution ρ of IEIs (including
input durations) is the interval [S, U]. The transition matrix defined in section 3
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is aperiodic if and only if MiU(wE
RK ) > wE

L K for an integer 0 < i < N, where N is
defined by M(N−1)S(wE

RK ) < wE
L K < MNS(wE

RK ), as in section 3.

Corollary 1. The Markov chain defined above has a limiting distribution if and
only if MiU(wE

RK ) > wE
L K for an integer 0 < i < N, where N is described in

theorem 2.

Remark 6. In the example discussed above, as the support of ρ widens,
the periodic transition matrix in equation 4.1 is replaced by the aperiodic
matrix, equation 4.2. Since the limiting behavior of periodic and aperiodic
Markov chains is very different, the system can be thought of as undergoing
a bifurcation as δ is increased past δ0.

Proof. If MiU(wE
RK ) ≤ wE

L K for all integers 0 < i < N, then it can be checked
directly that the only states that are achievable from an initial condition
MS(wE

RK ) have the form (Ii , i) for 0 < i ≤ N. Therefore, the transition matrix
is of size N × N and has the form of matrix 4.1, with ones on the superdiag-
onal in all rows except the last, which has a one in its first column. Thus,
the Markov chain is periodic.

Assume instead that MiU(wE
RK ) > wE

L K for an integer 0 < i < N. Consider
a continuum of cells that have just spiked and been reset to wE

RK and are
receiving independent realizations of the input. First, note that after i IEIs
following the spike, there will be a nonzero fraction of cells in all states
(Ik, i), k ≥ i that are part of the Markov chain.

The condition MiU(wE
RK ) > wE

L K and the fact that the support of ρ is an
interval imply that some cells will fire on the ith, (i + 1)st, . . . , and Nth
inputs after the one that causes their initial reset. Correspondingly, there
will be cells in all states (Ik, 1), k ≥ 1 in the chain after the ith input, cells in all
states (Ik, 2), k ≥ 2 and (Ik, 1), k ≥ 1 in the chain after the (i + 1)st input, and
so on, until all states of the form (Ik, j) with k ≥ j and j ∈ {1, . . . , N − i + 1}
are nonempty after N inputs. Similarly, some cells will fire again to input
number 2i , with some other cells firing to each input from 2i + 1 up to 2N,
and after 2N inputs, all states (Ik, j) with k ≥ j and j ∈ {1, . . . , 2N − 2i + 1}
in the chain will be nonempty. Continuing this argument inductively shows
that all states are necessarily occupied just before the arrival of the (b N)th
input after reset (i.e., after b N IEIs), where b = � N−1

N−i �—namely, the least
integer greater than or equal to (N − 1)/(N − i), such that b N is bounded
above by (N − 1)N, since i ≤ N − 1. This establishes theorem 2.

Finally, since we established previously that the Markov chain is irre-
ducible, theorems 1 and 2 imply that it has a limiting distribution whenever
MiU(wE

RK ) > wE
L K for an integer 0 < i < N. If this condition fails, then the

Markov chain is periodic and therefore has no limiting distribution. Hence,
corollary 1 holds as well.
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4.2 Interpretation of the Invariant Density. The limiting distribution
Q of the derived Markov chain has two interpretations (Taylor & Karlin,
1998). Assume that a cell is subjected to excitatory input for a long time. If
w is recorded after each IEI, just prior to the moment when the cell receives
an excitatory input, then Q[(I j , l)] is the fraction of recordings observed
to fall inside (I j , l). Consequently, the total mass of the distribution Q that
lies in the states (IN, j), namely,

∑N
j=1 Q[(IN, j)], is the probability that a

cell will respond to the next excitatory input by firing. Similarly, we can
think of Q[(I j , l)]/

∑N
k=l Q[(Ik, l)] as the probability that a cell will be found

to have w ∈ I j just prior to receiving its lth excitatory input since it fired
last.

Note that the firing probability
∑N

j=1 Q[(IN, j)] is not the reciprocal of the
average number of failures before a spike. However, the average number of
failures, call it E f , can be computed once the Q[(I j , l)] are known. Clearly,

E f =
N−1∑
j=1

j F j , (4.3)

where each F j denotes the probability that exactly j failures occur. Note
that j failures occur precisely when j + 1 conditions are met. That is, for
each i = 1, . . . , j , just prior to the ith input since the last firing, the trajectory
falls into a state of the form (Iki , i), where i ≤ ki < N. Further, the trajectory
ends in state (IN, j + 1) before the ( j + 1)st input, to which the cell responds
by firing. The quantity

∑N−1
k=i Q(Ik, i)∑N
k=i Q(Ik, i)

equals the probability that just before the ith input arrives, a cell will lie in
a state (Ik, i) with k < N. Thus, the failure probabilities are given by

F j =
(∑N−1

k=1 Q(Ik, 1)∑N
k=1 Q(Ik, 1)

) (∑N−1
k=2 Q(Ik, 2)∑N
k=2 Q(Ik, 2)

)
· · ·

(∑N−1
k= j Q(Ik, j)∑N
k= j Q(Ik, j)

) (
Q(IN, j + 1)∑N

k= j+1 Q(Ik, j + 1)

)
. (4.4)

Of course, while some of the Q(Ik, j) may be zero, the exclusion of transient
states in our Markov chain construction ensures that all of the sums in
the denominators of equation 4.4 will be positive for every population of
cells.
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Finally, we note that the eigenvalues of the transition matrix can be
used to quantify the rate at which the system will converge to its limiting
distribution, when one exists. This information may be useful even if Monte
Carlo simulations will be used.

5 Extensions of the Markov Chain Approach

The ideas introduced in the previous section are applicable in many other
settings. Here we outline extensions to heterogeneous populations of ex-
citable cells subject to identical periodic input and to general excitable
systems and related models.

5.1 Populations and Heterogeneity. The limiting distribution com-
puted from a Markov chain cannot be used directly to determine what
fraction of a population of identical cells subject to identical stochastic
trains of excitatory inputs will respond to a given input. As noted earlier, it
is necessary to specify the distribution of initial conditions to compute this
fraction. On the other hand, the limiting distribution contains information
about a population of identical cells subject to different realizations of the
stochastic train of excitatory inputs (Taylor & Karlin, 1998). In this case,
all of the quantities discussed in the previous section can be reinterpreted
with respect to the firing statistics of a population of cells. For example, the
fraction of cells responding with a spike to a given excitatory input equals
the probability of a single cell firing to a particular excitatory input, that is,∑N

j=1 Q[(IN, j)].
We can also apply similar ideas to the case of a heterogeneous population

of excitable cells all subject to the same periodic input, say, of period T .
Heterogeneity in intrinsic dynamics may lead to different rates of evolution
for different cells in the silent phase, but this disparity can be eliminated by
rescaling time separately for each cell, so that all cells evolve at the same unit
speed in the silent phase. As a result of this rescaling, the heterogeneity in
the population will become a heterogeneity in firing thresholds. Denote the
resulting distribution of thresholds by φ, such that for any t > 0,

∫ t
0 φ(τ ) dτ

gives the fraction of cells with thresholds below t. There will exist a maximal
nonnegative integer m and a minimal positive integer n > m such that the
support of the distribution φ is contained in the interval [mT, nT]. Thus, for
i ≥ 1, δi = ∫ iT

(i−1)T φ(τ ) dτ gives the fraction of cells that will fire in response
to the ith input, which is nonzero for i = m + 1, . . . , n.

