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Abstract. This paper focuses on regular traveling waves, or waves that propagate smoothly,
in a one-dimensional network of theta neurons. We show that when coupling strength is sufficiently
large, there exist two traveling wave solutions for this network. Moreover, the cells in the network
spike more than one time after joining the wave; that is, some form of synaptic depression or other
adaptive mechanism must exist to attain single-spike traveling waves. We also present results about
how the behavior of solutions to this network depends on the maximal synaptic coupling strength
and the wave speed. This is relevant to consideration of uniqueness and to bounding the range of
coupling strengths for which waves exist.
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1. Introduction. Traveling waves have received a great deal of recent theo-
retical treatment due to the ability of experimentalists to visualize them with multi-
electrode recordings and imaging methods. In a typical experiment, a slice of pharma-
cologically treated brain is electrically stimulated. Under a variety of circumstances,
this results in the propagation of electrical activity in the form of a traveling wave
[2, 9, 12, 13, 15, 21, 23]. When the wave reaches a neuron, the neuron generates an
action potential, meaning that its transmembrane potential undergoes a brief, signifi-
cant increase and decrease. Analogous wave-like spread of activity has been observed
in intact animal brains, although it is considerably harder to obtain spatially distinct
measurements in that setting [16].

The waves observed in brain slices are a consequence of synaptic interactions and
the intrinsic behavior of the local neuronal circuitry. There are many computational
models for these waves [3, 8, 9, 18, 19, 22], which differ from classic models of waves
in excitable media in several key ways. Most importantly, in synaptically mediated
propagation, the interactions are indirect and spatially extensive. More specifically,
interaction occurs through the release of a synaptic transmitter, which occurs only
when the neuron generates an action potential (or fires); furthermore, a given neuron
can connect to many neurons over a substantial spatial distance. This contrasts with
standard excitable media, in which interactions are mediated by diffusion (local) and
depend directly on gradients in the potential or concentration of chemicals.

In general, computational models for synaptically coupled networks of neurons
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have the following form:

C
dVj

dt
= −Iion(Vj(t), wj(t))−

(∑
k

gjksk(t)

)
(Vj − Esyn) + Ie,

dwj

dt
=

w∞(Vj)− wj

τw(Vj)
,

dsj

dt
= a(Vj)(1− sj)− sj/τs.

Here Vj(t) is the transmembrane potential of a cell at position j in the network.
There may be dozens of variables like wj for each cell, representing the different ion
channels which make up the action potential. The synaptic gates sj are the only way
in which the neurons are able to communicate to each other. The function a(v) is
zero unless the neuron fires an action potential (which lasts only briefly). During the
action potential, a is roughly constant and large. Thus sj(t) is often approximated
for t ≥ 0 by a simple difference of exponentials:

sj(t) ≈ e−t/τs − e−amaxt,

where amax is the value of a at the peak of the action potential. If amax is large,
an even simpler approximation is sj(t) = e−t/τs for t ≥ 0. There can be more than
one population of neurons, however, and thus even with such approximations the full
system of equations for a network can become quite complicated.

The most obvious simplification one can make is to assume that the system is
spatially homogeneous, so that gjk = g|j−k|. In order to look for traveling waves, one
generally takes the continuum limit, so that the synaptic interaction over a spatial
domain Ω can be written simply as

Isyn(x, t) =

(
gsyn

∫
Ω

J(x− y)s(y, t) dy

)
(V (x, t)− Esyn),

where gsyn denotes maximal synaptic conductance. Simulations of these models show
that they appear to support traveling waves of a fixed speed and, furthermore, that
the speed and properties of these waves are in the right physiological range to explain
the experimental observations.

Several investigators have recently attempted to study the existence and stability
of waves in related models using rigorous and formal asymptotic methods. Ermen-
trout [6] and Bressloff [1] considered a simplified model in which the dynamics of the
individual uncoupled neuron has the simple form:

Iion = gl(V − El).

Whenever the neuron crosses a fixed potential V = VT , it “fires a spike” and is
reset to Vreset. This model is called the leaky integrate-and-fire (LIF) model. By
assuming that during the wave only the first spike matters, both authors were able
to write down closed form expressions for the velocity of propagating waves. As
with the classic action-potential models (cf. [17]), two different waves exist for fixed
parameter values: a fast wave which is stable and a slow wave which is unstable. More
recently, Golomb and Ermentrout [10] have extended this work to cases in which there
are delays in synaptic transmission as well as to models incorporating two types of
neurons.
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Fig. 1. The theta neuron regimes for β = −0.05 and I = 0. The circular phase space for θ is
displayed, with θ = 0 at bottom and θ = π at top. “Rest” and “threshold” indicate the fixed points
θrest and θT for θ, while θ is considered to be excited on (θT , π) and refractory on (π, θrest).

A recent alternative to the LIF model, called the “theta” model, arises in certain
limits from a whole class of biophysically based neural models [5, 7, 11]. In particular,
if one of these model neurons is tuned to sit close to its threshold for firing an action
potential, then its dynamics can be rigorously mapped to dynamics on the unit circle
of the following form:

dθ

dt
= 1− cos θ + (1 + cos θ)Z(t).

