Biol Cybern (2007) 97:5-32
DOI 10.1007/s00422-007-0153-5

ORIGINAL PAPER

Biological
Cybernetics

Giant squid-hidden canard: the 3D geometry

of the Hodgkin—Huxley model

Jonathan Rubin . Martin Wechselberger

Received: 8 November 2006 / Accepted: 11 March 2007 / Published online: 26 April 2007

© Springer-Verlag 2007

Abstract  This work is motivated by the observation of
remarkably slow firing in the uncoupled Hodgkin—Huxley
model, depending on parameters t;, 7, that scale the rates of
change of the gating variables. After reducing the model to
an appropriate nondimensionalized form featuring one fast
and two slow variables, we use geometric singular perturba-
tion theory to analyze the model’s dynamics under system-
atic variation of the parameters 7, 7,, and applied current
1. As expected, we find that for fixed (7, t,), the model
undergoes a transition from excitable, with a stable resting
equilibrium state, to oscillatory, featuring classical relaxa-
tion oscillations, as [ increases. Interestingly, mixed-mode
oscillations (MMO’s), featuring slow action potential gener-
ation, arise for an intermediate range of I values, if 7, or 7,
is sufficiently large. Our analysis explains in detail the geo-
metric mechanisms underlying these results, which depend
crucially on the presence of two slow variables, and allows
for the quantitative estimation of transitional parameter val-
ues, in the singular limit. In particular, we show that the sub-
threshold oscillations in the observed MMO patterns arise
through a generalized canard phenomenon. Finally, we dis-
cuss the relation of results obtained in the singular limit to
the behavior observed away from, but near, this limit.
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1 Introduction

The Hodgkin—Huxley (HH) model (Hodgkin and Huxley
1952) for the action potential of the space-clamped squid
giant axon is defined by the following 4D vector field:

CdV—I 1 I I
TR Na — 1k — 1L

L Glan (VI —m) = Bu(V)m]
dt (1.1)
h
= lan(V)(L —h) = Bp(V) h]
dn
o=
We use modern conventions such that the spikes of action
potentials are positive, and the voltage V of the original HH
model (Hodgkin and Huxley 1952) is shifted relative to the
voltage V of this model by V = (V + 65).

The first equation is obtained by applying Kirchhoff’s law
to the space-clamped neuron, i.e. the transmembrane current
is equal to the sum of intrinsic currents. C is the capacitance
density in uF /cm?, V is the membrane potential in m V and
t is the time in ms. The ionic currents on the right hand side
are given by

len (V) = 1) = Ba(V) n].

Ing = gnam’h(V — Eng), I = gin*(V — Eg),

1.2
Ip = gi(V - EL) (2

with a fast sodium current /,, a delayed rectifier potassium
current /x and a small leak current /7, which consists mainly
of chloride current. The current densities I, (x = Na, K, L)
are measured in pA /cm? and the conductance densities g, in
mS/cm?. The parameter I represents current injected
into the space-clamped axon and E, are the equilibrium
potentials or Nernst potentials in mV for the various ions.
The parameters are given by
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Fig. 1 Action potential generated by the HH model with applied
current / = 9.6 at 6.3°C

gna =120, gk = 36,
Enya =50, Ex =-T77, Ep = —-54.4,
c=1.

8L = 0.3 ,
(1.3)

The conductances of the ionic currents are regulated by volt-
age dependent activation and inactivation variables called
gating variables. Their dynamics are described by the other
three equations in (1.1), where m denotes the activation of
the sodium current, / the inactivation of the sodium current,
and n the activation of the potassium current.

Each of these equations features a temperature scaling fac-
tor ¢ = (Q10) T ~T0/19 where Q) is a constant, 7' is tem-
perature, and Ty = 6.3, both in degrees celsius. The gating
variables are dimensionless with their ranges in the interval
[0,1].

The specific functions «; and B, (z = m, h, n) on the right
hand sides are, in units of (ms)_l,

(V +40)/10
1 —exp(—(V +40)/10)’

B(V) = 4 exp(—(V + 65)/18)
an(V) = 0.07 exp(—(V + 65)/20),
Bn(V) =1/ (1 +exp(—(V + 35)/10))
(V +55)/100
1 — exp(—(V +55)/10)
Bu(V) = 0.125 exp(—(V + 65)/80).

an (V) =

(1.4)

a,(V) =

Figure 1 shows an action potential at 6.3°C simulated by
the HH model, which is in good agreement with measured
action potential data of the squid giant axon (Hodgkin and
Huxley 1952).
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FitzHugh (FitzHugh 1960) has given an elegant qualita-
tive description of the HH equations, based on the fact that
the model variables (V, m) have fast kinetics, while (%, n)
have slow kinetics. This allows the full 4D phase space to
be broken into smaller pieces (2D subspaces) by fixing the
slow variables and considering the behaviour of the model as
a function of the fast variables. This idea provides a useful
way to study the process of excitation (see also Nagumo et al.
1962).

Based on FitzHugh’s analysis, another model reduction
was proposed (see e.g. Rinzel 1985), which keeps the slow-
fast structure of the equations, but reduces the system to a
2D model. The reductions are based on the following obser-
vations:

— The activation of sodium channels m is (very) fast. There-
fore m will reach its equilibrium almost instantaneously
and m = a,, (V) /(m (V) + B (V)) =: mso(V) can be
assumed.

— As FitzHugh already noticed (FitzHugh 1960), in the
course of an action potential there appears to be an
approximately linear relation between 4 and n. Thus n
can be approximated by a linear function n = n(h).

The first reduction can be mathematically justified by a
center manifold reduction (see Theorem 1), which reduces
the HH model to a 1 fast, 2 slow variable model. The sec-
ond reduction is a purely empirical observation and has no
mathematical justification. There is no a priori argument as
to why the nonlinear variables (n, &) should have a linear
relation. Nonetheless, the reduced HH model resulting from
applying this relationship can describe the action potential
(Fig. 1) very well and can be analyzed in the corresponding
2D phase space.

It has become conventional wisdom that the qualitative
properties of the Hodgkin—Huxley model can be reduced to
a 2D flow such as that described by Rinzel (1985). But these
reductions do not capture the full dynamics of the full HH
model. Rinzel and Miller (1980) as well as Guckenheimer
and Oliva (2002) have given evidence for chaos in the HH
model. This clearly points out that a rigorous reduction to
a 2D model is not possible, as chaos requires models with
phase spaces of at least three dimensions.

Another interesting observation was made in a variation of
the HH model by Doi et al. (Doi and Kumagai 2001, 2005;
Doi et al. 2001, 2004), who replaced ¢ in (1.1) with three
independent time constants 1, Tp, T,:

dv

Co-=1- gnam>h(V — Eng) — gin*(V — Eg)
—g(V—-Ep)
dm 1
—r = @) —m) = Bu(Vym) (1.5)
t T
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Fig. 2 Simulation of modified 40
HH model with applied current
I =9.6. Left j, = 1 yields a 2

firing frequency of
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where 17, = 17, = 1, = | corresponds to the classical HH
model at 6.3°C. In their work they observed a dramatic slow-
ing of the firing rate when they increased either tj, or 7, ten
fold. Actually, such a big change in the time constants is not
needed to observe this behaviour. If e.g. 7, is changed from 1
to 2, then the firing rate of action potentials due to applied cur-
rent [ = 9.6 slows down dramatically, from approximately
70 to 7Hz (see Fig. 2). This represents a ten fold decrease
in firing rate, although the time constant was just increased
two fold. Note the sub-threshold oscillations in the inters-
pike intervals for r;, = 2, which do not exist for t;, = 1.
Furthermore, Doi et al. (Doi and Kumagai 2001, 2005; Doi
etal. 2001, 2004) also observed chaotic behaviour within this
modified model (not shown here), which indicates again that
the classical 2D reduction is not appropriate to capture the
full dynamics of the classical HH model.

An interesting observation is that modifying the speed
of activation and inactivation of the ion channels leaves the
monotonic steady-state current-voltage relation of the model
neuron unchanged. Therefore the modified HH model is still
classified as a ‘Type I’ neuron, as is the classical HH model
(Rinzel and Ermentrout 1989). Previously, it had been be-
lieved that slow firing rates in single neuron models could be
achieved only in “Type I’ neurons, which have an N-shaped
current voltage relation, as found for neurons with A-type
potassium channels. The wide range of firing rates seen there
is due to a homoclinic bifurcation in the 2D phase space,
which may, for example, arise as a reduction from a saddle-
node bifurcation of fixed points on an invariant circle in a
higher-dimensional space. The 3D analysis we present here
explains a dynamic mechanism by which “Type II’ model
neurons can also have a wide range of firing rates. The main
question we address is the following: How does a slow firing
rate emerge from the geometry of the HH model?

A similar observation of significant slowing of firing rates,
asinFig. 2, has been made by Drover et al. (Drover et al. 2004;

500 700 900 1100 B 100 300 500 700 900 1100

Time (ms) Time (ms)

Rubin 2005) in a network of (Type IT) HH model neurons cou-
pled with excitatory synapses. This network synchronizes
very quickly after synaptic excitation is activated and the fir-
ing rate of the network slows down dramatically, compared
to the single neuron firing rate with constant current injec-
tion. The analysis of this network can be reduced to a 3D
model. The key to understanding the observed activity is
the so called ‘canard phenomenon’ (Benoit 1983; Szmolyan
and Wechselberger 2001), which traps the solution for a sig-
nificant amount of time near the expected action potential
threshold before it can fire again. Wechselberger (2005a) has
shown that the extreme delay is due to canards of folded
node type (Szmolyan and Wechselberger 2001). The ‘vortex
structure’ described in Drover et al. (2004) can be rigor-
ously understood in terms of invariant manifolds analysed in
Wechselberger (2005a), which form a multi-layered trapping
region.

The solutions with significant delays that we have
described above consist of a certain number of subthresh-
old oscillations combined with a relaxation oscillation type
action potential, as shown in Fig. 2 for 7, = 2. Such solu-
tions are called ‘mixed-mode-oscillations’ (MMO’s), and
their relation to the canard phenomenon was first demon-
strated by Milik et al. (1998). A more detailed analysis of
MMO'’s and generalization of the canard phenomenon was
done by Brgns et al. (2006).

In this paper, we apply geometric singular perturbation
techniques (Szmolyan and Wechselberger 2001, 2004; Wech-
selberger 2005a; Brgns et al. 20006) suitable for the analysis
of the single HH model neuron. We explore the geometry
of the uncoupled HH neuron carefully, explain how a sig-
nificant slowing of the firing rate may occur, and explain a
mechanism through which complex oscillatory patterns may
arise in this system.

The outline is as follows: In Sect. 2 we reduce the HH
model to a 3D model that captures all the qualitative features
observed in the full model. In Sect. 3 we give an overview
of results on relaxation oscillations and MMO’s in general,
using results from geometric singular perturbation theory. In
Sect. 4 we apply these results to the reduced 3D HH model.
This enables us to explain the mechanism underlying the
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observed oscillatory phenomena and to predict what forms
of solutions will arise as tj, 7, and [ are varied. Finally, in
Sect. 5 we conclude with a discussion.

2 HH model reduction

We will apply geometric singular perturbation techniques for
the analysis of the HH equation, formulated to include the
modification proposed by Doi et al. (Doi and Kumagai 2001,
2005; Doi et al. 2001, 2004):

av 3 4

T I — gnam”h(V — Eng) — gikn™(V — Ek)
—gi(V—EL)

dm

1
Frie —tmfm(V)(mOO(V) —m)

dh 1
i m(hoo(V) —h)

a1 V)=
di 5,V e "

2.6)

where 7, (V) (in ms) and x40 (V) (dimensionless), with x =
m, h, n, are defined as follows:

A _ 1
(V)= somm 27
— ax (V) ’
Xoo(V) = omipn -

2.1 Dimensionless version of the HH model

As a starting point we nondimensionalize system (2.6) and
identify a small perturbation parameter ¢ such that we can
apply singular perturbation techniques. The following table
shows the units of the variables and parameters in system
(2.6):

variable  units  parameter units
\%4 mV E, mV
m 1 8x mS/cm?
h 1 c wF /em?
n 1 1 wA/cm?
t ms Ty 1

To make the variables (V, t) dimensionless, we have to
identify a typical voltage scale k, and a typical time scale k;,
and define new dimensionless variables (v, T) such that

(2.8)
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Using this transformation, the dimensionless HH system is
then given by

dv k; - - _ _ _
0 8~ guam3h(v — Eng) — gen* (v — Ex)
dt C

—&i(v - Ep)]
dm 4 moo(v) —m) 2.9)
_— = —m V)—m .
dt ~ tpitn(v)
dh

ke
— = —( —h
dz T en(v) (hoo(v) )
dn kt

T = () (noo(v) — 1)

with dimensionless parameters E, = Ey/ky, g = g¢/g and
I =1/(ky - g), where g is a reference conductance, chosen
as g = gna, since this is the maximum conductance in this
problem. The Nernst potentials E, set a natural range for the
observed action potentialsas Ex < V < E,. Therefore the
maximum variation of the membrane potential is 127 mV in
our problem, and we choose k, = 100mV as a typical scale
for the potential V. Note that under the choice g = g, all
terms in the square bracket of the right hand side of the first
equation in (2.9) are bounded (in absolute values) by one.
Therefore the characteristic scale of this right hand side is
given by (k; - gwa)/C.