We can define Markov chain states I j , for j = 1, . . . , n, by stating that a
cell is in state I j if it has received j − 1 inputs since it last fired. The transition
probability P( j, j + 1) from state I j to state I j+1 is 1 if j ≤ m; if j = m + 1,
then P(m + 1, m + 2) = 1 − δm+1, while the probability of transition from
state Im to state I1 is P(m + 1, 1) = δm+1; and if m + 1 < j ≤ n − 1, then
P( j, j + 1) is given by the proportion of those cells that have not fired to
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the first j − 1 inputs that also do not fire to the j th input, namely,

P( j, j + 1) = 1 − γ j := 1 − δ j − δ j−1 − . . . − δm+1

1 − δ j−1 − δ j−2 − . . . − δm+1

= 1 − δ j

1 − δ j−1 − δ j−2 − . . . − δm+1
,

while P( j, 1) = γ j = δ j/(1 − δ j−1 − . . . − δm+1). Finally, the transition prob-
ability from state In to state I1 is 1, and all other transitions have zero
probability. If we set γm+1 = δm+1, then the transition matrix takes the form

A =




0 1 0 0 . . . 0 0 . . . 0 0
0 0 1 0 . . . 0 0 . . . 0 0
· · · · . . . · · . . . · ·
· · · · . . . · · . . . · ·
· · · · . . . · · . . . · ·

γm+1 0 0 0 . . . 1 − γm+1 0 . . . 0 0
· · · · . . . · · . . . · ·
· · · · . . . · · . . . · ·
· · · · . . . · · . . . · ·

γn−1 0 0 0 . . . 0 0 . . . 0 1 − γn−1

1 0 0 0 . . . 0 0 . . . 0 0




.

As long as m < n − 1, such that the distribution φ has support on an interval
of length greater than T , not all cells will fire together. Under this condition,
there exists i < n such that δi �= 0 and, correspondingly, γi �= 0. In this case,
the proof of theorem 2 immediately generalizes to show that there exists a
sufficiently large number of iterations N such that {Ar }i,i > 0 for all r > N,
which implies that A is aperiodic and the Markov chain has a limiting
distribution.

This result can be interpreted as follows. If the heterogeneity is weak,
then cells starting with the same initial condition will always respond to
the same inputs in a train, giving an unreliable population response. With
a stronger degree of heterogeneity, the population response will disperse,
eventually every input will evoke a response from some nonempty subset
of the cells, and the statistics of the population response will be given by
the limiting distribution of the Markov chain.

5.2 General Excitable Systems and Related Models. An excitable sys-
tem can be characterized by the existence of a stable rest state and a thresh-
old. In such a system, when a perturbation pushes a trajectory from the
rest state across the threshold, the trajectory makes a significant excursion
before returning to a small neighborhood of the rest state. Suppose that an
n-dimensional excitable system receives transient inputs of a stereotyped
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form. If we select a time T , then we can define a map MT (u) having as
its domain a set of starting states u for the system, each of which is an
n-dimensional vector.

In theory, bins in n-dimensional space could be defined to implement
the Markov chain approach for an n-dimensional map. Indexing these bins
efficiently and computing transition probabilities between them could be-
come problematic when n is not small, however. On the other hand, the
Markov chain approach discussed in the previous section can be applied
directly to systems for which MT (u) = u(T) lie (approximately) on an inter-
val in the phase space of the system, and which are reset to a fixed value
ureset after crossing threshold. The assorted versions of the integrate-and-
fire (IF) model (leaky IF, quadratic IF, exponential IF, and so on) in the
subthreshold regime satisfy both of these conditions, as do the lighthouse
model of (Haken, 2002; Chow & Coombes, 2006) and the Kuramoto (1984)
model on S1. There is an important difference between the excitable sys-
tems considered in detail here and the IF model, however. When the results
derived for excitable systems are applied to neuronal models, the Markov
chain will be defined using a slowly changing ionic conductance, or an
associated activation or inactivation, while in the case of the IF model, it
would be defined in terms of the voltage. As a consequence, for the IF case,
one would need to take into account the jumps in voltage due to synap-
tic inputs when defining the states of the Markov chain and computing
the transition probabilities. Moreover, an additional difficulty arises from
the fact that voltage will decrease after the application of an input that
pulls the model above its intrinsic rest state but fails to cause a threshold
crossing. This nonmonotonicity will complicate bin definitions. A similar
issue will arise even in an excitable system with one slow variable w if the
system remains excitable while its input is on. In this case, w converges
toward wE

FP whenever w ∈ (wE
FP , wE

L K ) on N E .

6 An Example: The TC Model

A prototypical representative of the class of models to which the analysis
outlined in the preceding sections is applicable is a model for a thalamo-
cortical relay (TC) cell relevant for the study of Parkinson’s disease (PD)
and deep brain stimulation (DBS). The TC model that we consider takes a
similar form to the reduced TC model in Rubin and Terman (2004):

Cmv′ =−IL − IT − gexcsexc(v − vexc) − ginhsinh(v − vinh)

w′ =φ(w∞(v) − w)/τ (v). (6.1)

Here, the leak current IL = gL (v − vL ) and the T-type or low-threshold
calcium current IT = gT m∞(v)w(v − vCa ), with parameter values Cm =
1 µF/cm2, gL = 1.5 mS/cm2, vL = −68 mV, gT = 5 mS/cm2, vCa = 90 mV,
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gexc = 0.08 mS/cm2, vexc = 0 mV, ginh = 0.12 mS/cm2, vinh = −85 mV,
φ = 3.5 and functions m∞(v) = (1 + exp(−(v + 35)/7.4))−1, w∞(v) = (1 +
exp((v + 61)/9))−1, and τ (v) = 10 + 400/(1 + exp((v + 50)/3)). The values of
sexc and sinh will be determined by stochastic processes discussed below, and
we made an additional modification to the model to make it oscillatory in
the presence of excitation, which is discussed in remark 8. The assumptions
that we make regarding the presence of three timescales in the dynamics
are not unreasonable in this model, as shown in Rubin and Terman (2004)
and Stone (2004).

In this section, we present the analytical results of the Markov chain
approach for this model for two particular IEI distributions, one uniform
and one normal, both with inhibition held off for all time and with inhibition
held on for all time (further details appear in appendixes A and B). We
compare the stationary distributions found analytically with those found by
numerical simulations and find good agreement. Indeed, the Markov chain
analysis can be used to check under what conditions a limiting distribution
exists, so that numerical simulations will converge, and how long they need
to be run to yield accurate results.

6.1 Uniform IEI Distribution. Consider system 6.1 with constant in-
hibition, which may be on or off. We take the IEIs to be distributed uni-
formly on [30,70] msec, except for the first such interval after each reset,
which is chosen from a uniform distribution on [20,60] msec (see remark 7
below). Using the bin definitions 3.1 and 3.2, with this minor adjustment to
I1, we have I1 = [wE

RK · 20, wE
RK · 50), I2 = [wE

RK · 50, wE
RK · 80), . . . , IN−1 =

[wE
RK · 20 + (N − 2)30, wE

L K ], IN = (wE
L K , w0

FP ). For the default parameters of
system 6.1, inhibition held at sinh = 0, and the excitation characteristics de-
scribed, simulation of the TC model, equation 6.1, for one passage through
the silent phase shows that N = 3, while with inhibition at sinh = 1, we find
N = 5.