Here θ parameterizes the circle, and Z represents all inputs to the neuron. Under
the transformation leading to the theta model, the synaptically coupled network is
reduced to a scalar model:

∂θ(x, t)

∂t
= 1− cos θ(x, t) + (1 + cos θ(x, t))

[
β + gsyn

∫
Ω

J(x− y)s(y, t) dy

]
,(1)

where β ∈ (−1, 0) is a bias parameter that controls the excitability of the cell and
s(x, t) satisfies an ordinary differential equation in time. Since it is obtained via a
rigorous transformation, the theta model is continuous, unlike the LIF model. Cor-
respondingly, the theta model retains information lost in the LIF model, particularly
the delay between the crossing of the spiking threshold and the actual firing of an
action potential; Figure 1 shows the approximate mapping of the theta model to the
potential of an active neuron when Z = β+I, a fixed negative number. The treatment
of this model in this paper is likely to give hints on how to approach the existence of
traveling waves in biophysically based models.

The goal of the present paper is to prove the existence of traveling waves in the
simplified system (1) on (x, t) ∈ R × R. In general, these waves may involve single or
multiple spikes fired by each cell; in the waves we find, we show that each cell fires
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multiple spikes, but we do not further characterize the behavior of cells after they
fire their initial spikes. In section 2, we describe the theta model in more detail and
introduce additional simplifications. Section 3 contains the bulk of the mathematical
results including the existence proof. In section 4, we numerically explore how waves
depend on the maximal synaptic coupling strength gsyn and the wave speed c, and
we also obtain some rigorous estimates about how coupling strength and wave speed
interact to produce traveling waves. Generalizations and further discussion finish out
the paper.

2. Regular traveling wave solutions in the theta model.

2.1. The single-cell model. Equation (1) for a theta neuron can be rewritten
as

dθ

dt
= (1− cos θ) + (1 + cos θ)(β + I(t)),(2)

where θ is the phase variable and I(t) denotes the time-dependent inputs to the
neuron. When θ increases through (2n+ 1)π for any integer n, we say that the theta
neuron fires a spike. If we fix I such that I + β < 0, then there is a stable rest state.
If I + β > 0, then the neuron fires with period π/

√
I + β. Assuming no external

current, the stable rest state is given by

θrest = − cos−1

(
1 + β

1− β

)
, β < 0.(3)

For the solitary neuron, if θ exceeds a threshold value θT , then based on (2) it will
reach the value π corresponding to a spike. θT is an unstable rest state given by the
following equation:

θT = cos−1

(
1 + β

1− β

)
, β < 0.(4)

Figure 1 shows the different regimes for the θ-neuron. For this and all subsequent
figures, β = −0.05.

2.2. Regular traveling waves and coupling. We can generate a traveling
wave if we allow each cell in a one-dimensional network to send a signal to the neigh-
boring cells. We assume that the coupling is synaptic and that the strength of the
coupling is proportional to a decaying weight function J(x) of the distance between
two cells in the network. Biologically relevant forms for the weight function include
Gaussian, exponential, and step functions. When synaptic coupling is introduced as
an input into (2), (1) is obtained:

∂θ(x, t)

∂t
= (1− cos θ(x, t)) + (1 + cos θ(x, t))(β + gsynJ ∗ s),(5)

where J∗s denotes the convolution ∫
Ω
J(x−y)s(y, t) dy and (x, t) ∈ R×R. Figure 2(a)

shows the time-evolution of a solitary spike solution for fixed x, generated by solving
(5) together with the corresponding ordinary differential equation in time for s (see
[14]). The time-evolution of s for this solution is plotted in Figure 2(b).

Figure 3 shows a simulation from [14] of two different types of traveling waves in
a discretized network of 150 cells. In each, the first cell (upper left corner) is given
an initial depolarization (that is, the θ value is set above threshold for this cell),
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Fig. 2. Evolution of (a) θ and (b) synaptic variable s versus time for a solitary spike solution.
Note that a spike occurs when θ crosses through π, around time 90.
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Fig. 3. One-dimensional regular traveling waves. In (a), the first cell spikes around time 100
msec; this induces a wave of spiking throughout the network (the leftmost light band in the figure).
Subsequently, all excited cells spike repeatedly. In (b) each cell fires only a single spike once excited.
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initiating a wave. Time is represented on the horizontal axis, while the line of 150
cells is represented on the vertical axis. No input comes in to the cells across the
boundaries. The phase of the cells is coded in gray scale, and spiking occurs when
the color of the cells becomes white (for illustration purposes the phase is represented
from −π to π). In the first wave, cells spike repeatedly after joining the wave. The
second is a single-spike wave in which each cell spikes once and then returns to rest;
this is achieved numerically by blocking all spikes after the first. Note that the initial
conditions induce transient changes in wave speed before constant speed propagation
develops. Also, the cells near the top of the plot do not receive full input because
they lie near the upper boundary of the simulated region; this slows their spiking and
causes the curvature seen in the upper right part of Figure 3(a).