Next, let us check the right hand sides of the gating equa-
tionsin (2.9). Wehave 0 < x < 1,0 < xo(v) < 1 and there-
fore |xoo(v) — x| < 1. The only differences in the orders of
magnitude of the gating equations may arise from the func-
tions 7, (v). The functions 7, (v) are given in ms and therefore
include characteristic timescales. Recall from (2.7) that

1/7:(v) = ax (v) + Br (V). (2.10)

Figure 3 shows a plot of the functions 1/7x (v) over the phys-
iological range v € [—0.77,0.5]. This figure shows that
maxye[—0.77,0.5](1/Tn (v)) is of an order of magnitude big-
ger than 1/7,(v) and 1/%,(v), which are of comparable size.
We define 1/%,(v) = Ty /7 (v) where T, = maxye[_0.77.0.5]
(1/7x(v)). Note that fx has dimension (ms)_1 while 7, (v) is
now dimensionless and l/fx (v) < 1forv e [-0.77,0.5].

The values of the scaling factors are approximately Ty ~
10 (ms) ™" while 7, ~ T, ~ 1(ms)~" (see Fig. 3). From
(2.9), we obtain the following system

C dv - _
— = — gpam’h(v — E
k- 2Na dz [ 8nall (v Na)
—gn* (v — Ex) — gi(v — Ep)]

L dm (Moo (v) — m) @11)
=< —_— = =< m V) —m .
Tnk: dt Tinltm (V) >

1 dh 1 (oo () — B)

- =~ v) —

Tok, dT — whin(v) "

1 dn 1

— — = ———(neo(v) — n).

T, k: dt Tnln (V) >
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Fig. 3 Functions 1/7,,(v) (solid), 1/, (v) (dash-dotted), and 1/7, (v)
(dashed); all in (ms) ™!

Note that (C/gng) and (1/ f"m) are fast reference times
(< 0.1 ms) while (1/ f’h) and (1/ f‘n) are slow reference times
(=1 ms).

Our aim is to understand the long delays of action poten-
tials, so we choose the given slow time scale 1/ Ty~ 1 / T, ~
1 ms as a reference time and set k, = 1 ms. With that setting,
the two dimensionless parameters C/(k;gn,) and 1/ (f"mk,)
on the left hand side are small. Since the activation of the
sodium channel m is directly related to the dynamics of the
membrane (action) potential v, we assume that (v, m) evolve
on the same fast time scale and set

1

&
<1l, —=—x1.
ki - gna Tink: T

& = (2.12)

Furthermore we define f"hk, =: T and fnk, =: T, so that
each T, is a dimensionless parameter. With these definitions
we obtain finally the HH equations in dimensionless form
and as a singularly perturbed system

dv - 3 _
e— = —m’h(v— Epg)
dt
—gn*(v — Ex) — 21(v — Ep)]
dm 1
sd—r = . (Moo (V) —m) (2.13)
dh 1
e —thth(v)(hOO(U) —h)
dn 1
= ———(neo(v) —n)

E Tutn (V)

with (v, m) as fast variables, (h, n) as slow variables and
t,(v) := £ (v)/Ty. This reflects exactly the assumptions
made in the pioneering work of FitzHugh (1960). The sig-
nificantly faster activation of the sodium channel m than its

inactivation & and the activation of the potassium channel n
makes the creation of action potentials possible.

Remark 1 A misleading statement about the HH system is
often found in the literature, namely that the gate m evolves
on the fastest time scale in this system. The correct statement
is that m evolves faster than the other two gating variables,
which is essential for the creation of action potentials, but m
actually evolves slower than the membrane potential V (i.e.,
the parameter 7;,, < 1). One could argue that the HH system
evolves on three different time scales: V fast, m intermediate
and (4, n) slow. But to apply classical singular perturbation
techniques, which allow for just two different time scales,
we group (V, m) as fast and (4, n) as slow, based on (2.12),
as described above.

2.2 Reduction to 3D model

By setting ¢ = 0 in the 4D singularly perturbed system (2.13)
we obtain the reduced system (also called the slow subsys-
tem). This system is a differential algebraic system describing
the evolution of the slow variables (n, i) constrained to a 2D
manifold Sy, called the critical manifold, which is defined by
the two equations

[ —mPh(v—Eng) — g(v—EpL)

g(v — Eg)
m,n,h) = my(v).

n4(v,m,h) =

’

If we project Sy into the (v, n, h) space by using the identity
m = meo(v), then Sp is defined by
I —mo()’h(v— Ena) — &1(v — EL)

4
,h) = —
k) 2w — Ex)

(2.14)

This critical manifold Sy is a cubic shaped surface as
shown in Fig. 4, a typical feature of relaxation oscillators
in general. The slow dynamics on the critical manifold de-
scribes e.g. the slow depolarization towards the action poten-
tial threshold shown in Fig. 1. Whenever the neuron fires an
action potential, it changes to a fast dynamics where the slow
variables are (almost) constant but the fast variables change
rapidly. This behaviour is described by the layer problem (or
fast subsystem)

j—” = [I —=m’ho(v — Ena) — @ng — Eg)
71

—giv— Ep)] = f(v.m) (2.15)
dm

1
e = ——z (Mmoo (v) —m) =: g(v, m),

which is obtained by changing to the fast time 71 = /¢
and taking the limit ¢ — 0. The slow variables 7 = k¢ and
n = ng are now constants. The critical manifold Sy is the
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Fig. 4 Cubic shaped critical manifold Sy of the dimensionless HH
system shown in (v, &, n) space, Ip = 9.6

manifold of equilibria for the layer problem, and trajecto-
ries of the layer problem evolve along one-dimensional sets
(v, ho, ng), called fast fibers, near this manifold Sy. If we lin-
earize the layer problem at Sy we obtain information about
the transient behaviour of solutions along these fast fibers,
in the neighborhood of this manifold. It is well known that
solutions are quickly attracted along the fast fibers to one of
the outer two attracting branches of the critical manifold and,
to leading order, follow the reduced flow towards the associ-
ated fold curve. In the neighbourhood of the fold curve the
dynamics changes significantly and the layer problem will
eventually cause a fast transient behaviour towards the other
attracting branch observed e.g. as an upstroke in the action
potential.

The following result shows that the transient behaviour
near the fold is described by a 3D vector field representing
the flow on a 3D center manifold of (2.13); for a more general
result see (Brgns et al. 2006).

Theorem 1 The vector field (2.13) on the fast time scale
T1 = T/¢ possesses a three dimensional center manifold M
along the fold curve, which is exponentially attracting. The
vector field (2.13) reduced to M is given by:

£ j,—z =1 = m3 (h@ — Ena) = gn' (v — Ex)
—g(v—Er)] = F(v,n, h)
dh 1 P (2.16)
E—m( co(v) —h) =: H(v, h)

dn 1 ) —m) = N )
E_m(noo(v n) =:N(v,n).

Proof Introducing a new variable m = m — mqyo(v) in sys-
tem (2.13) on the fast time scale 71 = t/¢ gives the layer
problem

@ Springer

dv
dr

[ — (Moo(v) + M) h(v — Eng)

—gin* (v — Eg) — g1(v — Ep)] = f(v, 1)
dm o o
_drl = _tmtm(v)m - moo(v)f(v,m) =: g(v, m)

(2.17)

The critical manifold Sy is defined by { f (v, m) = 0, m = 0}.
Hence

% —m’_(v) %

dv g, N v S

Furthermore

0g 0

R — mi,(v) —Ji <0,

am So Tt (V) am So
0 _

since —f = —3m2,(V)h(v — Eng) >0

am So

and m;o > 0. It follows that the Jacobian

af of
v am
95 98
v Bm

has a single zero eigenvalue whenever (df/dv)|s, = O,
which happens along the fold curve. In that case the Jacobian
is given by

of
04

Therefore the eigenvector for the zero eigenvalue is given
by (v, m) = (1, 0) and the center manifold is approximately
given by m = 0. The statement follows. O

So

Remark 2 This local center manifold reduction near the fold
curve is one of the classical global reduction steps (i.e., set-
ting m = mo(v)) in the literature. The global reduction is
basically justified by the fact that the dynamics away from the
fold curves is slaved to the reduced flow of the two attracting
branches of the critical manifold.

The center manifold reduction resembles an instantaneous
approach of the gating variable m to its equilibrium state m =
Mmoo (V). The activation speed of m is fast compared to that of
the other two gating variables (n, k), but it is actually modest
compared to the dynamics of the membrane potential v. So
we have to expect quantitative changes in the reduced 3D
model (2.16) compared to the full HH model (2.13). Indeed,
we observe for the classical case (t, = 1,x = m,n, h), a
subcritical Hopf bifurcation occurs at an injected current of
I =~ 9.75, whereas the onset of firing of action potentials
in the full HH model arises for I =~ 6.25, where a family
of stable periodic orbits is born in a saddle-node bifurca-
tion. In contrast, in the 3D model (2.16), the subcritical Hopf
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bifurcation shifts to I =~ 7.75, and we observe the onset of
oscillations via a saddle-node bifurcation of periodic orbits
already for I ~ 4.06. This earlier onset reflects the increased
speed of activation of the sodium channels.

Remark 3 Note that we are varying the original applied cur-
rent /, which changes the dimensionless parameter [ =
1/(ky - gng) in systems (2.13) and (2.16). This is done for
easier comparison with results on the original system (1.1).

Remark 4 In the following analysis we consider t;, > 1 and
7, > 1. These assumptions for system (2.16) guarantee the
time scale separation between the v and (h, n) dynamics
(1/e : 1) as derived in Subsect. 2.1. Note that in the case
Tmin .= minf{zy, 7,} < 1 a rescaling of time T = TpyinT
leads to a transformed system (2.16) with &€ = &/tin, T =
T/Tmin = 1 and 7, = 7,/tmin > 1. If € < 1, then the
following singular perturbation analysis still applies.

Remark 5 The standard 2D reduction, which includes the
center manifold (m = mqy(v)), uses the relation h =
0.8 — n, but this was obtained for 18.5°C, using a differ-
ent reduction approach (Rinzel 1985). The best empirical
linear fit to the silent phase part of an action potential from
the original 4D system is 7 = 0.91 — 1.14n, while the best
linear fit to the 3D system (2.16) is &~ = 0.9 — 1.05n. Inter-
estingly, the reduction using 7 = 0.8 — n restores the onset
of action potentials to I =~ 6.3. As far as we are aware, this
is coincidental.

The 2D critical manifold Sy of the 3D singularly perturbed
system (2.16) is given by (2.14) and shown in Fig. 4. Clearly,
the 1D fast vector field is tangent at folds, i.e. the eigen-
value of the 1D layer problem is zero there. The folds rep-
resent saddle-node bifurcations of the layer problem. The
outer branches of Sy are attracting while the inner branch is
repelling. The reduced 3D HH system (2.16) is a singularly
perturbed system in a form suitable for a geometric analysis.

3 Geometric analysis of singularly perturbed systems

The cubic shape of the critical manifold Sy (2.14) allows
system (2.16) to exhibit relaxation oscillation type solutions.
There is the possibility of (classical) relaxation oscillations
as shown in Fig. 2 (left), or more complicated dynamics like
mixed mode oscillations shown in Fig. 2 (right), just to name
two possibilities. The main difference in the dynamics be-
tween these two cases occurs near the lower fold of the criti-
cal manifold, where the flow either jumps immediately to the
upper branch and creates an action potential or stays longer
near the fold and produces subthreshold oscillations before
jumping. In this section, we show how one deduces these
oscillatory behaviours from properties of the singular limit
systems obtained from (2.16).