With sinh = 0, the states of the Markov chain are (1, 1), (2, 1),
(2, 2), (3, 2), (3, 3), with bin boundaries defined from the one-time simula-
tion. The transition matrix for this case, call it P0, is computed analytically
in appendix A and appears in equation A.1. The unit-dominant eigenvector
of (P0)T gives the limiting distribution,

v0 = [.3404 .1135 .0922 .3617 .0922]T . (6.2)

As discussed in section 4, the values of v0 represent the likelihood that a
cell is found in a given state, if state membership is recorded just prior
to the onset of an excitatory input. For comparison, we simulated a single
cell, modeled by equation 6.1, with the technical modification mentioned
in remark 8 below, over 70 sec, after an initial transient of 10 sec. This
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simulation yielded the vector

v0
num = [.3276 .1289 .0878 .3629 .0878]T

of proportions of inputs during which the cell belonged to each relevant
state, which agree nicely with the analytically computed expectations v0 in
equation 6.2. Over the entire simulation, the cell never failed to fire to three
consecutive inputs.

Grouping our analytical values by bins indicates that just before onset
of excitation, on 34.04% of the observations, we expect w ∈ [wRK · 20, wRK ·
50), on 20.57% of the observations, we expect w ∈ [wRK · 50, wRK · 75.5), and
on 45.39% of the observations, we expect w > wRK · 75.5. In particular, this
implies that a cell will fire to roughly 45% of its inputs for these choices
of parameters. Further, from equations 4.3 and 4.4 with Q values given by
entries of v0, it is expected that a successful input will be followed by 1.20
inputs that fail to elicit a spike, before the next successful input occurs;
this is in good agreement with direct simulation results showing a mean of
1.19 unsuccessful inputs between successful ones. As discussed in section
5, these results can also be interpreted in terms of a population of identical
cells as long as the cells receive independent realizations of the input.

With nonzero constant inhibition, given by sinh = 1, the states of the
Markov chain are (1,1), (2,1), (2,2), (3,2), (3,3), (4,2), (4,3), (4,4), (5,2), (5,3),
(5,4), and (5,5). The transition matrix, P I , is computed analytically in ap-
pendix B and appears in equation B.1. In this case, (P I )T has the unit-
dominant eigenvector v I , which is shown below together with the distri-
bution of states listed in vector v I

num. The latter are obtained from direct
numerical simulation for 80 sec, with a transient consisting of the first
10 sec removed from consideration:

v I = [.2290 .0763 .0859 .1622 .0215 .0569 .0624 .0005 .0004
.2211 .0833 .0005]T

v I
num = [.2272 .0784 .0726 .1927 .0194 .0388 .0669 .0022 .0007

.2171 .0820 .0002]T .

Grouping the states (I5, j) reveals that a cell will fire in response to about
30% of its inputs. This failure rate is higher than in the case of sinh = 0, which
is to be expected because inhibition changes the locations of wE

L K and wE
RK ,

so that the time to evolve from wE
RK to wE

L K is longer with inhibition on
than with inhibition off. Similarly, based on v I , the case of sinh = 1 has
a substantially higher expected number of failed inputs between spike-
inducing inputs, namely, E f = 1(.0013) + 2(.7240) + 3(.2731) + 4(.0016) =
2.28 from equations 4.3 and 4.4, compared to the 1.20 expected in the case of
sinh = 0. Direct numerical simulation gives a similar estimate of E f = 2.35
in this case.
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Remark 7. In the above calculation, each time interval from the offset of
one input to the onset of the next was chosen from a uniform distribution
on [20,60] msec. Suppose that we were to fix the total duration of each exci-
tatory input at 10 msec. Since ε �= 0 in simulations, even with this constant
input duration, the part of the input duration remaining after the cell is
reset from the active phase would vary after different spiking events. This
variation can be handled easily, as discussed in remark 4, and results in a
distribution of IEIs T with support on [20+x,70] msec, where x is the mini-
mal duration of input remaining after reset. However, to maintain a uniform
IEI distribution, we chose to adjust the simulations by simply turning off
the input each time a firing cell is reset or, equivalently, setting the input
duration equal to 0 on the slow timescale. As a result, the distribution for
the first IEI after reset was supported on [20,60] msec rather than on [30,70]
msec.

Remark 8. For consistency with section 3, we modified model 6.1 to make
the cell oscillatory in the presence of excitation. To do this, we simplified the
dynamics to the form w′ = (w∞ − w)/τw whenever v < −55, for constants
w∞ = .61 and τw = 407, which were chosen to give nice bin boundary val-
ues. We also made a related technical adjustment to simplify the presenta-
tion of these example results, related to the nonzero duration of excitation.
If an excitatory input arrives but fails to make a cell fire, then the cell jumps
from the left branch of N 0 to the left branch of N E , and it evolves on this
branch of N E while the input is on. The rates of flow on the left branches
of N 0 and N E may differ, however. Thus, the time a cell takes to travel
from one value of w to another in the silent phase may depend on how
many inputs the cell receives during the passage. This can easily be taken
into account in the above calculations by making appropriate adjustments
to bin boundaries, but this would clutter the exposition. Hence, we instead
adjusted the flow in our simulations of equation 6.1 in this example so that
the w dynamics was identical on the left branches of N 0 and N E . In theory,
the way that we did this introduces the possibility that solutions may escape
from the left branch of N 0 in the vicinity of w0

L K and fire without receiving
input, since w0

L K < w∞. However, in practice, this does not occur because
w0

L K is sufficiently large, relative to the IEIs, that it is never reached.

6.2 Normal, or Other, IEI Distributions. If IEIs are taken from a nonuni-
form distribution, we can still use equation 3.5 to obtain the transition matrix
elements analytically, albeit with numerical evaluation of the integrals that
arise. These integrals are analogous to those given in appendixes A and
B for the uniform case. Once the transition matrix is obtained, the limit-
ing distribution for the Markov chain is computed as the unit-dominant
eigenvector of its transpose, as previously.

For example, consider IEIs of the form T = tref + X, where tref is a
fixed constant and X is selected from a truncated normal distribution. In
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particular, suppose that tref = 20 msec, that X̃ is selected from a normal
distribution with mean 20 msec and standard deviation 10 msec, and that

X =



0, X̃ < 0,

X̃/MX, 0 ≤ X̃ ≤ 40,

40, 40 < X̃,

(6.3)

where MX is a constant correction factor such that
∫

R X = 1. This is a rea-
sonable choice that keeps IEIs within the bounds present in the example
in the previous section. For this example, with other simulation parame-
ters fixed as in the previous section, including sinh = 0 and an input du-
ration of 10 msec, and the same adjustment mentioned in remark 8, we
obtained the transition matrix (P0

n ) given in equation A.2, corresponding to
states (1, 1), (2, 1), (2, 2), (3, 2), (3, 3). The dominant eigenvector v0

n of (P0
n )T

matches closely with a vector (v0
n)num obtained from direct counting of state

membership in the last 90 sec of a l00 sec numerical simulation:

v0
n = [.4073 .0670 .0594 .4108 .0594]T

(v0
n)num = [.3883 .0812 .0625 .4070 .0610]T .