In [14], it is shown that additional spikes fired by each cell, after the first spike,
contribute only negligibly to the wave speed. However, these spikes may affect the
temporal evolution of s. Our strategy for consideration of traveling waves will be
the following. Assume that a single-spike traveling wave exists. We can compute the
time-evolution of s at each x, as shown in Figure 2(b), and then use this to compute
the time-dependent synaptic input J ∗ s to each cell in the network. Note that in
a multiple-spike traveling wave, the amount of synaptic input to each cell is greater
than that for the single-spike wave. Thus, to prove the existence of some form of
traveling wave, it suffices to check the consistency condition that each cell really does
fire when it receives the single-spike synaptic input. In subsections 3.1–3.3 we show
that this condition holds. Given this, if each cell returns to rest after firing one spike
upon receiving this input, then a single-spike wave truly exists. Otherwise, some form
of multiple-spike wave exists; that is, each cell receives sufficient input to generate a
spike, but we do not know exactly how much input it receives or how many times it
spikes. We show in subsection 3.4 that the multiple-spike scenario actually occurs;
see also Remark 3.1.

We will employ the same traveling wave formulation used in [6]. Traveling wave
solutions satisfy θ(x, t) = θ(ξ) and s(x, t) = s(ξ) for ξ = ct−x for some constant speed
c. As discussed in the introduction, we approximate s, which satisfies an ordinary
differential equation, by a function α(t − x/c) = α(ξ/c). We assume that each cell
spikes at ξ = 0. The net input to a cell at position ξ will be J ∗ s =

∫∞
0

dξ′J(ξ −
ξ′)α(ξ′/c), and thus the θ-equation (5) becomes

c
dθ

dξ
= (1−cos θ)+(1+cos θ)

[
β + gsyn

∫ ∞

0

dξ′J(ξ − ξ′)α(ξ′/c)
]
, ξ ∈ (−∞,∞).

(6)
We make the following assumptions on J(x), α(t), in addition to integrability:

(H1)




J(x) = J(−x),

J(x) ≥ 0,

dJ
dx < 0 for x > 0,

(H2)




α(t) = 0 for t < 0,

α(0) ≥ 0,

α(t) > 0 for t > 0,

α(t) has a single maximum.
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Fig. 4. Numerical solution of (6) using a shooting procedure yields two branches of traveling
wave solutions satisfying (i), (ii) for gsyn sufficiently large, namely, gsyn > 1.746. Numerics indicate
that only the top branch (larger c) is stable.

Single-spike traveling wave solutions of (5) are solutions of (6) that satisfy the
following conditions:

(i) θ → θrest as ξ → −∞;

(ii) θ(0) = π;

(iii) θ → θrest + 2π as ξ → ∞.

General traveling wave solutions need only satisfy (i) and (ii). Note that there is no
closed form analytic solution to the boundary value problem posed by (6) plus (i)–(ii).
We will show that under (H1) and (H2), for gsyn sufficiently large, there are at least
two values of c such that for each there exists a solution to (6) satisfying (i) and (ii);
to do this, we consider (6) on ξ ∈ (−∞, 0]. This existence is illustrated numerically
in Figure 4. We next show that (iii) cannot hold for these solutions. Thus, while
traveling wave solutions exist, each cell spikes more than once in these waves, and the
wave speeds differ from the two values found initially. Correspondingly, some form
of synaptic depression or other adaptive mechanism must be introduced to generate
single-spike traveling waves. For the waves found here, we cannot determine how
many spikes each neuron fires, since the form of α that we have assumed (e.g., with a
single maximum) becomes invalid when multiple spikes occur. We also do not prove
that only two waves exist. In section 4, however, we give results which suggest that
for appropriate J and α there are exactly two solutions to (6) satisfying (i) and (ii).

We rewrite (6) as

c
dθ

dξ
= f(θ) + gsyn g(θ)h(ξ, c),(7)

where f(θ) = (1− cos θ) + (1 + cos θ)β, g(θ) = (1 + cos θ), and h(ξ, c) =
∫∞
0

dξ′J(ξ −
ξ′)α(ξ′/c). The graphs for f(θ) and g(θ) are shown in Figure 5. Note that f(θ) < 0
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Fig. 5. (a) f(θ), (b) g(θ).

for θ ∈ (θrest, θT ), and f(θ) ≥ 0 for the rest of the domain (mod 2π); we will also use
that f(θ) > 2β.

The main result of this paper is the following.

Theorem 2.1. If (H1), (H2) hold, then for gsyn sufficiently large there exist
two traveling wave solutions to (5). These are multiple-spike waves; that is, an adap-
tation mechanism such as synaptic depression must be included for single-spike wave
solutions to (5) to exist.

In section 3, we prove this result for the special case that α(t) = A0e
−att for t > 0

and J(x) = e−ax|x|, for concreteness in the relevant calculations. In section 5, we
show that our proof generalizes beyond this specific α(t) and J(x).