3.1 Relaxation oscillations

Relaxation oscillations in 3D systems with 1 fast and 2 slow
variables and a structure like the reduced HH system (2.16)
were studied by Szmolyan and Wechselberger (2004), Brgns
et al. (2006) and Guckenheimer et al. (2005), based on geo-
metric singular perturbation theory (Fenichel 1979; Jones
1995; for an overview see Wechselberger 2005b). The basic
assumption in the geometric singular perturbation analysis is
that the critical manifold is cubic shaped, as is true for the HH
model (2.16). Let Sg := {(v, h,n) € R3 : F(v, h,n) =0}.

Assumption 1 The manifold S := {(v,h,n) € Sy : h €
[0, 11} is ‘cubic-shaped’, i.e. S = S; UL~ US, ULT USF
with attracting upper and lower branches Sai, SFus; =
{(v,h,n) € S : Fy(v,h,n) <0}, arepelling branch S, :=
{(wv,h,n) €S : Fy(v, h,n) > 0} and fold curves LT LtU
L™ :={(w,h,n) € S : Fy(v,h,n) =0, Fpp(v,h,n) #
0}.

We would like to describe relaxation oscillations in their
singular limit. Note that for sufficiently small values of the
perturbation parameter, 0 < ¢ <« 1, fast jumps are exe-
cuted near the lower fold curve. In the singular limit, we
describe these jumps as projections along the fast fibers of
the layer problem onto the other attracting branch of the
critical manifold.

After the jump, the trajectory follows the reduced flow
until it reaches the other fold curve, where it gets projected
back along another fast fiber onto the first attracting branch
of the critical manifold. Let P(L*) C S be the projection
along the fast fibers of the fold curve L* onto the opposite
attracting branch S

Definition 1 A singular periodic orbit I' of system (2.16) is
a piecewise smooth closed curve I' = I'; U T, U ryu F;
consisting of solutions ' C S of the reduced system con-
necting points of the projection curves P(LT) C S& and the
fold curves LT, where these slow solutions are connected by

fast fibers Ff from LT to P(L¥).

Assumption 2 There exists a singular periodic orbit T for
system (2.16).

We show in Sect. 4 that this assumption is usually fulfilled
for sufficiently large injected current /.

A sketch of a singular periodic orbit is shown in Fig. 5.
The existence of such a singular periodic orbit can be shown
in the following way:

— Show the existence of subsets N* € P(LF) with the
property that all trajectories of the reduced flow with ini-
tial conditions in N* reach the fold curve L* (in finite
time). It follows that the associated maps IT+ : N* C
P(LF) — L* are well defined.
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Fig. 5 Schematic illustration of a critical manifold S and singular peri-
odic orbit I" leading to classical relaxation oscillations. Both fold points
of the singular orbit I" are jump points

— Ifthereturnmap I := PoIllToPoIl™ : N~ P(L™)
is also well defined and has the property that ITI(N ™) C
N~ then, by Brouwer’s fixed point theorem, the existence
of a singular periodic orbit follows, i.e. a fixed point of the
return map exists. Uniqueness of the fixed point would
follow if IT is a contraction.

The key to finding singular periodic orbits I is to calculate
the reduced flow on the critical manifold S and to find solu-
tions ch. Recall that, based on (2.14), S is given as a graph
n(h,v), h € [0,1], v € R, along which F(v,n,h) = 0.
Thus, we define a projection of the reduced system onto the
(h, v)-plane. Implicitly differentiating F'(v, n, h) = 0 with
respect to time gives the relationship F,v = —(F, H+ F,N)
and we obtain

(é —(;v) (ﬁ) B (FnNZFh H)'

The equation for v is singular along the fold curves, F, =
0. Therefore we rescale time to obtain the desingularized
reduced flow on the critical manifold. Using &, ¥ to repre-
sent differentiation with respect to rescaled time, this system
takes the form

AN —F,H
v) \F,N+F,H)

This system has the same phase portrait as the reduced system
(3.18), but the orientation of trajectories is reversed on S,
where F, > 0. The local dynamics near the fold curves L™
can be completely understood from analysis of (3.19). Typi-
cally, fold points p € L™ are jump points and are defined by
the normal switching condition

(3.18)

(3.19)

(Fu N + Fp H)|per+ # 0. (3.20)

Under this condition the reduced flow (3.18) becomes un-
bounded along the fold curve L*. Thus trajectories of sys-
tem (2.16) reaching the vicinity of L* subsequently jump
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away from the fold. This jumping behaviour near L* is part
of the mechanism leading to (classical) relaxation oscilla-
tions in system (2.16) shown in Figure 2 (left). The follow-
ing assumptions guarantee the existence of such (periodic)
relaxation oscillations.

Assumption 3 The two fold points p € L* of the singular
periodic orbit T are jump points, i.e. (3.20) is fulfilled.

Assumption 4 The singular periodic orbit is transversal to
the curves P(L¥F) on S&.

Theorem 2 (Szmolyan and Wechselberger 2004)  Given
system (2.16) under Assumptions 1-4, there exists generi-
cally a periodic relaxation orbit for sufficiently small ¢.

This theorem shows under which conditions trains of classi-
cal action potentials can be found (Fig. 2, left). Obviously,
if the singular periodic orbit is obtained by the contraction
mapping principle as described above then the periodic relax-
ation orbit is a (local) attractor. If the periodic orbit follows
from Brouwer’s fixed point theorem, then we also know that
there exists a periodic relaxation orbit that is a local attrac-
tor but additional periodic orbits could also exist. For more
details on relaxation oscillations we refer to (Szmolyan and
Wechselberger 2004).

3.2 Excitable state

The approach described above for the calculation of a singu-
lar periodic relaxation oscillation assumes that there are no
equilibrium points of the reduced flow on Sff between the
subsets N* C P(L¥) and the fold curves L. If there exists
an equilibrium of the reduced flow, e.g. on the lower branch
S, , then this equilibrium is usually stable and its basin of
attraction includes a subset N~ C P(L™). For such initial
conditions the map IT is not defined and we expect the system
to be in an excitable state.

Proposition 1 Consider system (2.16) under Assumption 1.
If there exists a stable equilibrium on the lower attracting
branch S, that is a local (global) attractor of the reduced
flow, then there exists alocal (global) attractor for sufficiently
small €.

If the conditions described in Proposition 1 hold, then the
system is said to be locally (globally) in an excitable state.
The strategy to show excitability is as follows:

— Identify the subset N- C P(L7") that lies in the basin
of attraction of the equilibrium on the lower attracting
branch. If N~ = P(L™), then the equilibrium is a global
attractor.

— Otherwise, take the complementary subset (N7)¢ C
P(L")and check whether [T((N~)¢) C N~ ,i.e. whether
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Fig. 6 Schematic illustration of A
the reduced flow near a folded

node singularity. a The

desingularized flow near a node

singularity. The bold curve

corresponds to the strong stable

eigendirection of the node while
the dashed curve corresponds to
the weak eigendirection of the
node. The fold F lies on the
z-axis. b The reduced flow near
the folded node singularity
obtained from A by reversing
the flow on S, (x > 0). All
trajectories on S (x < 0)
within the shadowed region are
funelled through the folded node
singularity to S, (x > 0). These
trajectories are called singular
canards. The bold trajectory is
called the primary strong canard
while the dashed trajectory is
called the primary weak canard.
¢ 3D representation of the
reduced flow on the critical
manifold

the return map IT maps the complementary subset into
the basin of attraction of the equilibrium. If this condi-
tion holds, then the equilibrium is a global attractor. If
not, then the equilibrium is just a local attractor and may
co-exist with (an)other local attractor(s), e.g. singular
periodic relaxation oscillations. Which local attractor a
trajectory will approach then depends on the correspond-
ing initial condition of system (2.16).

3.3 MMQO’s and canards

MMO’s consist of L large amplitude (relaxation) oscillations
followed by s small amplitude (sub-threshold) oscillations,
and the symbol L* is assigned to this pattern. The subthresh-
old oscillations of such MMO patterns can be explained by
folded singularities of the reduced flow as described in (Milik
et al. 1998; Wechselberger 2005a; Brgns et al. 2006). Typi-
cally, a folded singularity is an isolated point p € L* which
violates the normal switching condition (3.20). Since F,, = 0
on L%, a folded singularity is an equilibrium of the desing-
ularized flow (3.19).

Definition 2 We call p € L* a folded node, folded saddle,
or folded saddle-node if, as an equilibrium of (3.19), itis a
node, a saddle, or a saddle-node.

For MMO's to exist, folded nodes (or, in the limiting case,
folded saddle-nodes) are required. A typical phase portrait
of the reduced flow near a folded node is shown in Fig. 6.
Note that there exists a whole sector of solutions (shadowed
region) that is funnelled through the folded node singularity

C S

\%4

Wi
BN

Sa

to the repelling branch S, of the critical manifold. Solutions
with such a property are called singular canards and are a
direct consequence of the existence of a folded singularity.

The sector of singular canards is called the funnel of
the folded node singularity. For a detailed introduction to
canard solutions we refer to (Szmolyan and Wechselberger
2001; Wechselberger 2005a; Brgns et al. 2006) and refer-
ences therein. The borders of the funnel are given by the fold
curve (F in Fig. 6) and the so called primary strong canard.
This primary strong canard is the solution of the reduced flow
(3.19) that corresponds to the unique strong eigendirection
of the folded node singularity. All other singular canards are
tangent to the so called primary weak canard corresponding
to the weak eigendirection of the folded node.

The following assumption is needed for the existence of
MMO’s as shown e.g. in Fig. 2, right:

Assumption 5 The fold point p~— € L™, where the singu-
lar periodic orbit T intersects L™, is a folded node (folded
saddle-node) singularity, while the fold point p* € LT,
where T intersects L™, is a jump point.

Theorem 3 (Brgns et al. 2006) Suppose that system (2.16)
satisfies Assumptions 1-2,4-5. If the segment I of the sin-
gular periodic orbit I is in the interior of the singular funnel,
then for sufficiently small €, there exists a stable periodic orbit
of MMO type 1° for some s > O.

Actually, it is possible to calculate the (maximal) num-

ber of small oscillations s of this 1° MMO pattern. Define
M = A1/A2 < 1 as the ratio of the eigenvalues A1, (|A1] <
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Fig. 7 Critical manifold S and singular periodic orbit I" leading to
MMO’s. The fold point in the silent phase of the singular orbit I" is
a canard point (folded node/folded saddle-node singularity), while the
fold point in the active phase is a jump point

|X2|) corresponding to the node singularity of the desingular-
ized flow (3.19). Then the number of maximal subthreshold
oscillations is given by (Wechselbeger 2005a)

1

where the right hand side denotes the greatest integer less
than or equal to (1 + ©)/(2u). Different MMO patterns LS
with L > 1 and s’ < s can just be obtained under the varia-
tion of an additional parameter in system (2.16) that changes
the global return mechanism.

(3.21)

Theorem 4 (Brgns et al. 2006) Suppose that system (2.16)
satisfies Assumptions 1-2,4-5. Assume that there exist a
parameter B in system (2.16) and a value Bo such that for
B = Po, the segment I' ;] of the singular periodic orbit T’
consists of a segment of the primary strong canard. Then the
following holds, provided ¢ is sufficiently small: For each
1 < s’ < s, there exists an interval Jy with length of order
O(BPTM) such that if B € Jy, then a stable 15 MMO pattern
exists.

A sketch of a singular periodic orbit I" leading to MMO’s
is given in Fig. 7. The existence of such a singular periodic
orbit can be shown as follows:

— Calculate the return map IT for a single initial condition in
P (L) that lies within the basin of attraction of the folded
node resp. folded saddle-node singularity (the funnel) and
show that this initial condition is mapped back into the
funnel by IT. This guarantees immediately the existence
of a unique singular periodic orbit fulfilling Assumption
5, since all trajectories within the singular funnel are con-
tracted to the folded singularity.