Here, the subscript n simply indicates the use of a normal distribution of
IEIs. Based on these results, we expect that a cell will respond to approxi-
mately 47% of the inputs, with an average of 1.15 failures between successful
spikes from equations 4.3 and 4.4. This agrees nicely with the estimate 1.13
that we obtained from direct numerical simulations.

For completeness, we conclude with the results of an analo-
gous calculation done with sinh = 1. This yields the transition ma-
trix P I

n given in equation B.2, corresponding to states (1, 1), (2, 1),
(2, 2), (3, 2), (3, 3), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4). The corresponding
dominant eigenvector v I

n , and an example vector (v I
n)num of state occupancy

probabilities from direct simulations, are

v I
n = [.2638 .0438 .0672 .2234 .0072 .0169 .0701 .2133 .0942]T

(v I
n)num = [.2587 .0505 .0697 .2132 .0121 .0263 .0637 .2329 .0728]T ,

where we have omitted the (5,2) entry since the probability of occupancy
there is less than 0.5 × 10−5. These results imply that a cell with sinh = 1 will
respond to approximately 31% of excitatory inputs and is thus less reliable
than a cell with sinh = 0. The average number of failures between spikes is
2.27, from equations 4.3 and 4.4, which is similar to the 2.24 obtained from
direct simulations and exceeds that found with sinh = 0.
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7 Inhibitory and Excitatory Inputs

We next consider the more complex case in which the postsynaptic cell
receives a stochastic excitatory input train while subjected to modulation
by an inhibitory input. The corresponding analysis illustrates how switches
between any pair of epochs with different state transition characteristics can
be handled naturally within the Markov chain framework through products
of transformation matrices. In particular, the same type of analysis could be
done if both input trains were excitatory, with different statistics. Moreover,
in the next section of the letter, the example that we present will be discussed
in connection with a possible mechanism for the therapeutic effectiveness
of DBS.

7.1 Transition Matrices. In this section, we assume that for a system of
the form 2.1 with input given by equation 2.2, the function sinh(t) turns on
and off abruptly, with a relatively long period between transitions. In the
previous section, we discussed how to derive the transition matrices P I and
P0 for the case of constant inhibition of any level. Our next goal is to derive
transition matrices P0→I and P I→0, encoding the probabilities of passing
between various states during the onset and offset of inhibition, respec-
tively. Using these matrices, we can form a transition matrix for the time
from one inhibitory offset (or onset) to the next, by matrix multiplication.

One complication in this derivation is that the bin boundaries differ be-
tween the cases of zero and nonzero inhibition. Even with the assumption
that the rate of evolution in the silent phase is independent of input level, dif-
ferences in bin boundaries remain due to differences in right knee positions,
leading to different starting points in the silent phase. Similarly, differences
in left knee positions lead to different cutoffs for firing. To make this ex-
plicit, in the following analysis, let {S0

j }N0
j=1 denote the ordered states for the

Markov chain formed when inhibition is off, which we call the inhibition-off
Markov chain, and let {SI

j }NI
j=1 denote the states for the Markov chain de-

fined when inhibition is on, which we call the inhibition-on Markov chain.
We use the notation (I 0

k , l) or (I I
k , l) for the states in these collections.

A second difficulty is that due to the stochasticity of the input trains, a
change in inhibition level may occur at any time relative to the start of the
particular IEI during which it happens, or even at a time when excitation
is on. An example of how the resulting bin membership depends on the
inhibition onset time is illustrated schematically in Figure 6.

To handle both of these issues, we define the transition matrix P0→I for
the onset of inhibition in the following way. First, note that there will be a
final iteration of the inhibition-off Markov chain, before inhibition arrives,
after which the cell will lie in a state S0

u for some u. During the next IEI,
inhibition arrives. At the end of this IEI, the cell will lie in a state SI

v for some
v. For i = 1, . . . , N0 and j = 1, . . . , NI , let the (i, j) entry of P0→I denote the
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Figure 6: A schematic depiction of the two difficulties encountered when defin-
ing the matrix P0→I . (Left) An ensemble of cells A in state (I 0

2 , l) is mapped to
two bins, I I

2 and I I
3 , when inhibition turns on. (Right) The same ensemble gets

mapped only to the bin I I
3 if inhibition turns on a time T later than in the left

panel.

probability that u = i and v = j . Recall that the states of the inhibition-off
Markov chain, by definition, take the form (I 0

k , l), where l gives a count of
IEIs since last reset; thus, many elements of P0→I will be zero.

There are several important advantages to basing the cycle length on
only excitatory input times rather than the time when inhibition turns on.
This definition of P0→I renders irrelevant the bins into which an ensemble
is mapped by the onset of inhibition itself (e.g., Figure 6), since bin mem-
bership is not checked when inhibition is turned on but is instead checked
at the end of the IEI during which the inhibitory onset occurs. Moreover,
in this formulation, it does not matter whether inhibition turns on while
the excitation is still on or after it is off, if we continue to assume that the
rate of silent phase evolution is input independent (assumed in remark 8).
Whether the last excitatory input that arrives before the onset of inhibition
causes the cell to fire, or fails to do so, is determined by the knee positions
without inhibition, and if a firing occurs, instantaneous reset to wE

RK follows.
We neglect the probability zero case of excitation and inhibition turning on
at precisely the same moment, and therefore if a cell fires, then inhibition
will always turn on after the cell is reset.

As previously, let w I+E
L K , w I+E

RK denote the knees of the nullcline N I+E ,
corresponding to the case when both excitation and inhibition are on. One
additional complication may arise due to the fact that wE

RK < w I+E
RK . That

is, at the onset of inhibition, w may lie below the lower boundary of the
inhibition-on partition. To account for this possibility requires the inclusion
of additional bins in this partition, with a corresponding adjustment of the
matrix P I to allow for matrix multiplication.
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We define the transition matrix P I→0, for the offset of inhibition, anal-
ogously to the case of P0→I . That is, there will be a final iteration of the
inhibition-on Markov chain, before inhibition turns off, after which the cell
will lie in a state SI

u . During the next IEI, inhibition turns off. At the end
of this IEI, the cell will lie in a state S0

v . The (i, j) entry of P I→0 denotes
the probability that u = i and v = j . The complication in this case is that
postinhibitory rebound (PIR) may occur if, when the offset of inhibition
occurs, either excitation is off and w > w0

L K or excitation is still on and
w > wE

L K . Rebound leads to reinjection into the silent phase followed by
evolution there. However, the duration of this evolution, from the time of
reinjection to the time that the next excitatory input arrives, depends on
when the inhibition turned off, relative to the time of the previous input,
which complicates calculations.