3. Proof of existence of traveling waves with multiple spikes. Since we
seek traveling waves, we consider (7). Henceforth, we substitute the special forms
of α and J mentioned in section 2, namely, α(t) = A0e

−att for t > 0 and J(x) =
e−ax|x|. Since the existence of waves is not affected by rescaling ξ = ct − x through
multiplication by a nonzero constant, we see that the wave speed c is proportional
to 1/ax, and we can without loss of generality rescale x and take ax = 1, with
a corresponding rescaling of c. For clarity, we also set at = 1. This is not the
general case, since (7) is derived from ordinary differential equations in t; however,
the parameter at can be inserted in the arguments below without any complications.
Figure 6 shows how wave speed changes with the decay rates at and ax of α and J in
numerical simulations, with c given as a function of at for ax = 1 in Figure 6(b).

We compactify from the infinite domain (−∞, 0] to the compact one [0, 1] using
the transformation η = e ξ. The θ-equation (7) thus becomes

c η
dθ

dη
= f(θ) +A0gsyn g(θ)

c

1 + c
η.(8)
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Fig. 6. Wave speed c for a range of decay rates of α(t) = e−att and J(x) = e−ax|x|. Speeds
are computed numerically, with gsyn = 2, as the values for which conditions (i) and (ii) of section
2 hold, giving spiking. (a) The speed contours shown decrease from the lower left corner of the plot,
in uniform steps from 1.9628 on the lowest contour to 0.2454 on the uppermost contour. To the
right of the uppermost contour, waves cease to exist. The values displayed correspond to the faster
of the two speeds found for which (i) and (ii) hold for each fixed at, ax. (b) Plot of speed versus at
for ax = 1. Note that for at sufficiently large, the wave ceases to exist, so the curve terminates at
a nonzero minimum speed (see also Figure 4).

This formulation is useful for direct estimation of θ values along solutions, done in
subsections 3.1 and 3.3. We can also write (8) as an autonomous system:

c
dθ

dξ
= f(θ) +A0gsyn g(θ)

c

1 + c
η,

dη

dξ
= η.(9)

Note that the compactification procedure allows the rest points of (8) to be preserved
in the autonomous formulation (9). Since the terms A0, gsyn appear in (8), (9) only
as a product, we henceforth without loss of generality set A0 = 1 unless otherwise
noted.

Under the flow of (9), we will follow the branch of the unstable manifold of
(θ, η) = (θrest, 0) that points into {(θ, η) : θ ≥ θrest, η > 0}. We will call this solution
(θu(ξ), ηu(ξ)). Calculation of the unstable eigenvector shows that (θu, ηu) lies outside
of the θ nullcline given by dθ/dξ = 0, and thus we have dθ/dξ > 0 along this solution.
In this formulation, traveling wave solutions result when (θu, ηu) passes through (π, 1),
corresponding to θu(0) = π.

Here is the sketch of the proof of existence of traveling waves: we first show that
for fixed c = c0 > 0, for sufficiently large values of gsyn, we have θu(0) > π. We
will refer to this as overshoot. We next show that for fixed gsyn sufficiently large to
give overshoot with c = c0, in the limits c → 0 and c → ∞, we have θu(0) < π. We
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Fig. 7. Shooting in (θ, η)-space: (a) undershooting for a small velocity cs = 0.05, (b) under-
shooting for a large velocity cl = 1, (c) one of the solutions at c∗ = 0.072, and (d) overshooting for
some intermediate velocity ci = 0.2 (cs < c∗ < ci < cl). Note that, for small velocities, θ remains
close to one branch of the θ-nullcline (labeled θ−(η) here) until θ− is annihilated at θ = 0, but the
close tracking is lost when the speed increases. In all four plots, gsyn = 2.

will refer to this as undershoot. Therefore, based on continuity, for our fixed gsyn

there exist at least two values of c for which θu(0) = π. One corresponds to a slow
solution, which is numerically unstable, and the other one to a fast solution, which is
numerically stable. This is summarized in the simulation results shown in Figure 7.

3.1. Overshoot. We will show that for an arbitrary fixed value of c, which we
call c0, we can choose the synaptic constant gsyn so that θu(0) > π. If one integrates
(8), a singularity may arise at (θrest, 0). To avoid this, we compare (θu, ηu) to a
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solution (θ̄(ξ), η̄(ξ)) passing through (θrest, 1/3). To do so, we derive separate bounds
on separate subintervals of the ξ domain, based on the forms of f(θ), g(θ). (Note that
1/3 was selected arbitrarily for definiteness; any number in (0, 1) could have been
used here, with corresponding adjustments below.)

More precisely, we use (θ̄(ξ), η̄(ξ)) to provide an upper bound on the value of η
at which θu reaches π − δ for small δ > 0 in the case of large gsyn, and we show that
this bound is a monotone decreasing function of gsyn. Then we show that if we make
this bound sufficiently small by increasing gsyn, then θu reaches π before ηu reaches
1. The intervals used for this are presented in Figure 8.

Clearly the value of ηu when θu = π is less than the η-value, call it η̄f , reached
by the trajectory (θ̄(ξ), η̄(ξ)) by the time θ̄ = π (see Figure 8). Thus, it suffices to
show that η̄f < 1 for gsyn sufficiently large.