The small (subthreshold) oscillations observed in a MMO
pattern occur in the neighbourhood of the folded node
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singularity. The reason can be roughly explained as follows:
Note that existence and uniqueness of solutions of system
(2.16) for small ¢ # 0 is guaranteed. In the singular limit,
however, uniqueness is lost for the reduced flow along the
fold curve. In particular, at the folded node singularity we
have a continuum of solutions, the singular canards, pass-
ing from the attracting branch S, through one single point,
the folded node singularity, to the repelling branch S, as
described above. Wechselberger (2005a) showed that a dis-
crete number of canard solutions persist under small
perturbations 0 < ¢ < 1, i.e. all these canard solutions con-
nect from the attracting branch S, . to the repelling branch
Sr.¢. The existence of invariant manifolds S, , and S, ; away
from the fold, which are O (¢) perturbations of S, and S, are
guaranteed by Fenichel theory (Fenichel 1979; Jones 1995).
Furthermore, solutions of (2.16) on S, . and S, . will approx-
imately follow the reduced flow on S, and S,. By a pure
topological argument it follows that the only way for canard
solutions to connect these manifolds S, . and S, . without
violating the uniqueness of other solutions nearby is given
by rotations of the manifolds S, ¢ and S,  near the fold curve.
For a more detailed explanation of this geometric structure
we refer to (Guckenheimer and Haiduc 2005; Wechselberger
2005a).

Theorem 4 states that under the variation of an additional
parameter B in system (2.16), which changes the global return
mechanism, MMO patterns of type 15" with 1 < s’ < s are
realized. Combinations of adjacent MMO patterns 15" and
151 are usually observed in the transition from one stable
MMO pattern 15"+1 to another stable MMO pattern 1" under
variation of A. Within the transition from a 1' MMO pattern
to relaxation oscillations (1> MMO pattern) one may also
observe L! patterns, L > 1, as well as combinations of pat-
terns. More complex L¥ MMO patterns as well as related
combinations are found for u — 0, such that s(u) — o0,
and/or for larger €. These complex patterns are not well cov-
ered by the current theory and the development of such a
theory will be the focus of future work.

4 Analysis of the 3D HH system (2.16)

In the following we show under which conditions on the
parameters of system (2.16) we obtain either an excitable
system, relaxation oscillations or MMO’s.

4.1 Singularities of the reduced flow
To analyse the reduced flow (3.18) on the critical manifold S,

we calculate the desingularized system (3.19) as described
in Sect. 3 for the 3D HH system (2.16) and check under
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which conditions we find singularities. The right hand side
functions of (3.19) are given by

Fy = —(m2, () h + g n* (v, h)+81 + 3m2(v) h (v — Eng) mh (v))
F = —(mes(v) (v — Eng))
Fy, = —(4gn’ (v, h) (v — Ex))

and n(v, h) is defined in (2.14). Recall that the folds L™ are
defined by F,, = 0. The functions H and N depend on the
time constants t; and t,,. Each of the functions F,, F} and
F,, depends on the parameter /.

There are two classes of equilibria of system (3.19). The
first occurs where H = 0, corresponding to 4 = h(v), and
N = 0, corresponding to n(v, h) = n(v), where the func-
tion n(v, h) depends on I but not on t; and t,. Putting this
together yields the condition n(v, hs(v)) = neo(v), which
has a solution v that is independent of t; and 7, but depends
on I, called v(I) below. The second class of equilibria, folded
singularities, arises where F, = 0 (along the fold line) and
F,N+ F, H = 0. These points depend on tj, T, and /. There
are no equilibria with H = 0 and N # 0, because F,, # 0.

Remark 6 Both folded and regular singularities are equilib-
rium points of system (3.19), but only the latter are actually
equilibrium points of (3.18), as pointed out in Sect. 3.

A bifurcation occurs as / varies, for fixed tj, t,,, when the
the curve of equilibria v(7) intersects the fold F,, = 0. This
occurs at the special value of I at which

Fy(u(I), n(v(I), heo(v(1))), hoo(v(1))) = 0.

But since the functions v(/), i (v), n(v, k) are independent
of 7 and 1, the location of this bifurcation is independent of
7, and 7, as well. Parameter continuation by using XPPAUT
(Ermentrout 2002) shows that this bifurcation value is given
by I. ~ 4.8. Figures 8, 9 show this bifurcation for different
values of 7, and t,,, with I taken as the bifurcation parameter.
Clearly, the bifurcation point is independent of 7, and 7, as
claimed, and the bifurcation happens on the fold curve. We
will discuss further details about these diagrams below.

Proposition 2 Generically, the reduced system (3.18) pos-
sesses, for I = 1. ~ 4.8, a folded saddle-node on the fold
curve L™ (independent of tj, and t,). For nearby values I <
1., system (3.18) possesses a folded saddle and a stable node
singularity. For nearby values 1 > I., system (3.18) pos-
sesses a folded node and a saddle singularity. Therefore, the
bifurcation of the ordinary and the folded singularity near
I = I, resembles a transcritical bifurcation.

Remark 7 There exist two different types of folded saddle-
node (FSN) singularities. The FSN type I corresponds to a
true saddle-node bifurcation of folded singularities,
while a FSN type II corresponds to a transcritical bifur-
cation of a folded singularity with an ordinary singularity

15
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Fig. 8 Bifurcation of equilibria (black regular, other colors folded) for
the reduced flow for different values of 7, (z, = 1 (red), tj, = 15 (dark
blue)). Solid curves are asymptotically stable (nodes, folded nodes),
while dashed are unstable (saddles, folded saddles). Further details are
given in the text

-0.62}
-0.64

—0.66}

Fig. 9 Bifurcation of equilibria (black: regular, all other colors: folded)
for the reduced flow for different values of 7,,. Solid curves are asymp-
totically stable (nodes), while dashed are unstable (saddles). Further
details are given in the text

(Szmolyan and Wechselberger 2001). Therefore, the folded
singularity at I = I described in Proposition 2 is a FSN type
II.

In general, the proposition states that there exists a folded
node singularity for certain parameter values. In these cases
MMO'’s are possible, depending on the global return mech-
anism, as described in Sect. 3. In the following we will split
the analysis into 3 different cases: the classical case (5,
1,7, = 1), the case (t;, > 1,1, = 1) and the case (73
1,7, > 1).
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Fig. 10 Phase plane for system (3.19) for the classical case (t;, =
1,z = D with I =1 < I. (left) and I = 10 > I, (right). Note that
the cyan curves are the 4 nullclines and the black curve is the v nullcline
for system (3.19). The /& nullclines consist of the fold curve {F, = 0},

Classical case (t, = 1,1, = 1)

In that case, system (3.18) has a folded saddle for0 < I < I,
afolded saddle-node type Il for / = I., and a folded node for
I > I. on the lower attracting branch (in the silent phase).
Furthermore, the lower attracting branch S, has a stable node
for 0 < I < I, which bifurcates via the folded saddle-
node singularity to the repelling middle branch S,, where it
becomes a saddle for I > I (see Proposition 2).

Figure 10 illustrates these singularities using the nullclines
of the desingularized system (3.19) with / = 1 < I, and
I = 10 > I, respectively. In these as well as analogous
phase plane pictures below, the cyan curves are the solu-
tions of FyH = 0, one corresponding to F, = 0O (i.e., the
lower fold L™) and the other corresponding to H = 0, while
the black curve consists of solutions of F,, N + F,H = 0.
Folded equilibria are indicated by red symbols, while regular
equilibria are indicated by blue symbols. Finally, nodes are
marked with circles, while saddles are marked with triangles.
So, in Fig. 10 with I = 1 (left), we see a stable node and a
folded saddle, while in Fig. 10 with / = 10 (right), we see a
folded node and a saddle.

Remark 8 There exist two other folded singularities of the
reduced flow which have no influence on the dynamics of the
classical case, but will become more important in the other
two cases (t, > 1,7, = 1) and (t;, = 1,1, > 1). First,
there is another folded saddle in the silent phase for 4 < 1.
This folded saddle will move to the right for 7, > 1 (see
corresponding case study (7, = 1, t, > 1) below). Second,
there is also a folded focus in the active phase for 1 > 1.
This folded focus will move into the physiologically signifi-
cant range 0 < h < 1 for 7, > 1 (see corresponding case
study (75, > 1, 7, = 1) below).

@ Springer

-0.65

Oj1 0.‘2 0?3 Ot4 0.‘5 0.6 Ot7 0.‘8 0.‘9
h

which intersects the v nullcline in a folded saddle (red triangle) in the
left plot, and the curve {H = 0}, which intersects the v nullcline in a
stable node (blue circle) in the left plot

Case (tp, > 1,1, = 1)

This case is similar to the classical case. Again, system (3.18)
has a folded saddle for 0 < I < I., a folded saddle-node
type Il for I = I., and a folded node for / > I. on the lower
attracting branch (in the silent phase), for each fixed 7, > 1.
As in the classical case, the lower attracting branch S, has a
stable node for 0 < I < I, which bifurcates via the folded
saddle-node singularity to the repelling middle branch S,,
where it becomes a saddle for / > I, (see Proposition 2). In
addition to showing the curve of regular equilibria generated
by varying I, Fig. 8 shows examples of how the folded sin-
gularities depend on [/ for t;, = 1 and 1;, = 15, the former of
which is closer to the curve of regular equilibria, illustrating
that their dependence on 7, is quite weak.

The only difference between 7, = 1 and 7, > 1 with
respect to singularities is that there exists a folded singu-
larity of focus type in the active phase for 7, > r}{ within
the physiological significant domain 0 < & < 1. Figure 11
shows the / value of the folded focus for different values of
7. At t,‘lf ~ 1.4, the h value is approximately one, while

it is less than 1 for 7;, > ‘L’;{ . Folded foci do not support
canard solutions. The main influence of folded foci on the
reduced flow is that they direct the flow a certain way. We
shall see in the next two subsections that the folded focus has
no significant impact on the solutions that we are studying.

Case (tp, =1,1, > 1)

As can be seen in Fig. 9, the bifurcation diagram for system
(3.19), with bifurcation parameter I, depends much more
strongly on t, than on 7. The black curve in Fig. 9, which
switches from solid (for I < I. =~ 4.8) to dashed (for I >
1;), is the curve of regular equilibria, which is independent
of 1,, as noted earlier. As 1, increases from 1, the curve of
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Fig. 11 The & coordinate for the folded focus of system (3.19) depends
on 1, (solid curve). The dotted lines demarcate h = 1 and 75, = 1.4 and
illustrate that the focus becomes non-physiological for 7, < ‘L’hf ~ 1.4

folded equilibria develops two folds, which correspond to
saddle-node bifurcations of folded equilibria in the parame-
ter / for each fixed t,,. Figure 9 shows examples of the curves
of folded equilibria for / > 0 for a variety of values of 7,
including 7, = 1 (red), which is shown for comparison.

‘We define several critical values of 1,,. First, there exists a
value 7 &~ 4.75 such that for all 7, < 7, there is a saddle-
node bifurcation of folded equilibria at some I = [ S* N > e,
lying above the curve of regular equilibria (e.g. 7, = 3 in
Fig. 9). Examples of the corresponding phase planes of (3.19)
are shown in Fig. 12 for I =1 < [, ISJ“N > =7>1I,and
I =10 > 1 ;‘ N> which illustrate the following: There exist
three singularities in the domain of interest, two folded sad-
dles and one (ordinary) node, for / = 1. The folded saddle
to the right of the node bifurcates via a transcritical bifurca-
tion at I = I, to a folded node to the left of the saddle. For
I =1 ;r v the folded node and the other folded saddle (to the
left) annihilate each other in a saddle-node bifurcation and
we are only left with a saddle singularity on the repelling side
of the critical manifold. Note that the folded saddle-node sin-
gularity at I = [ is of type II, while the folded saddle-node
singularity at [ = [ ;r  is of type L.

For 1} < 1, < 1, (7, = 10.5), the saddle-node bifurca-
tion at ;’ v > Ic lies below the curve of regular equilibria,
as shown for 7, = 7 in Fig. 9. Figure 13 shows phase planes
fort) >t,=7>tforl=1<1I,for]=6and] =7,
both above /. and below Iy, and for / = 10 > I{ . In this
case, the folded saddle to the left of the node bifurcates via
a transcritical bifurcation at [ = I. to a folded node to the
right of the saddle. As I increases towards / S+ ! folded sad-
dle from the right (2 > 1) approaches the folded node. They
finally annihilate each other for I = I ;’ v in a saddle-node
bifurcation. Again, we are left with only a saddle singularity
on the repelling side of the critical manifold for 7 > I ;N.