Assuming that P0→I , P I→0 can be computed, the appropriate transition
matrix for the case of excitatory and inhibitory input trains is obtained
by multiplication of the transposes of the separately computed transition
matrices P0, P I , P0→I , and P I→0. Specifically, let [M]T denote the transpose
of matrix M, and let (M)n denote M to the nth power. Suppose that n IEIs
occur in the absence of inhibition, that inhibition arrives during the next IEI,
that m additional IEIs occur with inhibition on, and that inhibition turns off
again on the next IEI. In this case, the ( j, i) entry of the matrix

[P I→0]T ([P I ]T )m[P0→I ]T ([P0]T )n

gives the probability that a cell that starts in state S0
i of the inhibition-off

partition ends up in state S0
j after the sequence of n + m + 2 IEIs described

above. Of course, when the IEIs and the durations of inhibitory on and
off periods are selected randomly from distributions, the probabilities that
different numbers (m, n) of excitatory inputs arrive during these periods
are also random; in appendix C, these are calculated for the example of
uniform distributions.

In the general discussion given here, let us assume that m, n ≥ 0 are
bounded above by M, N < ∞, respectively. Suppose that over a long time
period, we check the cell’s state membership at the first onset of excitation
following each inhibitory offset. We would like to claim that in the asymp-
totic limit, the proportion of these trials for which a cell will belong to each
inhibition-off state is given by the entries of the unit-dominant eigenvector
of the matrix

M∑
m=0

N∑
n=0

cm,n[P I→0]T ([P I ]T )m[P0→I ]T ([P0]T )n, (7.1)

where each coefficient cm,n denotes the probability of occurrence of the cor-
responding exponent pair (m, n), some of which may be 0. Substantiating
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this claim necessitates justifying whether this eigenvector exists and truly
represents a limiting distribution. This will be true if the matrix in equa-
tion 7.1 is irreducible and aperiodic, as discussed in section 4. Recall that
the proof of theorem 2 gives an upper bound b for the number of inputs
after which occupancy of all states is guaranteed, under the assumptions
of the theorem, for constant inhibition. Now, let bI , b0 denote the respective
upper bounds for matrices P I , P0, based on the IEI distribution. A suffi-
cient pair of conditions to guarantee the existence of a limiting distribution
for equation 7.1 is that if the probability p(m) > 0, then m ≥ bI , while if
p(n) > 0, then n ≥ b0. If these conditions are violated, the states of the sys-
tem may still tend to some limiting distribution, particularly if p(m), p(n)
are substantial for some values above the respective bounds, but this must
be verified numerically.

Similarly, the unit-dominant eigenvector of the matrix,

M∑
m=1

N∑
n=1

cm,n[P0→I ]T ([P0]T )n[P I→0]T ([P I ]T )m, (7.2)

if it exists and represents a limiting distribution, gives the expected propor-
tions of trials for which a cell will belong to each inhibition-on state (I I

k , l)
at the moment of arrival of the first excitatory input after inhibition turns
on. The dominant eigenvectors of the matrices

M∑
m=1

N∑
n=1

cm,n([P0]T )n[P I→0]T ([P I ]T )m[P0→I ]T

M∑
m=1

N∑
n=1

cm,n([P I ]T )m[P0→I ]T ([P0]T )n[P I→0]T

have similar interpretations.

Remark 9. In fact, justifying the existence of the limiting distribution for
the matrix in equation 7.2 requires an additional technical adjustment, rela-
tive to that for matrix 7.1. The added complication arises because the fixed
point of N I is higher than that of N 0, which may lead to a violation of
irreducibility. This is simply a technical point and can be handled by re-
placing ([P I ]T )m by the product of a sequence of nonidentical matrices that
incorporate successively larger numbers of states, assuming m is not too
small.

7.2 TC Cell Example Revisited: Uniform Distributions. Consider
again the TC model equation 6.1. We focused on inhibitory onset and
computed the transition matrices from equation 7.2 analytically, using
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equation 3.5 as in the constant inhibition cases discussed in appendixes
A and B, under the assumptions that the intervals from excitatory offsets
to onsets are selected from a uniform distribution on [20,60] msec, that the
excitatory duration is fixed at 10 msec, and that the durations of both the
inhibitory inputs and the time intervals between inhibitory inputs are se-
lected from a uniform distribution on [125,175] msec. In this example, the
coefficients cm,n = p(m)p(n) in equation 7.2 can also be computed analyti-
cally, and we discuss some details of this calculation in appendix C. After
the p(m) are computed, the dominant eigenvector v0→I of matrix 7.2 can be
obtained. We compare v0→I to its counterpart, v0→I

num , generated numerically
from 301 inhibitory onsets during the last 90 sec of a 100 sec simulation:

v0→I = [.3530 .0801 .1598 .2558 .0333 .0677 .0363 0 0 .0140 0 0]T

v0→I
num = [.3089 .1030 .0897 .2724 .0199 .0432 .0698 0 0 .0664 .0066 0]T .

The states here are exactly those listed in section 6 for the uniform IEI
distribution with sinh = 1: (1,1), (2,1), (2,2), (3,2), (3,3), (4,2), (4,3), (4,4), (5,2),
(5,3), (5,4), and (5,5). Note that the zero entries here signify values less
than 0.5 × 10−5. These states are included in the chain because they are
reached after inhibition stays on sufficiently long, since inhibition shifts the
v-nullcline to higher w-values. However, the probability of membership in
these states just after inhibition turns on is negligible.

The agreement between v0→I and v0→I
num is fairly good, although not as

good as in the case of constant inhibition in section 6. This is presumably
due to errors introduced by some minor simplifying assumptions that we
made, which are discussed in remark 10. The distribution v0→I indicates
that a cell will be expected to fire well under 10% of the time to the first
input that arrives just after the onset of inhibition. This low number fits
the prediction of phase plane and bifurcation analysis, which implies that
the onset of inhibition interferes with responsiveness to the subsequent
excitatory input (Rubin & Terman, 2004). Moreover, the full distribution
v0→I characterizes the expected behavior of the cell after this first excitatory
input. In particular, note that the cell will be in the (1,1) state, corresponding
to the lowest slow variable values, on the arrival of over 30% of such inputs,
which is a significant increase over the likelihood of membership in this state
in the sinh = 1 case. Hence, the compromise of responsiveness by rhythmic
inhibition will endure beyond the first excitation after inhibitory onset.

Remark 10. Recall that PIR, or rebound, refers to the firing of a spike im-
mediately on the removal of inhibition. Although we focus on equation 7.2,
and hence on the limiting distribution v0→I corresponding to the onset of
inhibition, in the above example, we still must consider PIR in the calcu-
lation of the elements of the matrix P I→0, which appears in equation 7.2.
Since the possibility of rebounding in general, and in particular rebounding
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and reaching I2 before the arrival of the next excitation, is relatively small
for our parameter values, we make the simplifying assumption that after
PIR, a cell can reach only I1 before the next excitation arrives. To maintain
tractability, we also neglect the fact that w I+E

RK > wE
RK , based on the fact that

the right knees are fairly close for ginh = 0.12. These approximations do
introduce some error into our results.