Fix a small δ > 0. Define ξδ such that θ̄(ξδ) = π − δ; note that η̄(ξδ) > 1/3.
Then, from (8), since f(θ) > 2β and g(θ) > 1− cos(δ) over the interval of integration,
it follows that

π − δ − θrest >

∫ η̄(ξδ)

1/3

dη

(
2β

ηc0
+ gsyn

1

1 + c0
(1− cos δ)

)

=
2β

c0
ln(3η̄(ξδ)) + gsyn

1

1 + c0
(1− cos δ)

(
η̄(ξδ)− 1

3

)
.(10)

Rearranging (10), and then using β < 0 and η̄(ξδ) > 1/3, yields

π − δ − θrest +
1

3
gsyn

1

1 + c0
(1− cos δ)
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>
2β

c0
ln(3η̄(ξδ)) + gsyn

1

1 + c0
(1− cos δ)η̄(ξδ)(11)

>

[
6β

c0
+ gsyn

1

1 + c0
(1− cos δ)

]
η̄(ξδ).

Fix gsyn sufficiently large that the right-hand side of (11) is positive. Then (11)
gives us an upper bound on η̄(ξδ). Moreover, it is easy to see that this upper bound
decreases monotonically towards 1/3 as gsyn increases.

For θ̄ ∈ (π− δ, π], we have 0 < (1+ cos δ) + (1− cos δ)β < f(θ̄) < 2 and g(θ̄) ≥ 0.
Setting f0(δ) = (1 + cos δ) + (1− cos δ)β, equation (8) gives

π − (π − δ) >

∫ η̄f

η̄(ξδ)

dη

(
f0(δ)

ηc0

)
.(12)

Integration transforms inequality (12) to the inequality

δ >
f0(δ)

c0
ln

(
η̄f

η̄(ξδ)

)
.

Thus, η̄f < 1 holds if η̄(ξδ) exp(δc0/f0(δ)) < 1. Since f0(δ) → 2 as δ → 0, we can fix
δ such that exp(δc0/f0(δ)) < 2. Then we can choose gsyn sufficiently large such that
η̄(ξδ) < 1/2, yielding η̄f < 1. This gives the desired overshoot result.

Fix gsyn to be this large for the rest of section 3. We next show that for such
gsyn, the unstable manifold (θu, ηu) of (θrest, 0) undershoots for c → 0 and c → ∞.
That is, θu does not reach π before ηu reaches 1 in these limits.

3.2. Undershoot—small velocities. When η = 0, θrest and θT are given by
(3) and (4), respectively. When η increases from 0 to some nonzero value, the branches
of the θ-nullcline for system (9), which we denote θ−(η) and θ+(η), become closer to
each other:

θ−(η) = − cos−1

(
1 + β + gsyn

c
1+cη

1− β − gsyn
c

1+cη

)
≤ 0, θ+(η) = cos−1

(
1 + β + gsyn

c
1+cη

1− β − gsyn
c

1+cη

)
≥ 0

(13)
for β + gsyn

c
1+cη < 0; see Figure 9. Let

ηa(c) =
−β(1 + c)

gsync
(14)

denote the η-value at which θ−(η) = θ+(η) = 0. The point (0, ηa(c)) is the knee of
the θ-nullcline.

We can see from (13) that this nullcline, which bounds the negatively invariant
region where dθ

dξ < 0, rises in (θ, η) phase space as c → 0. For a suitable value of c,
which we denote by c1, ηa = 1, with ηa > 1 for c < c1, as seen in Figure 9. Since the
unstable manifold of (θrest, 0) is bounded to the left of this nullcline, where θ < 0,
for η ≤ ηa, it certainly reaches η = 1 before reaching θ = π for c ≤ c1. Consequently,
for speed less than or equal to c1, no spiking can occur. Effectively, such a small
propagation speed would not deliver enough synaptic input at any one time to cause
neurons ahead of a wave to spike.
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Fig. 9. Undershooting for small velocities follows from the position of the θ-nullcline. This
figure shows the nullcline for gsyn = 10, c = 0.004.

3.3. Undershoot—large velocities. To prove that an undershoot occurs for
large wave velocities, consider c > c0, the speed at which overshoot was proved to
occur in subsection 3.1. We know that for such c the knee of the θ-nullcline lies at
(0, ηa(c)) with ηa(c) < 1. We will now show that for c > c0 sufficiently large the
trajectory of (8) starting from (0, ηa(c)) fails to reach θT < π by the time it achieves
η = 1. Since (θu(ξ), ηu(ξ)) is bounded to the left of this trajectory in the (θ, η) plane,
this implies that θu < π when ηu = 1 for such c, giving the desired result.