In both cases, 7, < 7 and 7,7 > 1, > 7., a folded
node emerges for / > I, via a transcritical bifurcation and
persists up to the saddle-node bifurcation at I = [ ;’N. In
the limit 7, = t{ these two bifurcations merge to a single
pitchfork bifurcation at I = I.. This yields a curve of folded
saddle equilibria, shown as the 7, = 4.75 curve in Fig. 9. The
value 7, = 7, is the unique value for which the bifurcation
at I = I, is not transcritical and does not create a curve of
folded nodes.

As can be seen in Fig. 9 for 7, = 7, there is also a lower
(with respect to I') saddle-node bifurcation of folded equilib-
ria, with a folded node at relatively negative v values for /
above this bifurcation. Let /g, denote the I value where this
lower saddle-node bifurcation occurs. In fact, the interval of
7, values over which this lower saddle-node exists is given by
(t°, 7)), where 7,.° ~ 4.2. However, the saddle-node exists
for Iy < Ofor7;® < 1, < 7, ~ 5.75, which explains why
this bifurcation is not visible in Fig. 9 for 7, = 4.75.

Figure 14 shows both the upper (at [ = [ s+ > solid) and
lower (at I = Ig,;, dashed) curves of saddle-node bifurca-
tion points, as functions of t,. Note that the two bifurcations
come together in a cusp at t,’, which is approximately given
by 7, ~ 10.5. Further, as t,, decreases, the lower saddle-node
occurs at progressively larger 4 and hence becomes physio-
logically irrelevant. In general, the lower folded nodes have
no influence on the dynamics within the physiological rele-
vant boundaries. Therefore, we will not consider them in the
following analysis of relaxation oscillations. Note also that
the upper saddle-node occurs at progressively larger values
I1=1 ;N as 1, decreases towards t, = 1, which is why it is
not observed in the 7, = 1 bifurcation curves in Figs. 8, 9.
Finally, if 7, > 1,7, above the cusp of saddle-node bifurca-
tions, then the bifurcation diagram with respect to / becomes
more like the classical case again, with a single transcriti-
cal bifurcation at I = I, (within the physiological relevant
domain).

To summarize: In all three cases there exists a node singu-
larity for I < I on the lower attracting branch (silent phase).
In the cases (1, > 1, 7, = 1) there exists on L™ a (physio-
logically relevant) folded node singularity for I > I.. In the
case (1, = 1, t, > 1) there exists on L™ a (physiologically
relevant) folded node singularity for / ;‘ v > 1 > 1., where
1 ;r n approaches /. in the (degenerate) limit 7, — 7, but
I;’N > [ for T, # 15.

4.2 Transversality of reduced flow at P (L)

To apply Theorems 2—4 (relaxation oscillations or MMO’s)
we have to show that the associated singular periodic orbit
is transversal to the projections of the fold curves P(L¥)
(Assumption 4). Instead of verifying Assumption 4 for each
specific example, we give evidence that the reduced flow is
transversal to P(L*) and directed towards the fold curves
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Fig. 12 Phase planes for
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in the whole domain of interest. This more general transver-
sality argument gives important insight into the nature of the
reduced flow, since it shows that the reduced flow (IT—, TTT)
and associated projections preserve the orientation of trajec-
tories. This orientation preservation property will help us to
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calculate the return map IT defined in Section 3 in order to
find singular periodic orbits.

Proposition 3 The flow of the reduced system (3.18) is trans-
versal to P(L%) and directed towards L¥ within the physi-
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Fig. 14 Curves of saddle-node bifurcations of folded singularities, as
functions of t,. In each plot, the upper saddle-node (at I = 1 ;’ RS
solid and the lower (at I = Igy) is dashed. Note that the two form a
cusp at 7, = 7,7 ~ 10.5, that the 7 values of the lower curve become
negative for 7, < 7,7 ~ 5.75, and that the & values of the lower curve
blow up toward a vertical asymptote at 7, = t,>° &~ 4.2 as 7, decreases.
The bottom plot represents a zoomed view, near the cusp, of the plot
above it, with a dotted line shown at h = 1

ologically relevant domain of h (0 < h < 1 but not h < 1)
and the parameter range under study (I >0, t,>1, 1, > 1).
Moreover, in this parameter range, the return map I, where
it is defined, preserves the orientation of trajectories, in the
sense that if py = (h1,v1), p2 = (h2,v2) € AP(L+) with
hy < hy, and TI(p1) = (h1, 01), 1(p2) = (h2, 02), then
hl < hz.

As with the propositions in Sect. 4.3 below, we use numer-
ical observations to support this proposition. In the discussion
below, we omit very small values of i (h < 1) and consider
the rest of the physiological range of 7 (0 < h < 1). All of
the statements we make hold independent of the values of
1, Ty, 7, within the ranges I > 0,7, > 1, 7, > 1. We will
come back to 7 < 1 at the end of the section.

First, note that, as can be seen in Fig. 4 for example, the
fold curves L* are almost parallel to the /-axis, as long as
h is not too small. Hence, the projections of the fold curves
P(L*) are almost parallel to the h-axis, away from very
small %, as well. Furthermore, the subsets of the projections
P(L™)and P(L™) away from h < 1 lie on opposite sides of
the v-nullcline F,, N + Fj, H = 0 of the reduced flow (3.18).
Therefore, v has opposite signs along P(L") and P(L7).
We can thus use the expressions given in (2.16) to compute
numerically, from the desingularized reduced flow (3.19),
that in fact v > 0 along P(L™") and ¥ < 0 along P(L™),
away from 7 < 1. Since P(L*) are almost parallel to the
h-axis, this implies that the reduced flow (3.18) is transver-

v h

Fig. 15 Transversality of reduced flow at P(L™) (solid) and P(L™)
(dashed) for T, = 1, = 1 under variation of /. The arrows indicate the
vector field of the reduced system (3.18) at P(L*) and show that the
flow is directed towards the fold curves LT (which are not shown here)

Y \ T aY P(L7)
L+
\

A

L
A |
LA A NP
heo(v) h

—_—

Fig. 16 Illustration of the flow box argument establishing transversal-
ity for 0 < h < heo(v) on P(L™T), and its inapplicability on P(L™).
The short segments with arrows represent the direction field. The solid
circle is the folded focus present in the active phase for 7, > r,{ ~ 1.4.

Note that since the relevant part of P(L7) lies above h (v), h < 0Oand
transversality cannot be guaranteed there

sal along P(LT) and that the flow is directed towards L.
Figure 15 shows the projection of the fold curves P(LT)
together with the reduced vector field from system (3.19) for
7, = 17, = 1 and for different values of / ranging from 2 to
8. These observations reflect the physiological fact that the
membrane potential repolarizes in the active phase (v < 0)
and depolarizes in the silent phase (v > 0). Similar figures
can be obtained under variation of 75 and 7, and they all
support Proposition 3.

For the reduced flow near P(L™') we can give an even
stronger transversality argument for 0 < & < h(v) but not
too small, as follows (see Fig. 16): P(L™) is a convex and
monotonically decreasing function with respect to /4. If the
reduced flow near P(L™) points into the first quadrant, i.e.
h > 0and v > 0, then transversality follows immediately.
But we have already given the argument that v > 0 for 0 <
h < 1 but not too small, while 4 > 0 for0 < h < hoo(V),
and hence transversality follows.
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Remark 9 The same argument cannot be used for the reduced
flow near P(L™). Note that P(L™) is a concave and mono-
tonically increasing function with respect to 4. If the reduced
flow near P(L™) pointed into the fourth quadrant, i.e. h>0
and v < 0, then transversality would follow. Again, h > Ofor
0 <h < hoo(v), but Ao (v) K 1 for positive v. Therefore,
we instead have i < 0 almost everywhere along P (L ™).

Note that the projections of the fold curves P (L*) become
almost parallel to the v-axis, instead of the h-axis, for very
small & values, as shown in Figure 15. We take the domain
h < 1 that is excluded from Proposition 3 to consist of the &
values where this parallelism occurs. In fact, we found exam-
ples where transversality along P (L ™) is violated for &7 < 1.
Fortunately, it will turn out that such £ values are not relevant
for our calculations of the return map I, used to find singular
periodic orbits in Sect. 4.3, and hence this exclusion does not
affect our ability to analyze the solutions of systems (3.18),
(3.19).

Finally, it remains to consider the preservation of orienta-
tion under I1. Obviously, the projection P does not change
the orientation of trajectories. Moreover, as noted above, the
fold curves and their projections are almost parallel to the
h-axis for & not too small, while the reduced flow (3.19) is
rectifiable between P (L") and L™~ on S, . Theoretically, ori-
entation of the flow could be affected by the folded focus on
LT c SF fort > r}{ . The focus lies within the intersec-
tion {(h,v) : F, =0} N{h,v) : v =F,N+ F,H =0},
and we have already seen that v < 0 on P(L™) C Sj,
however. Hence, the flow in the neighborhood of the folded
focus is counterclockwise in the (%, v) plane (Fig. 16) and
trajectories generated by all initial conditions on P (L™) will
intersect L™ without a change in orientation.

4.3 Singular periodic orbits

In this section, we consider various objects and their projec-
tions under the desingularized reduced flow, given by system
(3.19). Recall that we defined the return map IT = Po IT" o
P oTIl~ from N~ C P(L™) back to P(L™). It is now con-
venient to introduce the additional map IT = P o ITt o P :
L~ — P(L™), which maps points on the lower fold curve
back to the silent phase.

Classical case (t, = 1,1, = 1)

We distinguish between two different scenarios. For [ < I,
there exist two singularities, a folded saddle and a stable node
singularity. The unique canard, formed by the stable mani-
fold of the folded saddle singularity, is a separatrix for the
basin of attraction of the node singularity. In particular, there
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exists a subset of initial conditions N~ C P (L) within the
physiologically relevant domain 0 < & < 1 that lies in the
basin of attraction of the node equilibrium, as well as its com-
plimentary subset (1(7 —)¢ c P(LY) relative to this domain.
All trajectories within the complimentary subset will reach
the fold curve L™ in finite time. In theory, this system may
be either excitable or oscillatory, depending on the initial
conditions. Suppose that we show
(N )) C N~ (4.22)
for the return map IT as described in Sect. 3.2. If so, then no
singular periodic orbit can exist. In this case, the cell is purely
excitable and all trajectories approach the stable node equi-
librium, possibly after a transient featuring excursions to the
active phase. Since the stable manifold of the folded saddle
forms a boundary of the basin of attraction of the node, as
long as the h-coordinate & ¢ of the folded saddle is less than
one, it follows that to establish (4.22), it is in fact sufficient
to establish that

M((L7)p+) C N7, (4.23)
where (L7) ¢+ is the segment of L™ onwhichh gy <h < 1.

Figure 17 shows an example of this excitable scenario with
I = 3.5. We will show many plots of this type in the follow-
ing exposition. The plot on the upper left in Fig. 17 shows
the lower fold L~ (red solid) and its projection P(L~) onto
S." (red dashed), the upper fold L™ (black solid) and its pro-
jection P(L™) onto S, (black dashed), the two equilibrium
points on L~ (the blue circle is a node, the red triangle is
a folded saddle, as in the earlier phase plane figures), the
canard trajectory formed by a branch of the stable manifold
of the folded saddle (green solid), the projection of the canard
to the active phase (green dashed), the reduced flow from the
projection point in the active phase (cyan solid) up to its inter-
section with the upper fold, the projection of the intersection
point back to the silent phase (cyan dashed), and the reduced
flow from the projection point back to the neighborhood of
the fold (blue solid). Similar trajectories from projection of
the point on L™ with & = 1 are also shown.