7.3 TC Cell Example Revisited: Normal Distributions. For compari-
son to direct numerical simulation, we also calculated the transition matri-
ces and dominant eigenvector when IEIs were selected from the truncated
normal distribution described earlier (see equation 6.3), with inhibition
on and off durations selected from a similar truncated normal distribu-
tion. The distribution for on and off intervals of inhibition was supported
on [125,175] msec and had mean 150 msec, as in the uniform distribu-
tion example. To compute the relevant dominant eigenvector, as done
above in the uniform distribution case, we need coefficients cm,n, which we
computed as cm,n = p(m)p(n) from the numerically obtained probabilities
p(1) = .0014, p(2) = .1625, p(3) = .6763, p(4) = .1625, p(5) = .0014, with
p( j) = 0 for j ≥ 6. In this case, we used transition probabilities obtained
from long-time simulations to compute the transition matrices P I→0

n , P0→I
n ,

which we do not display here, although these could have been computed
from equation 3.5 as well. The dominant eigenvector v0→I

n , correspond-
ing to state occupancy at the arrival time of the first excitatory input after
inhibitory onset, and an example of the distribution of states (v0→I

n )num

obtained from the last 90 sec of a 100 sec simulation are

v0→I
n = [.3354 .0463 .1233 .3685 .0083 .0394 .0350 .0439 0 ]T

(v0→I
n )num = [.3984 .0549 .1071 .3132 .0082 .0302 .0384 .0467 .0027 ]T ,

for states (1, 1), (2, 1), (2, 2), (3, 2), (3, 3), (4, 2), (4, 3), (5, 3), (5, 4), with the
subscript n for normal as previously. These results show that a cell can
be expected to fire reliably to the first excitatory input after the onset of
inhibition less than 5% of the time, and it will lie in the (1,1) state on the
arrival of over 30% of such inputs, as also seen in the uniform distribution
example.

8 Explicit Connection to Parkinsonian Reliability Failure

In PD, the inhibitory output from the basal ganglia may become rhythmic.
DBS eliminates this rhythmicity, leading to inhibition from the basal gan-
glia that is elevated but, when summed over all inputs to a cell, is roughly
constant, possibly with fast oscillations around a high constant level. A
possible mechanism for the induction of motor symptoms in PD and for
their amelioration by DBS, analyzed in Rubin and Terman (2004), is that
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rhythmic basal ganglia inhibitory outputs periodically compromise TC re-
sponse reliability, while the regularization of these outputs by DBS restores
responsiveness. The drastic drop in the number of TC cells expected to fire
and the accumulation of cells in states far from firing threshold found just
after inhibitory onset in the case of rhythmic inhibition in our examples,
relative even to the case of elevated but constant inhibition, offers a strong
demonstration of the feasibility of this idea. The approach that we have
taken to obtain these results is based on limiting distributions, and hence
eliminates the possibility of spurious outcomes due to transient effects in
simulations.

Suppose that we adjust parameters to an extreme case, so that TC cells
fire in response to every excitatory input when sinh = 0 and when sinh = 1.
In terms of the slow variable, these conditions become

wE
RK · S > wE

L K (8.1)

and

w I+E
RK · S > w I+E

L K .

Even with these strong conditions, we still find some failures when inhibi-
tion turns on and off rhythmically. In this case, we can read off from v0→I

the probabilities with which a cell will experience each possible number of
failures due to inhibitory onset, as seen in the examples discussed above.
In particular, even if no failures occur when inhibition is held at a con-
stant level, there may be multiple failures following inhibitory onset if the
difference w I+E

RK − wE
RK is large.

Inhibitory offset may lead to response failure as well, through PIR. Cells
that rebound when inhibition turns off are reset to wE

RK . The assumption
of reliability in the inhibition-off case implies that inequality 8.1 holds.
However, the time from the offset of inhibition until the arrival of the next
excitatory input may be less than S, since inhibition may turn off at any
moment in the IEI. Therefore, the time t∗ from PIR to the next arrival of
excitatory input may be less than S, and a response failure can follow PIR.
Finally, after such a failure, relay will proceed reliably under assumption
8.1, since a cell will lie at wE

RK · t∗ > wE
RK after its first failure. In summary,

even under the assumption of perfect TC relay reliability in the constant
inhibition case, multiple relay failures can occur following inhibitory onsets,
while inhibitory offsets can induce PIR, possibly followed by a single relay
failure.

9 Discussion

We have considered a fast-slow excitable system subject to a stochastic
excitatory input train, and we have shown how to derive an irreducible
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Markov chain that can be used analytically to compute the system’s firing
probability to each input, expected number of response failures between
firings, and distribution of slow variable values between firings, in the
infinite-time limit. We have illustrated this analysis on a model TC cell sub-
ject to a uniform or a truncated normal distribution of excitatory synaptic
inputs, in the cases of constant inhibition and of inhibition that switches
abruptly between two levels. The analysis generalizes to any pair of input
trains, excitatory or inhibitory and synaptic or not, that switch, with distinct
frequencies, between discrete on and off states. In such cases, an appropri-
ate transition matrix, analogous to equation 7.1, can always be derived.
This approach also can be extended to other models, such as the Haken
(2002) or Kuramoto (1984) models, featuring a single variable that builds
up to a threshold, mediates an instantaneous spike, and experiences a reset,
possibly followed by a refractory period. In this vein, we expect that exten-
sion to integrate-and-fire type models should be possible, but the details
of handling nonmonotone changes in voltage would need to be worked
out.

In the TC cell case, our results generalize earlier findings suggesting how
the modulation of inhibitory outputs of the basal ganglia can compromise
TC responsiveness to excitatory inputs, with possible relevance to PD and
DBS (Rubin & Terman, 2004). The method used here goes beyond the direct
counting of failed responses to a sequence of inputs that was done pre-
viously, by deriving information about the complete limiting distribution
of states in the TC cell Markov chain. More generally, basal ganglia output
areas in rat show abrupt firing rate fluctuations on the timescale of seconds-
to-minutes even in non-parkinsonian states (Ruskin et al., 1999), and the
ideas we introduced could be used to consider how different fluctuation
characteristics affect TC reliability. TC cells are also inhibited by thalamic
reticular (RE) cells, which are targets of excitatory corticothalamic inputs.
Cortical oscillations, particularly abrupt transitions between cortical up and
down states (Steriade, Nunez, & Amzica, 1993a; Cowan & Wilson, 1994),
could naturally lead to jumps in the levels of inhibition from RE cells to
TC cells, providing an alternative source for the type of inhibition that we
consider. In this context, our results provide a way to quantify the expected
extent of the transient loss of thalamic relay reliability during the transitions
between up and down states of different depths, as well as the likelihood
that transitions from down to up will be signaled by PIR thalamic bursts
(Steriade, Nunez, & Amzica, 1993b). Huertas et al. (2005) have also consid-
ered the relay properties of TC cells, specifically those in the dorsal lateral
geniculate nucleus, in the presence of RE inhibition, using simulations of an
integrate-and-fire-or-burst model with an oscillatory driving input based
on retinal ganglion cell activity. In their simulations, as found here and in
previous work such as Rubin and Terman (2004), rhythmic inhibition to TC
cells led to TC bursts and a failure of TC cells to respond to excitatory sig-
nals, although TC-RE interactions in their model gave rhythmic TC bursting
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phase-locked to the driving stimulus, which would not be present for the
types of synaptic drive we consider.