Let ηT denote the η value at which the trajectory of (8) from (0, ηa(c)) reaches
θ = θT ; this is uniquely defined since dθ/dη > 0 for θ > 0 and η > ηa(c). From (8)
with initial condition (0, ηa(c)), we have

θT <

∫ ηT

ηa(c)

dη

(
maxθ f(θ)

ηc
+ gsyn

1

1 + c
max

θ
g(θ)

)
,(15)

where the maxima are computed over [0, θT ]. Since f(θ) ≤ 0 on this interval, and
g(θ) ≤ 2, (15) yields

θT <

∫ ηT

ηa(c)

dη gsyn
2

1 + c
=

2

1 + c
gsyn(ηT − ηa(c)).(16)

Since ηa(c) > 0 for all speeds c, it is obvious from here that for sufficiently large c we
have ηT > 1, giving the desired undershoot. That is, at high propagation velocities,
a neuron ahead of a wave would not have time to integrate enough synaptic input
to enable it to spike when the wave reached it, so wave propagation would not be
possible.

3.4. Failure to return to rest after a single spike. Suppose we have θu(0) =
π, with θu(ξ) → θrest as ξ → −∞, by definition. Here we will show that in the spiking
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Fig. 10. Numerical trajectories demonstrating the symmetry argument. For numerical and
illustrative purposes, we have compactified phase space by defining η = eξ for ξ ≤ 0, and η = 2−e−ξ

for ξ > 0. In (a), we show a traveling wave solution constructed with even coupling function he. In
(b), we show the stable manifold of θT + 2π and the unstable manifold of θrest. Curves are plotted
with A0 = 1, gsyn = 1.9, and c = 0.274.

solution corresponding to this trajectory, cells fire more than one spike. To do this,
we show that this trajectory is bounded away from θrest + 2π as ξ → ∞. In this
subsection, we allow A0 to be an arbitrary parameter, since we consider h separately
from gsyn.

Let he(ξ, c) denote the even function defined by he(ξ, c) = h(ξ, c) for ξ ≤ 0,
and he(ξ, c) = h(−ξ, c) for ξ > 0. With coupling h replaced by he, by symmetry,
θu(ξ) → θT + 2π as ξ → ∞ as a solution of (7), as illustrated in Figure 10(a).

However, h is not even; instead, we can show the following.
Proposition 3.1. h(ξ, c) > h(−ξ, c) for ξ > 0.
Proof. We can compute exactly that

h(ξ, c) =




A0
c

1+ce
ξ, ξ < 0,

A0

(
− c

c−1e
−ξ + 2c2

c2−1e
− ξ

c

)
, ξ > 0, c 
= 1,

A0(ξ +
1
2 )e

−ξ, ξ > 0, c = 1.

(17)

Let ξ > 0; if c 
= 1, then we have

h(ξ, c)− h(−ξ, c) = A0

(
− c

c− 1
e −ξ +

2c2

c2 − 1
e − ξ

c

)
−A0

c

1 + c
e −ξ

= A0

(
e−

ξ
c − e−ξ

)( 2c2

c2 − 1

)
.(18)
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For c > 1, (e−
ξ
c −e−ξ) > 0 and ( 2c2

c2−1 ) > 0. For c < 1, (e−
ξ
c −e−ξ) < 0 and ( 2c2

c2−1 ) < 0.
Therefore, h(ξ, c)− h(−ξ, c) > 0.

For ξ > 0 and c = 1 we have

h(ξ, 1)− h(−ξ, 1) = A0

(
ξ +

1

2

)
e−ξ −A0

1

2
e−ξ

= A0 ξ e−ξ > 0.(19)

This concludes the proof of the proposition.

As a result of Proposition 3.1, if we follow the one-dimensional stable manifold θ̂s

of θT + 2π under the flow of (7) backwards in time, the coupling term h(ξ, c), which

is stronger than the symmetric even coupling he, yields θ̂s(0) < π, as illustrated in
Figure 10(b). Thus θu(ξ) does not converge to θT + 2π, nor to θrest + 2π; instead,
either θu(ξ) converges to 2nπ+ θrest for some integer n ≥ 2 as ξ → ∞ or θu(ξ) → ∞.
Since in both cases θu crosses through 3π, and possibly other odd multiples of π, along
the way, it follows that each cell in the network will spike more than once during the
time evolution of the traveling wave solution.

Remark 3.1. The existence arguments of subsections 3.1–3.3 would hold if we
replaced the single-spike form of h considered above with the form of input corre-
sponding to a 2-spike traveling wave, a 3-spike traveling wave, or an n-spike traveling
wave for any natural number n. As a result, two possibilities exist. One is that for
each such n a similar calculation to that of the proof of Proposition 3.1 would give
failure of the corresponding trajectory to converge to θrest + 2nπ, implying that in
the actual waves that exist, cells fire infinitely many spikes. Otherwise, there exist
heteroclinic connections from θrest to θrest + 2nπ for some n, giving the existence of
n-spike waves. The difficulty in completing the calculations needed to check which
case holds lies in computing the times between consecutive spikes, as needed to specify
h for n > 1.

4. Parameter-dependence of solutions.

4.1. Dependence of solutions on the velocity c. Numerical calculations
suggest that the two solutions found in the previous section are the only two traveling
wave solutions to (9), as illustrated in Figure 11.