Both upper panels of Fig. 17 illustrate that IT maps the
endpoints of (L7) g+ into N~. Since orientation is pre-
served under IT (and IT similarly), this finding establishes
that condition (4.23) holds, which in turn implies that the set
(1(7 )¢ satisfies condition (4.22), such that the cell is excit-
able. It is interesting to note the strong contraction, includ-
ing that resulting from the flow in the active phase, which
yields strong compression in /, from the projection back to
the silent phase, which gives strong compression in v, and
from the ensuing flow there, which contracts strongly in /.
The lower panel of Fig. 17 shows the embedding of the two-
dimensional plot into IR?, using Eq. (2.14).
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Fig. 17 Upper left The return map I1 generated by the reduced flow for
7, =1,7,=1,and I = 3.5 < [, < I.. Note that the folded singular-
ity is a folded saddle (the corresponding canard is shown in green) and
that the black arrows illustrate the direction of the flow. Other objects
are explained in the text. Upper right: Zoomed view of the silent phase
showing the canard as well as the trajectories generated from following
both the initial point on L~ satisfying 2 = 1 (magenta, hj,i; = 1) and

Alternatively, if there exists a subset N~ C (1\7 7)€ of the
complimentary set such that
IMIIN")CN™, (4.24)
then this will guarantee the existence of a singular periodic
orbit by Brouwer’s fixed point theorem or the contraction
mapping principle. In particular, if we can show that the
boundary point given by the folded saddle is mapped under
I to the right of the canard, then it follows immediately that
there exists a singular periodic orbit. For example, in Fig. 18
we can show that this singular trajectory is mapped to the
right of the canard for / = 4.1, which shows the existence
of a singular periodic orbit. Therefore, we have (at least) two
local singular attractors, the node and a singular periodic
orbit, for all / between I = I, ~4.1and I = I..

Remark 10 Note that the value I, ~ 4.1 is close to the
onset of relaxation oscillations observed numerically in sys-
tem (2.16) with 7, = 7, = 1, which corresponds to a saddle-
node bifurcation of periodic orbits in the full system (2.16)
with [ as the bifurcation parameter.

V _0.68

—-0.58

-0.6
-0.62
-0.64
-0.66

-0.7
-0.72

-0.74 canard return
076 emeee——
-0.78

0.1 0.2 0.3 0.4 0.5 0.6

the folded saddle point itself (blue trajectory), under I1. Observe that
both trajectories are to the left of the canard and converge to the node,
which lies near, but just off, the (red) fold curve L™ . Bottom Same fold
curves and projections from the upper left plot, as well as the canard
(green), the active phase flow of the projected folded saddle (cyan), and
its return image in the silent phase (blue), all embedded into R3 using
Eq. (2.14)

By continuation it follows that there exist I values within
3.5 < I < 4.1 such that the initial condition corresponding
to the canard trajectory is mapped into the domain of attrac-
tion of the node, while the initial condition # = 1 is mapped
to the right of the canard. The range of / values for which
this happens is quite small (a subset of 3.8 < [ < 4.1), as
would be expected from the strong contraction observed in
Fig. 17. Such a configuration neither rules out nor guarantees
the existence of a singular periodic orbit.

For I = I, ~ 4.1, the initial value of the canard will
project onto itself and therefore the image of the folded sin-
gularity will itself form a singular periodic orbit. In gen-
eral, corresponding special orbits, known as canard cycles,
will exist for system (2.16) and mark the transition from
excitable to oscillatory states. The existence of these special
orbits is well known in the classical case of the HH model
(Rinzel and Miller 1980; Guckenheimer and Oliva 2002).
These canard cycles are unstable periodic orbits, co-exist
with a stable relaxation orbit and are very sensitive to var-
iation of the parameter /. Multiple unstable canard cycles
with varying amplitudes exist for certain values of / (Rinzel
and Miller 1980; Guckenheimer and Oliva 2002) and chaotic
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Fig. 18 The return map I1
generated by the reduced flow
forty, =1,1, =1,and I =4.1.
Left all components of the map
for the canard and for the 7 = 1
point from L~ are shown. Right
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Zoomed view, showing that both
trajectories hit the fold L™ to
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(red triangle)
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behaviour of the system is also expected due to these canard
cycles (Guckenheimer and Oliva 2002). For more details we
refer to (Rinzel and Miller 1980; Guckenheimer and Oliva
2002).

For applied current I > I, Proposition 2 implies that
there exists a folded node singularity. The cell is in an oscilla-
tory regime since no ordinary singularity exists on the attract-
ing branches S;t. The main question to resolve is whether or
not the cell can support MMO’s. Following Sect. 3.3, we
have to calculate the return map IT of an arbitrary initial
condition in the domain of attraction of the folded node (the
funnel). If this trajectory is mapped back into the funnel of the
folded node, then the existence of a singular periodic orbit of
MMO type follows immediately from the contraction map-
ping principle. On the other hand, if this initial condition is
mapped to the right of the strong canard (outside the funnel)
then the existence of a (classical) singular periodic orbit fol-
lows. Again, this is a consequence of Proposition 3, which
preserves orientation of trajectories under the map IT, and
Brouwer’s fixed point theorem or the contraction mapping
principle.

Note that the branch in S of the strong eigenvector of the
folded node approaches the folded node with positive slope.
Hence, the funnel lies to the left of the canard, between the
canard and the fold curve L™. We find that the singular tra-
jectory emanating from the folded node returns to the right
of the canard for all / > I., and the system therefore is in the
classical relaxation oscillation regime for / > I.. An exam-
ple of the return map is shown in Fig. 19 for I = 5.5 > [..
This result is consistent with the fact that the cell enters the
classical relaxation regime, with the return of the canard tra-
jectory to the right of the canard itself, for I, < I < I. with
I, ~ 4.1, as discussed above.

Proposition 4 In the classical case (v, = 1,1, = 1), sys-
tem (2.16) possesses a singular periodic orbit I" for ap-
plied current I > I,. The singular periodic orbit T fulfills
Assumption 3 for any applied current I > I.. Therefore, no
MMQO'’s are expected in this system.

Despite the non-existence of MMO’s in the classical case,
we can still observe the effect of the folded node in transients,
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when we choose initial conditions that lie in its funnel. An
example of this appears in Fig. 20 and it shows clearly the
existence of the folded node through the long delay and the
observed subthreshold oscillations before the first action po-
tential is fired. This is remarkable since that shows that the
squid giant axon has a hidden canard.

Case (t, > 1,7, = 1)

Recall that the bifurcation diagram for system (3.19) in the
silent phase remains relatively invariant as 7, is increased
from 1, with 7, fixed (Fig. 8). We shall see, however, that
increasing 7, does significantly impact the dynamics in the
singular limit, at least for a range of / values.

For 1j, > 1, we again distinguish between the two scenar-
ios,] < I.and I > I..ForI < I.,thereexistafolded saddle
and a stable node singularity, the latter of which is indepen-
dent of 7, and 7,,. As in the case of 7;, = 1, the unique canard
corresponding to the folded saddle singularity is a separatrix
for the domain of attraction of the node singularity. Again,
we denote by N~ C P(L%) the subset of initial conditions
in the domain of attraction of the node equilibrium and by
(N7)¢ its complement within the physiologically relavant
domain 0 < h < 1. If IT satisfies (4.22), then the cell is
excitable, whereas if (4.24) holds, then the cell is oscilla-
tory, with a singular periodic orbit. For t;, = 1, the transition
from excitable to oscillatory occurs for I > [, =~ 4.0. As
7, > 1 increases, the I value I, at which the transition
occurs increases as well. For example, for 7, = 3, 7, = 1,
and I = 4, Fig. 21 shows that [T is defined on all of (L7) ps+s
since it is defined on the endpoints of (L ™) ¢¢+ and the flow
is orientation preserving, and that (4.22) holds, such that the
cell is still excitable. Thus, for fixed I < I, increasing 1,
alters the global return mechanism and therefore switches
the cell from an oscillatory to an excitable state. In fact, 1, j,
approaches I as t; approaches t; ~ 1.3. For t;, > 7, there
is no transition, and the cell remains excitable for all I < I..

This change in excitability has a dramatic influence on the
cellinthe case I > I., where the folded saddle bifurcates to a
folded node. As for t;, = 1, the singular funnel of the folded
node lies to the left of the strong canard in this parameter
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Fig. 19 The image of the
folded node under IT lies to the
right of the canard in the
classical case (t;, = 7, = 1) for
1 > I.. Left usual diagram for
I =5.5. Right embedding of

this diagram into R?
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Fig. 20 Transient effects of the folded node for the classical case
(th = tp = 1) with I = 8 > I.. Left Zoomed image of the fold
L~ (black), the folded node (black circle), the strong canard (green),
and the projection of a trajectory generated by the three-dimensional
flow from system (2.16). Differential coloring is used to highlight qual-
itatively different components of this trajectory. First, from the initial
condition (&, v) = (0, —0.7) in the funnel of the folded node, this tra-
jectory spends significant time in the vicinity of the folded node before

regime, because the branch in S, of the strong eigenvector
of the folded node approaches the folded node with positive
slope. For arange of I values, I. < I < I, the return map
IT maps initial conditions of the singular funnel of the folded
node back into the singular funnel. Therefore, for 7;, > t,f
and I, < I < I, Assumption 5 is fulfilled for the corre-
sponding singular periodic orbit I' and we expect MMO’s by
Theorem 3. Figure 22 shows an example of the projection of
the reduced flow for 7, = 3,1, = 1, and I = 8, for which
MMO’s occur, as well as the resulting MMO.

For each 1, for I > I, , the return map IT maps the
strong canard corresponding to the folded node to the right
of the canard. This again shows the existence of a singular
periodic orbit, but we now expect ordinary relaxation oscil-
lations by Theorem 2. In the case of t;, = 3, we find [, =~
9.7. Figure 23 shows the projection of the reduced flow for
t, = 3,7, = 1 and I = 12. The singular strong canard
corresponding to the folded node is mapped to the right of
the funnel, so that only relaxation oscillations occur.

Proposition 5 System (2.16) with fixed parameters t, > T},
and T, = 1, where T} ~ 1.3, possesses a singular periodic
orbit T for each applied current I > I.. The singular peri-
odic orbit T fulfills Assumption 5 for I. < I < I, and

exiting the silent phase (red) and firing an action potential. After the
action potential is fired the trajectory returns to the silent phase (black
dashed). The return occurs outside of the funnel of the folded node and
hence the trajectory is attracted to the classical periodic orbit or relaxa-
tion oscillation (blue), which subsequently yields tonic firing. Right The
v time courses corresponding to the trajectory in the left image (red)
as well as that generated by an initial condition outside of the funnel
(black)

Assumption 3 for I > I, . Therefore, a transition from an
excitable state to MMO’s to an oscillatory state is expected
as the applied current 1 is increased.

Remark 11 Similarly to the transition from excitable to oscil-
latory in the classical case, there exists a value of I close to
I, where the initial condition of the strong canard cor-
responding to the folded node is mapped onto the canard
itself. This limiting case of a singular periodic orbit fulfilling
Assumption 5 is described in Theorem 4 and explains why
we can find all kinds of MMO patterns near the transition
to classical relaxation oscillations, as shown in Fig. 28 in
Sect. 4.4 below.

Case (tp, =1,1, > 1)

Unlike the previous cases, we do not consider I < I, and
I > I. separately in our presentation for 7, = 1,7, > 1.
Instead, recall from Section 4.1 that we distinguish between
two subcases, 7, < 7, and 1, > 7, where 7. & 4.75 corre-
sponds to the critical value of 7, where we observe a (degen-
erate) pitchfork bifurcation at I = 1., as shown in Fig. 9. We
shall see that the case of 1 < 7, < 7 is qualitatively quite
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Fig. 21 The return map I1
generated by the reduced flow
forty, =3,1t, =1,1 = 4. Note
that the return images of both
the folded saddle and the point
on L~ with & = 1 lie to the left

canard return

of the canard, in the basin of
attraction of the node

0 50 100 150 200 250

time

Fig. 22 MMO’s occur for 1, = 3,1, = 1,1 = 8 > I.. Upper plots
The trajectory generated by following the folded node (canard return)
returns into the singular funnel, to the left of the canard itself (green
curve) and below L™ (red solid curve), while that generated by follow-
ing the point on L™ with & = 1 (hjsir = 1) does not. Bottom The top

similar to the case of 7, > 1,7, = 1. For 1 < 1, < 7,
there exist three physiologically relevant singularities, two
folded saddles and a node. The basin of attraction of the
node is bounded by the two strong canards corresponding to
the folded saddles. Figure 24 illustrates the case of 7, = 3,
with I = 3.5 and I = 4.5. Similarly to the classical case, the
folded saddle to the right of the node (i.e., at larger ) is itself
moving to the left, closer to the node, as I increases. When 1,
is not too large, there is a transition to relaxation oscillations,
with IT mapping the initial conditions corresponding to the
strong canards of both folded saddles outside of the basin of
attraction of the node (i.e., to the right of the strong canard of
the rightmost folded saddle), as / is increased toward /.. We
denote the transitional value by I, ,,. In the case v, = 3, I, ,
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panel shows the projection of the trajectory of the three-dimensional
flow (2.16) in the vicinity of the folded node. The bottom panel shows
the time course of v along the resulting 1'° MMO. This MMO is clas-
sified as 112, because 19 subthreshold oscillations occur for each jump
to the active phase

is between I = 3.5 and I = 4.5, as can be seen in Fig. 24.
I, increases with 7, but is always less than I for 7, < 7.