We have proved that under general conditions, the Markov chain we
derived is irreducible and aperiodic and hence has a limiting distribu-
tion, which can be computed analytically using equation 3.5, using a one-
time simulation for establishment of bin boundaries. This finding contrasts
with Monte Carlo simulations, in which convergence properties cannot
be forecast and transient effects may be a concern. Our analysis also ex-
plains why a limiting distribution will not exist when these conditions
break down, and hence these results, even without the full calculations,
can be used to decide whether Monte Carlo simulations are a reasonable
option. It is interesting to consider the minimal requirements for the ap-
plication of our Markov chain ideas. Application of this approach will be
possible whenever a driven system can be characterized as having a single
(or single dominant) slow recovery process or other variable that builds
up to a firing threshold in the silent phase, the transition probabilities be-
tween states in the silent phase can be estimated from the behavior of this
variable, and the statistics of the input to the cell are known. Consider-
ation of the minimal requirements for the experimental characterization
of such transition probabilities for a neuron, possibly along the lines of
phase response curve estimation, remains an interesting avenue for future
consideration.

Our work is related to two earlier studies in which a Markov operator
was derived to track transitions between oscillator phases, relative to sinu-
soidal forcing, at successive jump-up (Doi et al., 1998) or threshold-crossing
(Tateno & Jimbo, 2000) times, in the presence of noise. Neither of these
works, however, used a Markov chain to track transitions linked to suc-
cessive input arrivals but not to firing events. Moreover, neither arrived at
analytically computable transition probabilities or proved the existence of a
limiting distribution, as we have done. A nice feature of the previous letters
was the numerical tracking of subdominant eigenvalues to identify bifurca-
tions, defined in a stochastic sense, relating to changes in mode locking. The
approach that we have presented could also be used to study bifurcations.
For example, as mentioned in remark 6, a change in the range of IEIs can
cause the transition probability between a pair of states to switch from zero
to nonzero, which may abruptly change the existence, or the nature, of the
corresponding limiting distribution.

As a related alternative approach, one could try to analyze the long-
term behavior of a cell by studying the random dynamical system wn+1 =
MT (wn), where the interinput interval T is a random variable with a known
density (Lasota & Mackey, 1994). If it could be found, then the limiting den-
sity for the variable w could be used to compute the statistics of interest for
the cell. However, finding this limiting density is in general quite difficult.
The Markov chain approach that we have presented can in fact be viewed as
a discretization of this procedure. As a result, we recover a coarsely grained
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version of the full limiting density for w, which is sufficient to determine
the statistics of interest.

In a series of letters (Othmer & Watanabe, 1994; Xie et al., 1996; Oth-
mer & Xie, 1999), Othmer and collaborators studied the application of step
function forcing to a piecewise linear excitable system similar to those
that we consider. In their work, which focused on the existence of mode-
locked (harmonic or subharmonic) solutions and on chaos, they used a
map and defined states as we do, but their states were based on positions
of the knees of nullclines and their projections to other nullclines rather
than the flow along branches of nullclines, and they did not consider a
Markov chain for transitions between states. Moreover, their analysis was
restricted to periodic forcing, whereas ours accommodates, and indeed is
particularly well suited for, stochasticity in input timing. LoFaro and Kopell
(1999) also used 1D maps to study a forced excitable system, but in their
work, the excitable system was a neuron mutually coupled via inhibitory
synapses to an oscillatory cell and the map was a singular Poincaré map,
with each iteration corresponding to the time between jumps to the active
phase. Similarly, Keener, Hoppensteadt, and Rinzel (1981) and subsequent
authors have used firing time maps to study mode locking in integrate-
and-fire and related models with periodic stimuli. Alternatively, other
works have used 1D maps based on interinput intervals to study mode-
locked, quasi-periodic, and chaotic responses of excitable systems to peri-
odic, purely excitatory inputs (Coombes & Osbaldestin, 2000; Ichinose et al.,
1998).

Clearly, the transformation of some combination of excitatory and in-
hibitory synaptic inputs into postsynaptic neuronal responses is a fun-
damental operation present within any nontrivial nervous system. As a
result, various manifestations of this transformation have been studied,
computationally and experimentally, by many researchers. In our work,
as in Smith and Sherman (2002), we consider the excitatory input stream
as a drive to the postsynaptic cell and the inhibitory input as a modula-
tion that alters the cell’s responsiveness to its drive. We neglect such in-
triguing effects as long-term synaptic scaling (Desai, Cudmore, Nelson, &
Turrigiano, 2002), changes in intrinsic excitability (Aizenman, Akerman,
Jensen, & Cline, 2003), and changes in the balance of excitation and inhibi-
tion (Somers et al., 1998), which could become relevant in the asymptotic
limit, as well as the effect of attention (Tiesinga, 2005). Moreover, we as-
sume that successful thalamic relay consists of single-spike responses to
an input train, neglecting the idea that by virtue of their stereotyped form
and reliability, thalamic bursts may serve a relay function (Person & Perkel,
2005; Babadi, 2005). Other authors have considered how variations in in-
trinsic properties of postsynaptic cells determine the input characteristics
that induce these cells to spike most reliably (Fellous et al., 2001; Schreiber,
Fellous, Tiesinga, & Sejnowski, 2004) and how neuronal processing varies
under more general changes in input spike patterns than the ones that
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we have considered here (e.g., Hunter & Milton, 2003; Tiesinga & Toups,
2005). While these issues are beyond the scope of this work, our approach
can accommodate input trains that vary stochastically in a variety of ways
(e.g., see remarks 3 and 4), and hence it may be well suited for the future
exploration of such issues.

Appendix A: TC Cell with sinh = 0

With sinh = 0, a cell that has just spiked is guaranteed to spike again
after at most N = 3 subsequent inputs. Although the intervals Ik are de-
fined in terms of intervals of the slow variable w, clearly there is also a
particular time interval associated with each Ik (see remark 11 below). In
the particular model, equation 6.1, with sinh = 0, these time intervals are
[20, 50), [50, 75.5), [75.5,∞), where wE

RK · 75.5 ≈ wE
L K . In practice, we used

a simulation protocol, rather than determination of the left knee of N E

directly from equation 6.1, to compute the value 75.5. That is, we found
75.5 to be the minimum value of t such that, given an initial condition with
w = wE

RK · t and with v at the corresponding position on the left branch of
N 0, the model cell would fire in response to an excitatory input of duration
10 msec. This adjustment represents the modification to wE

L K discussed in
remark 4 and is therefore consistent with the rest of the analysis that we
present.

Using these time intervals allows us to compute the transition probabil-
ities between states (Ik, j) for j, k = 1, . . . , 3, with j ≤ k. Let p(k1, j1)→(k2, j2) =
P[(Ik2 , j2)|(Ik1 , j1)]. To compute these probabilities, we start with the fate
of a cell just after firing, computing p(3, j)→(k,1) for each relevant ( j, k). First,
note that since all cells fire from a state of the form (I3, j) for some j ≤ 3 and
all firing cells are reset together to wE

RK regardless of where they fired from,
p(3, j)→(k,1) is independent of j . In this example, with ginh = 0.12, we have
p(3, j)→(1,1) = P[T1 ∈ [20, 50)], where T1 denotes the time from reset to the
onset of the next excitatory input. Further, P[T1 ∈ [20, 50)] = 3/4, since T1 is
selected from a uniform distribution on [20,60]. Similarly, p(3, j)→(2,1) = 1/4
and p(3, j)→(k,1) = 0 for all k > 2.