In this subsection, we consider how the behavior of the unstable manifold (θu, ηu)
depends on velocity c for fixed gsyn (with A0 = 1, as previously). While we will
not prove that there are at most two traveling wave solutions to (9), the analytical
results in this subsection suggest why this is likely to be the case for natural forms of
coupling. Essentially, the two competing trends that lead in section 3 to undershoot
for small and large velocities, respectively, appear to limit the number of possible
waves to two. We will also briefly discuss how certain forms of coupling function
h(ξ, c) in (7) might support the existence of additional traveling wave solutions to the
corresponding autonomous systems (see Remark 4.1 below).

Consider the dynamics of the θ component of solutions to (9) on the [0, 2π) circle.
For each fixed ξ and η = eξ up to some level, there are two fixed points of the θ-
equation on the circle; together, these form the θ-nullcline for (9). Following our
earlier notation, for every c there exists a point (0, ηa(c)) at which the nullcline for
the θ-equation has a knee, or annihilates (see Figure 9). If we take η as a parameter in
this θ-equation, then the equation’s fixed points coalesce in a saddle-node bifurcation
at θ = 0 at η = ηa(c), as given in (14).
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Fig. 11. Numerically generated θuf as a function of c for gsyn = 1.9. Here θuf is defined as the

value of θu when ηu = 1. The horizontal lines show θ = π and θ = θrest. Traveling wave solutions
exist precisely when θuf = π.

The unstable manifold (θu, ηu) is bounded to the left of the θ-nullcline, with θ < 0,
in (θ, η)-space until η > ηa(c). Thus, a traveling wave can only possibly exist for c such
that ηa(c) < 1, as used in subsection 3.2. For every such c value, define θa(c) as the
θ-value such that θu = θa(c) when ηu = ηa(c). In what follows, we use (θa(c), ηa(c))
as a reference point and consider how the evolution of phase θ depends on velocity c
from that point onwards. The following preliminary result states that, for larger c,
solutions are farther from the firing phase θ = π when they reach (θa(c), ηa(c)).

Proposition 4.1. θa(c) is a monotone decreasing function of c for c > 0.
Proof. We focus on the path of θu from θrest to θa < 0. Recall from (13) that

for each fixed η < ηa we denoted the negative θ-value on the θ-nullcline by θ−. θ−
depends on c in addition to η; we make this dependence explicit here. We now consider
how far θu lies to the left of θ−(η, c), depending on c; properly defined, a greater lag
distance corresponds to a smaller (more negative) θa.

To do this, we use the change of variables θu = φ + θ− for η ∈ [0, ηa(c)). By
construction, since (θu, ηu) cannot cross θ−, the lag φ < 0 for η > 0; further, φ(0) = 0
because θu and θ− both tend to θrest as η → 0. We also let f1(η, c) = −β − gsync

1+c η.
Since η < ηa and β ∈ (−1, 0), we have f1(η, c) ∈ (0,−β). Based on this notation, we
note that

cos (θ−) =
1− f1(η, c)

1 + f1(η, c)
and sin (θ−) = − 2

√
f1(η, c)

1 + f1(η, c)
.

In this new notation, (8) for θu becomes

η c

(
∂θ−
∂η

+
∂φ

∂η

)
= [1− f1(η, c)] + [−1− f1(η, c)] cos (θ− + φ)

= [1− f1(η, c)] + [−1− f1(η, c)](cos θ− cosφ− sin θ− sinφ)(20)

= [1− f1(η, c)](1− cosφ)− 2
√

f1(η, c) sinφ.
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We can compute ∂θ−
∂η directly from (13):

∂θ−
∂η

=
gsyn

c
1+c√

f1(η, c)(1 + f1(η, c))
≡ −B(η, c).(21)

We will follow the evolution of φ(η) as η increases from 0. Combining (20) and
(21) yields

∂φ

∂η
=

(1− f1(η, c))(1− cosφ)

ηc
+

(
−2
√

f1(η, c) sinφ

ηc

)
+B(η, c).(22)

Since φ < 0 for η > 0 and φ(0) = 0, ∂φ/∂η is initially negative. Since f1(η, c) ∈ (0,−β)
and φ < 0 for η > 0, the first two terms in (22) are positive. Also, it is easy to see
that they are decreasing functions of c and of η. The last term in (22) is negative,
and its magnitude is an increasing function of c and of η. Consequently, ∂φ

∂η remains
negative as η increases from 0 and is a decreasing function of c. We will make use of
all of these properties of the terms in (22) below.

We want to show that if c2 > c1, then for a choice of η2, η1 such that θ−(η2, c2) =
θ−(η1, c1) we have φ(η2, c2) < φ(η1, c1), where both terms are negative by construc-
tion. This, as well as the rest of our strategy, is illustrated in Figure 12. To begin,
we first integrate (22) from η = 0 to arbitrary fixed η = η2 < ηa(c2). From this, we
seek a preliminary upper bound for the difference φ(η2, c2)− φ(η2, c1). To derive this
bound, we can ignore the first two terms in (22), since they give positive contributions
to ∂φ/∂η that decrease as c increases. Thus,

φ(η2, c2)− φ(η2, c1) <

∫ η2

0

B(η, c2) dη −
∫ η2

0

B(η, c1) dη < 0.(23)

Note from (13) that θ−(η2, c2) = θ−(η1, c1) translates to

c2
1 + c2

η2 =
c1

1 + c1
η1.(24)

For fixed η2, (24) defines η1. Since c2 > c1, we have η1 > η2. That is, to obtain
φ(η1, c1) from φ(η2, c2), we have to let φ(η, c1) evolve over the extra interval η1 − η2.