Now, since 7, < t,;, an exchange of stability occurs at
I = 1., suchthatforl, < I < I ;FN, there are a folded node
and a regular saddle, with the folded node lying to the left of
(i.e., at smaller & values than) the saddle, in addition to the
folded saddle at small 4. See Fig. 25 for an example. Note
that as I increases through I, the folded singularity passes
through the regular singularity and hence moves across the
h-nullcline (H = 0). Hence, the slope of the branch in S, of
the eigenvector of the folded singularity to which the canard
trajectory is tangent switches from negative to positive. Thus,
the funnel of the folded node that emerges for / > I, lies to
the left of the canard.
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Fig. 23 Projection of the reduced flow for t;, = 3,7, = 1,1 = 12.
The folded node returns back to the right of the strong canard (green),
whereas the singular funnel is to the left of the strong canard, and hence
relaxation oscillations result

For 7, < t$, the transition from excitable to oscillatory
occurs already for I = I, < I.. For I, < I < I;’N,
the return map applied to an initial condition correspond-
ing to the funnel of the folded node lies outside of the funnel,
i.e., to the right of the canard, and thus outside of the basin
of attraction of the folded node (Fig. 25). Hence, a singu-
lar periodic periodic orbit exists that fulfills Assumption 3
and relaxation oscillations will occur, without MMO’s. As 1
increases toward / S+ - the folded saddle and the folded node
approach each other (at small & values). These folded sin-
gularities annihilate each other in a true folded saddle-node
bifurcation at / §L > but this has no influence on the existence
of the singular periodic orbit and relaxation oscillations are
expected for I > [ §LN as well. In summary, for 7, < 7,
the passage of I through /. has little qualitative effect on the
dynamics of the system.

Proposition 6 System (2.16) with fixed parameters t, = 1
and t, < v}, where T ~ 4.75, possesses a singular periodic
orbit I for applied current I > I, ,. The singular periodic
orbit T fulfills Assumption 3 for any I > I.,. Therefore,
MMO:'’s are not expected and system (2.16) undergoes a di-
rect transition from an excitable to an oscillatory state as 1
increases through I, p.

Next, we consider the subcase 7, > 7. The bifurcation
structure that arises as / increases is opposite to that observed
for t, < ty, in that the folded saddle to the left of the node
(i.e., at smaller #) moves to the right, toward the node, with
increasing /. There exists a folded saddle to the right of the
node as well as the one to the left for some t,, for / such that
I¢y < I < I, but for 7, sufficiently large that /g, > I,
this is no longer the case (see Fig. 14). When the rightmost

folded saddle exists, the basin of attraction of the node, for
I < I, is bounded by the stable manifolds of the two sad-
dles; otherwise, it is bounded only by the stable manifold of
the left saddle, which always exists.

As in the previous cases, there is again an exchange of
stability as / passes through I.. For 7, > 7, however, as
I is increased, the left folded saddle moves to the right and
bifurcates to a folded node, which is to the right of the reg-
ular saddle. Furthermore, due to the passage of the folded
singularity to the opposite side of the i-nullcline, the strong
eigenvector of the reduced flow at the folded node switches
from positive slope to negative slope at /.. Thus, the funnel
lies in the region to the right of the canard, bounded above by
L~ and to the right by the stable manifold of the remaining
folded saddle, which lies at larger 4 than the folded node.

In the subcase 7, < 7, < 77, [1 maps for any / > I the
initial condition corresponding to the strong canard of the
folded node to the left of the folded node (outside the fun-
nel). Therefore a singular periodic orbit exists which fulfills
Assumption 3 and relaxation oscillatons are expected. This is
consistent with the observation that such a singular periodic
orbit already exists for [, , < I < I.

In the subcase 7, > 1, there exists a range of / values,
1. < I < I, for which IT maps the initial condition cor-
responding to the strong canard of the folded node into the
funnel of the folded node (to the right). Hence a singular peri-
odic orbit exists which fulfills Assumption 5 and MMO’s are
expected. An example of the application of the return map
IT for this scenario appears in Fig. 26 (left).

As I is increased further, it passes through I, , and the
return map takes the folded node outside of the singular
funnel, as shown in Fig. 26 (right). In this case, a singular
periodic orbit exists that fulfills Assumtion 3, and classical
relaxation oscillations are expected. Note that as / increases
further through 7 ;’ > the folded saddle and folded node
annihilate, but this does not affect the existence of relaxation
oscillations. Finally, if 7, is sufficiently large, then there is no
saddle node bifurcation of folded singularities (see Fig. 14).
Hence, the folded node persists for all 7, but the same tran-
sition from MMO’s (for I. < I < I, ,) to relaxation oscilla-
tions (for I > I, ) occurs.

Proposition 7 Fix t, = 1 and t, > t}. There exists a value
1o ~ 4.83 such that if T} < 1, < 1), then system (2.16)
possesses a singular periodic orbit U for applied current
I > I, with 1., < I., and T" fulfills Assumption 3 for
any I > 1I,,. Thus, a direct transition from the excitable
state to an oscillatory state, without MMO'’s, is expected as
the applied current 1 is increased. Alternatively, if T, > 1,
then (2.16) possesses a singular periodic orbit T for applied
current I > I.. In this case, the singular periodic orbit T’
Sulfills Assumption 5 for 1. < I < I, and Assumption 3 for
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Fig. 24 Examples of return map I1 for 7, = 1, t, = 3: I = 3.5 (excit-
able) and / = 4.5 (oscillatory). Note that for / = 3.5, both canards map
into the basin of attraction of the node, as does the point on L~ with
h = 1. Together, these findings show that IT maps both N~ and (N )¢

Fig. 25 The return map generated by the reduced flow forz;, = 1, 7, =
3,1 =7¢ (I, 1 ;’ ). This figure follows the usual notation conven-
tions introduced previously. The return trajectory from the folded node
lies outside of the funnel that forms the basin of attraction of the folded
node, which is to the left of strong canard of the folded node (note
the positive slope with which the strong canard, shown in solid green,
approaches the folded node)

1 > I, ,. Therefore, a transition from an excitable state to
MMO’s to an oscillatory state is expected as I is increased.

We conclude this section with a final point of discussion,
the importance of which was already established in our anal-
ysis of the case of 7, > 1. For all values of 15 and 7,,
as [ increases through /., there is an exchange of stability
between a folded singularity and a regular singularity. As
noted above, these singularities meet when F,, = H = 0
at the same point, and in the associated stability exchange,
the folded singularity moves across the h-nullcline. When
a folded singularity lies to the right of the #-nullcline, any
associated canards approach the singularity with 2 < 0. If a
canard does not cross the z-nullcline in backward time and
return toward small / values, then all of P(L™) lies to the
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into N ~, and excitability results. For I = 4.5, both~ canards~map out-
side of the basin of attraction of the node. Thus, [T(N~) C (N7)¢, and
relaxation oscillations result

left of the canard, such that the canard does not constrain any
basins of attraction. This is the reason, for example, that the
rightmost saddle does not impact the dynamics for 7, > 7
with I < I..

In the classical case, when the folded singularity is to
the right of the A-nullcline, it is a folded saddle. For suffi-
ciently small 7, the associated canard does not cross the /-
nullcline. Hence, condition (4.22) must hold and the system
must be excitable. However, the canard does intersect the
h-nullcline for all I > I & 1.1, a fairly small value, and
relaxation oscillations are no longer ruled out. When the
folded saddle becomes a folded node, it lies to the left of the
h-nullcline, and hence intersections of the canard and the
h-nullcline do not play arole in the (non-)existence of MMO’s
in the classical case. Further, as discussed earlier and shown
in Fig. 8, 7, does not have a big influence on the bifurcation
diagram in the silent phase. Indeed, under variation of t, the
same qualitative silent phase dynamics persists, although the
active phase (global return) changes the structure sufficiently
to cause MMO’s for 7, > 7.

In constrast, as can be seen in Fig. 9, 7,, has a big influence
on the position of the singularities in the silent phase, and that
is the main reason why the reduced flow for 7, > 1 becomes
significantly different than for 7;, > 1 or the classical case.
In the case 7, < 77, the exchange of stability occurs when a
folded saddle moves from the right of the A-nullcline to the
left as I increases through /.. This is qualitatively similar to
the classical case. In the case 7, > 77, however, the exchange
of stability occurs when a folded saddle moves from the left
of the #-nullcline to the right with increasing /. Hence, this is
the only case in which the singular funnel lies to the right of
the canard. The return map can only map points from L™ into
the singular funnel, and create MMO's, if the corresponding
canard turns to the left, toward 2 = 0, in backward time. The
folded singularity must be sufficiently close to the nullcline
for this to happen, and this is only possible for / sufficiently
close to I, as shown in the following table:
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time

Fig. 26 The return map IT generated by the reduced flow for 7, =
1,7, =7 > t$,and I = 5.9 (left top) and I = 6.1 (right top), along
with the corresponding solutions of the 3-d system (3.18) (bottom). For
I = 5.9, the return map takes the folded node into the singular fun-
nel, which lies to the right of the folded node (and below L™), and 1!
MMO’s result (with the subthreshold oscillation labelled by the arrow
on the bottom plot). Note that the singular funnel is bounded to the right

2B (/2= R /N
6 >55 <54
7 >60 <59
8 >65 <64
9 >70 <69
10 =74 <173

Here, the column [j_.( refers to I values for which the
canard crosses the #-nullcline and intersects P(LT) withh <
1 in backward time, while [;,_, | refers to I values for which
this does not happen. The window of I values where there
is a theoretical possibility for MMO’s to exist is given by
I. < I < Iy—0, which is a small range for 7, near 77 but
increases with 7,. This increase suggests that /., at which
the onset of relaxation occurs, increases with t,,, which is
consistent with the increase of I,.,, with 7, for 7, < 77 noted
earlier. Indeed, for fixed I > I, but sufficiently close to I,
there will be a switch from relaxation oscillations to MMO’s
as 1, increases. The table, combined with Fig. 9, also shows
that / ; v > In—1inall cases for which the saddle-node bifur-
cation occurs. Hence, MMO’s will always be lost below I =
1 ;rN and the saddle-node bifurcation at I = [ S+N itself will
not have an influence on the global dynamics.

01 02 03 04 05 06
h

o

20 40 60 80 100 120
time

by a folded saddle, but this occurs at relatively large 4 for these parame-
ter values and hence is not visible in this figure. Also observe that while
the canard approaches the folded node with negative slope, it does so
after crossing the h-nullcline (dash-dotted curve), and in fact the canard
tends to small 4 values in backward time. For / = 6.1, the return map
takes the folded node to the left of its original location, outside of the
singular funnel, and relaxation oscillations result

4.4 MMO’s

The main observation of the previous section is that if 7;, 7,
are such that the reduced system remains excitable up to
I = I.,thenfor I > I, nottoo large, a singular periodic orbit
exists that fulfills Assumption 5, and MMOQO’s are expected
(Propositions 4.4 and 4.6).