Next, we seek values for p(1,1)→(k,2) for each k ≥ 2 and p(2,1)→(k,2) for each
k ≥ 3. We have

p(1,1)→(2,2) = P[T1 + T2 + 10 ∈ [50, 75.5)|T1 ∈ [20, 50)],

where T2 + 10 denotes the second IEI, with the input duration of 10 msec
written out explicitly. This can be computed as the ratio of two areas, ei-
ther geometrically or by integration, leading to the result that p(1,1)→(2,2) =
2601/9600. Since N = 3 for sinh = 0, it follows that p(1,1)→(3,2) = 6999/9600,
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and that p(2,1)→(3,2) = p(2,2)→(3,3) = 1. This completes the calculation for
sinh = 0. The corresponding transition matrix for sinh = 0 is thus

P0 =




0 0 2601/9600 6999/9600 0

0 0 0 1 0

0 0 0 0 1

3/4 1/4 0 0 0

3/4 1/4 0 0 0




, (A.1)

where the states of the Markov chain are the states
(1, 1), (2, 1), (2, 2), (3, 2), (3, 3).

Similar calculations yield the transition matrix

P0
n =




0 0 .1474 .8526 0

0 0 0 1 0

0 0 0 0 1

.8576 .1424 0 0 0

.8576 .1424 0 0 0




(A.2)

for states (1,1), (2,1), (2,2), (3,2), (3,3) in the case of normally distributed IEIs,
also discussed in section 6.

Remark 11. The time intervals associated with each Ik are independent
of the number of inputs received since the last spike, and hence uniquely
defined, under the assumption of input-independent evolution of w (see
remark 8). Without this assumption, to each bin, we could associate dif-
ferent time intervals based on the number of inputs received since the last
spike. Once this is done, the calculations proceed as discussed here, with
appropriate adjustment of the limits of integration in equation 3.5.

Appendix B: TC Cell with sinh = 1

The case sinh = 1 requires more analytical computations than the case sinh =
0, since N = 5 for sinh = 1. In this case, p(5, j)→(k,1) are identical to p(3, j)→(k,1),
computed for sinh = 0 above, and are nonzero only for k = 1, 2. The states
for sinh = 1 correspond to times [20,50), [50,80), [80,110), [110,128), [128,∞)
(see remark 11). Similar to the previous case, with the input duration of
10 msec again included explicitly,

p(1,1)→(2,2) = P[T1 + T2 + 10 ∈ [50, 80)|T1 ∈ [20, 50)] = 3/8,
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with p(1,1)→(3,2) = 1/2 and p(1,1)→(4,2) = 1/8 by analogous calculations. Along
the same lines,

p(2,1)→(3,2) = P[T1 + T2 + 10 ∈ [80, 110)|T1 ∈ [50, 60)] = 5/8,

while p(2,1)→(4,2) = 37/100 and p(2,1)→(5,2) = 1/200. As we proceed further,
certain probability calculations become more involved, because member-
ship in a state may be achieved by more than one path. For example, we see
already that a cell may reach state (I3, 2) from (I1, 1) or from (I2, 1). Thus,
continuing to use Ti to denote the times between the offset of one input and
the onset of the next, we have

p(3,2)→(4,3) = P[T1 + T2 + T3 + 20 ∈ [110, 128)|T1 ∈ [20, 50) and T1 + T2

+ 10 ∈ [80, 110)] + P[T1 + T2 + T3

+ 20 ∈ [110, 128)|T1 ∈ [50, 60) and T1 + T2 + 10 ∈ [80, 110)]

= 2123/14,250.

The full set of calculations reveals that the transition matrix P I for sinh = 1
has the form

P I =




0 0 3
8

1
2 0 1

8 0 . . . 0

0 0 0 5
8 0 37

100 0 0 1
200 0 0 0

0 0 0 0 1
4 0 6011

13500 0 0 2057
6750 0 0

0 . . . 0 2123
14250 0 0 12127

14250 0 0

0 . . . 0 243
10000 0 0 9757

10000 0

0 . . . 0 1 0 0

0 . . . 0 1 0

0 . . . 0 1
3
4

1
4 0 . . . 0

3
4

1
4 0 . . . 0

3
4

1
4 0 . . . 0

3
4

1
4 0 . . . 0




(B.1)

where the states of the Markov chain are (1,1), (2,1), (2,2), (3,2), (3,3), (4,2),
(4,3), (4,4), (5,2), (5,3), (5,4), and (5,5).
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Similar calculations yield the transition matrix

P I
n =




0 0 .2548 .7249 0 .0203 0 0 0 0

0 0 0 .7352 0 .2642 .0006 0 0 0

0 0 0 0 .1074 0 0 .5612 .3314 0

0 0 0 0 0 0 0 .1448 .8552 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

.8576 .1424 0 0 0 0 0 0 0 0

.8576 .1424 0 0 0 0 0 0 0 0

.8576 .1424 0 0 0 0 0 0 0 0




(B.2)

for states (1, 1), (2, 1), (2, 2), (3, 2), (3, 3), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4) in the
case of normally distributed IEIs, also discussed in section 6.

Appendix C: Coefficients for Matrix 7.1 in the Case of Time-Dependent
Inhibition and Excitation

To calculate the coefficients cm,n = p(m)p(n) analytically, we compute p(1),
which is the probability that exactly one excitatory input arrives dur-
ing an epoch of constant inhibition, and then we compute p(m) for each
m = 2, . . . , 6 as the probability of at most m inputs arriving minus the prob-
ability of at most m − 1 inputs arriving. We stop at m = 6, since at most six
excitatory inputs can arrive during 175 msec, given the IEIs and excitation
duration that we consider. Let t = 0 denote the time of inhibitory offset and
let TI ∈ [125, 175] denote the duration of the ensuing time interval on which
inhibition remains off. Define T−1 as the time from the last excitatory onset
before t = 0 to the first excitatory onset after t = 0. Let T1 denote the time
of this first excitatory onset. Given that each excitation endures for 10 msec,
T−1 ∈ [30, 70], while T1 ∈ [0, T−1] (see Figure 7). Finally, let T2 denote the IEI
following the end of the excitatory input that occurs at time T1. Since T1 < TI

must hold, the value of p(1) is the probability that T1 + T2 + 10 > TI . Thus,

p(1) =
∫ 175

125

∫ 70
30

∫ T−1

0

∫ 60
min(TI −T1−10,60) dT2 dT1 dT−1 dTI∫ 175

125

∫ 70
30

∫ T−1

0

∫ 60
20 dT2 dT1 dT−1 dTI

= 27
51,200

.

For m > 1, each quantity p(m) is given as the ratio of two multiple in-
tegrals as well, with one additional nested integral in each, relative to
those used to calculate p(m − 1). Since these integrals can be evaluated
exactly, we obtain exact fractional representations for each, but to save
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T2

TI

1 T3

T-1

T

t=0

Figure 7: Notation for the calculation of the probabilities p(m). Note that the
actual number of excitatory inputs arriving during the interval of constant
inhibition will be between one and six.

space, we simply give decimal approximations here: p(2) ≈ .1985, p(3) ≈
.6075, p(4) ≈ .1875, p(5) ≈ .0060, p(6) ≈ 4.731 × 10−6.
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