Case (t, > 15, 1.3, 1, = 1)

The theory presented in Sect. 3 predicts MMO’s for I, <
I < I, and sufficiently small perturbations ¢ < 1. In the
case of the 3D HH system (2.16) the value of ¢ &~ 0.008 is
not very small. Therefore the perturbation has a big influence
on the system, especially on folded nodes close to the folded
saddle-node. In particular, if the corresponding p value of the
folded node is of the order u = O(y/¢) ~ 0.09 or smaller,
then the perturbation ¢ can be strong enough to push the sad-
dle singularity back to the attracting branch S, , whereby it
becomes a node singularity and hence an attractor. There-
fore the onset of MMO’s can be substantially shifted. For
example, in the case (r;, = 3, 1, = 1), we see the onset of
MMO’s around I = 7.8 although the singular limit value is
1. =~ 4.8. The u value of the corresponding folded node for
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Fig. 27 MMO’s for I = 4.9 0.6 0.6
and & = 10~* in the case
7 =3, 17, = | (left) and 04 O4r
T, = 1, 1, = 7 (right). Lower 0.2 02l
figures are zooms of the
rectangular areas of > 0 > Or
corresponding upper figures o2 o2
-0.4 -0.4
0.6 — /_ 0.6 —h
-0.8 . . . . -08 s ‘ ‘ ‘
200 400 600 800 1000 200 400 600 800 1000
time time
-0.61 -0.615
—0.6155 |
-0.616 |
o615t -0.6165 |
-0.617 |
> > 06175}
-0.618 |
-0.62¢ ~0.6185 |
-0.619 |
-0.6195
-0.625 - -0.62 +
390 440 490 380 430 480
time time
I = 7.8 is given by u ~ 0.02, which clearly explains why
S .. . . & IHopfs IHupf» IHopf,
the onset of MMO’s is significantly shifted since the folded t=lL1,=1) (@=10,1,=1) (7 =1,1, =10)
node has a very small p value compared to the perturbation €.
If we make the perturbation ¢ (artificially) smaller in system 0.01 8.3 8.4 6.0
(2.16), then the onset of MMO'’s should be observed closer 0.0083 7.8 78 59
to the singular limit value of I. ~ 4.8. Indeed, we observe =~ 0001 5.2 52 5.0
0.0001 4.9 4.9 4.9

the onset of MMO’s in the case (t;, = 3, 7, = 1) already for
I ~ 4.9if we set ¢ = 0.0001 instead of € = 0.008, as shown
in Fig. 27.

This dependence on the singular perturbation parameter
¢ for the onset of MMO’s can also be explained as follows:
The singular limit predicts the onset of MMO’s at I = I.
At I, we have a FSN type II singularity, which is related (us-
ing a blow-up calculation) to the Hopf bifurcation value in
system (2.16) shown in classical bifurcation diagrams using
the applied current I as the bifurcation parameter. Using XP-
PAUT (Ermentrout 2002) to calculate the Hopf bifurcation
point! for system (2.16) away from the singular limit, one
obtains I ~ 7.8 for (t;, > 1, t, = 1), which coincides with
our observation for the onset of MMO’s. We decreased ¢ in
(2.16) and repeated the AUTO calculation to find that the
Hopf point converges to /. for ¢ — 0, as expected from our
singular perturbation analysis. The following table displays
some values from this AUTO calculation:

! The Hopf bifurcation is always sub-critical.
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Therefore, the Hopf bifurcation value Igopr converges rel-
atively fast to /.. This confirms our theory nicely and shows
that our predictions on the existence of different oscillatory
patterns like MMO’s are valid as we move away from the
singular limit, albeit just qualitatively.

The transition from MMO’s to relaxation oscillations
occur close to the expected singular value I = I, , and does
not display the same sensitivity to the perturbation ¢ as the
onset of MMO’s. The following table shows that the values
of I at which this transition occurs remain close to I = 9.7,
the value predicted in the singular limit, even as € increases
over several orders of magnitude, for 7, = 3,17, = 1. The
global return mechanism is robust under perturbation, so this
insensitivity is expected.

€ Ir,h(fh = 3: Ty = 1) Ir,n(fh = 1, Ty = 7)
0.01 9.2 6.0

0.0083 9.3 6.0

0.001 9.7 5.9

0.0001 9.7 -
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Fig. 28 Projections from 0.5
system (2.16) and voltage time
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generated with 7, =3, 7, = 1. 05
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Figure 28 shows examples of MMO’s for 7, = 3, for
different values of /. In general, we observe MMO’s of
the form L®, where L, s are positive integers such that L
increases with / and, for each fixed L, s decreases as [
increases. However, we also observe MMO'’s that are not of
the form L* over the transitions between L®* MMO’s. Exam-
ples of MMO’s of this type appear in the upper and lower right
plots in Fig. 28. One can find a wide variety of MMO patterns
of the form 11 ... 1!, Figure 29 shows the 1° MMO pat-
terns predicted by our analysis in the singular limit. These
were obtained by reducing ¢ in system (2.16) to 0.001. A
complete explanation of the transitions between 1¢, L*, and
more exotic MMO patterns as ¢ varies is beyond the scope
of this work.

Case (1, > 17~ 48,1, =1)

Similarly to the (r, = 3,1, = 1) case, MMO’s are only
observedfor5.7 < I < 6.0inthecase (t, =7, t, = 1). The
w value of the corresponding folded node for / = 5.7 is given
by u ~ 0.07 which again explains why the onset of MMO’s
is significantly shifted, since the folded node has a small u
value compared to the singular perturbation parameter . If
we make the perturbation ¢ (artificially) smaller in system
(2.16), then the onset of MMO’s should be observed closer
to the singular limit value of I, &~ 4.8. Indeed, we observe

the onset of MMO’s in the case (r;, = 1,1, = 7) already
for I =~ 4.9 if we set ¢ = 0.0001 instead of ¢ = 0.008, as
shown in Fig. 27. Figure 30 shows some examples of MMO
patterns observed for (7, = 7, 7, = 1) under variation of /.
Over the whole MMO range, the MMO’s appear to be the
form 1°, where s decreases as [ increases.

As was seen for 7, > 1, the transition from MMO’s to
relaxation oscillations for 7, > 1 is not as sensitive to the
perturbation ¢ as is the onset of MMO'’s, due to the robust-
ness of the global return mechanism, and occurs close to the
expected value I = I, , ~ 5.9 computed in the singular
limit. The table above gives values at which the transition to
relaxation oscillations occurs for 7, = 1, 7, = 7 for different
positive ¢ values. Note that for ¢ = 0.0001, we experience
some loss of numerical accuracy, and hence no value is given
in that case.

5 Discussion

In this paper, we have systematically explored the transi-
tions in activity patterns that emerge as time constants ty, T,
associated with the activation/inactivation variables n, & in
the Hodgkin—Huxley equations (1.5) are varied. To do this,
we nondimensionalized the system to obtain Egs. (2.13) and
applied a center manifold reduction to obtain system (2.16).
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Fig. 29 Projections from -0.45
system (2.16) and voltage time -0.5}
courses for four MMO’s v —0.55}

-0.61
-0.65¢

generated with 7, =3, 7, = 1
with € reduced to 0.001. Upper

left I = 8.5 yields 1* MMO’s.
Upper right I = 8.7 yields 13
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h
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Capitalizing on the decomposition of system (2.16) into one
fast and two slow variables, we performed a geometric anal-
ysis of the solution structure in the singular limit, using rel-
evant theory from the literature on relaxation oscillations,
canards, and MMO’s (Szmolyan and Wechselberger 2001,
2004; Wechselberger 2005a; Brgns et al. 2006). This analy-
sis relies heavily on the study of the reduced system (3.18).
Although we work with a variety of systems obtained from
system (1.5), it is important to note that the results apply
to the qualitative behavior of system (1.5) itself, although
precise I values at which particular phenomena occur differ
between system (1.5) and system (2.16), in accordance with
the center manifold reduction described in Theorem 1. For
example, system (1.5) with 7, = 3 and 1, = 1, = 1 exhib-
its MMOs on approximately the interval I € (9.8, 16.2),
whereas system (2.16) with t;, = 3 and 7, = 1 yields MMOs
on approximately / € (7.8, 9.3).

The three key parameters in our analysis are 7, 7, and /.
To avoid further lengthening of the work, we focused on the
cases (t, > 1,7, = 1) and (r, = 1, 1, > 1), in addition
to the classical case of 1, = 1, = 1. Within these cases,
the main results of the analysis can be summarized very suc-
cinctly. For all (5, t,) studied, the system is excitable, with
an asymptotically stable fixed point corresponding to a qui-
escent state, for / small. For all parameters other than the
unique point (t;, = 1,7, = 4.75), system (3.18) experi-
ences a transcritical bifurcation at the same fixed value of 7,
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namely /. ~ 4.83. The universality of this structure implies
that, as / increases through /., only two progressions are
possible. One possibility is that a transition from the excit-
able state to the existence of relaxation oscillations will occur
for I < I., and then relaxation oscillations will persist for
I > I.. The other possibility is that the system will remain
excitable up to I = I, in which case MMO'’s arise on some
range I, < I < I, and relaxation oscillations exist for
I > I,.. Our analysis shows that if either t;, or 7, is increased
from 1, then a transition from the former to the latter case
will occur. Moreover, the analysis predicts where in param-
eter space all of these transitions are expected to occur, for
¢ sufficiently small, which gives an approximation to the
transition values as € moves away from zero. Based on the
universality of the mechanisms underlying these transitions
in the HH model, and the weak effect of 7;, on the bifurcation
of relevant structures when 7, = 1 (Fig. 8), we predict that
similar results arise when 7, 7,, are both increased from 1,
albeit with quantitative differences.

The existence of the MMOQO’s that we study here, in the
modified HH equations (1.5), was pointed out in several ear-
lier works (Doi and Kumagai 2001, 2005; Doi et al. 2001,
2004). However, the earlier consideration of these solutions
was incomplete, in that only isolated parameter values were
considered. Moreover, the existence of these solutions was
attributed to a one-slow-variable mechanism. Indeed, the
analysis in the earlier papers was based on assuming that
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Fig. 30 Projections from
system (2.16) and voltage time
courses for four MMO’s
generated with 7, = 1,7, = 7.
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h was a slow variable and setting n = ns,(v) or assuming
that n was a slow variable and setting & = h (V).

Canards in a two-dimensional reduction of the HH model,
with one slow variable, have been studied previously
(Moehlis 2006). The one-slow-variable approach is problem-
atic for the three-dimensional HH model, however, because
as our nondimensionalization demonstrates, (i, n) evolve
at comparable speeds and are significantly slower than v.
The one-slow-variable treatment for the 3-d model led to
a claim that fundamentally different bifurcation structures
are responsible for slow oscillatory solutions depending on
whether t;, or 7, is increased (Doi et al. 2001, 2004; Doi and
Kumagai 2005). Our two-slow-variable analysis corrects this
claim, showing that in fact the slow solutions are MMO’s and
that the differences in solution structure relate to the distance
of I from I., not to differences betweenthe 7, > landt, > 1
cases. We want to emphasize that the same local structure
responsible for MMOQO’s, canards of folded node type, exists
in the classical case (t, = 1, = 1) of the HH equations and
can be observed in transients as shown in Fig. 20 (‘the hidden
canard of the squid giant axon’). This observation strongly
supports the two-slow-variable approach. The properties of
the MMO'’s explored in our work also depend on u, the ra-
tio of the eigenvalues of the folded node equilibrium of the
desingularized reduced system, and on the image of certain
sets under the global return map IT, relative to the funnel of

800 1000 0 200 400 600 800 1000
time

the folded node, as indicated in our many figures and elabo-
rated within the theory of the generalized canard phenome-
non (Wechselberger 2005a; Brgns et al. 2006). In particular,
the nature of the subthreshold oscillations associated with
the MMO’s is determined by precisely these factors.

Note that the onset of oscillations that we observe by
studying the desingularized reduced system also corresponds
to a bifurcation for the full system (2.16). In past work,
Guckenheimer et al. have studied MMO'’s in the vicinity of
codimension-two subcritical Hopf-homoclinic bifurcations
in three-dimensional systems (Guckenheimer et al. 1997,
Guckenheimer and Willms 2000). In the singular limit, we
may indeed obtain an orbit homoclinic to a fixed point on the
repelling middle branch S, of the critical manifold So, provid-
ing a theoretical opportunity for the existence of some form
of singular Hopf-homoclinic bifurcation. However, blow-up
calculations can be done to show that this homoclinic orbit
does not persist when ¢ is made positive. Hence, the rela-
tionship of the phenomena that we have analyzed in the HH
model to the work in (Guckenheimer et al. 1997; Gucken-
heimer and Willms 2000) requires further clarification.

Finally, we point out that the canard mechanism studied
here also supports the possibility of chaos, which has been
studied in the Hodgkin—Huxley equations previously (Rinzel
and Miller 1980; Guckenheimer and Oliva 2002) but is be-
yond the scope of this paper. A further exploration of the

@ Springer



32

Biol Cybern (2007) 97:5-32

e-dependence of the pattern of large and small oscillations
seen in the observed MMOQO’s, along with the development
of a general theory that spells out the full range of patterns
expected for u = O (/) or smaller, also remains for future
work.
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