By doing so, we attain a lower bound on the negative quantity φ(η1, c1)−φ(η2, c1).
Again, we ignore the positive contribution from the first two terms in (22), as they
will only make φ(η1, c1) less negative. This gives us

φ(η1, c1)− φ(η2, c1) >

∫ η1

η2

B(η, c1) dη.(25)

Now we are ready to compare φ(η2, c2) and φ(η1, c1). Recall that B = −∂θ−/∂η.
When we combine (23) and (25), we attain

φ(η2, c2)− φ(η1, c1) <

∫ η2

0

B(η, c2) dη −
∫ η1

0

B(η, c1) dη = 0,(26)

where the difference of integrals equals 0 because θ−(η2, c2) = θ−(η1, c1) by definition;
see Figure 12. In particular, we can let η2 ↑ ηa(c2), such that θ−(η2, c2) = θ−(η1, c1) ↑
0, and then we have η1 ↑ ηa(c1). Then (26) gives us θa(c2) = φ(η2, c2) < φ(η1, c1) =
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Fig. 12. The relevant curves for the lag argument, computed numerically for gsyn = 1.9. The
solid curves are the branches θ−(η, c1) and θ−(η, c2) of the θ-nullclines for c = c1 = 0.08 and
c = c2 = 0.1, respectively; the curve for c1 lies above that for c2. The dashed curve represents
(θu, ηu) for c = c2, and the dash-dotted curve represents (θu, ηu) for c = c1. The label θ− on the
horizontal θ-axis denotes θ−(η2, c2) = θ−(η1, c1). Finally, φ′

1 = φ(η1, c1), φi = φ(η2, ci) for i = 1, 2,
and ∆η denotes η1 − η2. The lag argument shows that φ2 < φ′

1 < φ1 < 0.

θa(c1) for c2 > c1 > 0, as desired. This concludes the proof of Proposition 4.1; see
Figure 13 for a numerical illustration of the result.

Next, we let ξθa→π(c) denote the time from the moment ξ = ln(ηa(c)), when the
fixed points of the θ-equation coalesce, until θ reaches the firing phase π. In other
words, ξθa→π is the time for the θ-coordinate of the unstable manifold (θu, ηu) to
evolve from θa to π as (θu, ηu) evolves under the flow of (9).

Proposition 4.2. ξθa→π is a monotone increasing function of c > 0.

Proof. We know from Proposition 4.1 that θa is a monotone decreasing function
of c. Renormalize time ξ for system (9) in a c-dependent way such that ξ = 0
when (θu(ξ; c), ηu(ξ; c)) = (θa(c), ηa(c)) for every c; these points are highlighted in
Figure 12, where c2 > c1. Thus, θu(0; c) becomes a monotone decreasing function of
c, by Proposition 4.1. Since this renormalization is simply a c-dependent translation
of ξ, it does not change dθ/dξ.

Now, suppose that, for some ξ̄ > 0, it happens that θu(ξ̄, c1) = θu(ξ̄, c2) for
c2 > c1 > 0. It suffices to show that if this were to occur, then θu(ξ, c1) > θu(ξ, c2) for
0 < ξ − ξ̄ � 1. That is, to prove the proposition, it suffices to show that ∂

∂c (
dθu

dξ ) < 0
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Fig. 13. Plot of θa as a function of c, computed numerically with gsyn = 2.0, illustrating its
monotone decreasing nature.

at ξ̄, with η replaced by ηa(c)η = ηa(c)e
ξ to account for the dependence of initial

conditions on c.
Differentiation of the θ-equation from (9) with respect to c, for fixed θ and η =

ηa(c)e
ξ, yields

∂

∂c

(
dθu

dξ

)
= −f(θu)

c2
− g(θu)

(
gsynηa(c)

(1 + c)2
− β

(1 + c)c2

)
eξ.(27)

Since dθ/dξ ≥ 0 at any point (θ, ηa(c)), with equality if and only if θ = 0, we know
from (9) that

−f(θu)

c
− g(θu)

gsynηa(c)

1 + c
≤ 0(28)

with equality if and only if θu = 0. The two terms on the right-hand side of (27) are
obtained from the corresponding terms on the left-hand side of (28) via multiplication
by different positive factors. Thus, to show that ∂

∂c (
dθu

dξ ) < 0 at ξ̄, it suffices to show

that the factor for the second terms exceeds the factor for the first terms for ξ = ξ̄.
This yields the condition

1

c
<

(
1

1 + c
− β

gsync2ηa(c)

)
eξ̄.(29)

Substitution of ηa(c) = −β(1+ c)/(gsync) into the right-hand side of (29) reduces

this inequality, after some algebra, to 1 < eξ̄, which holds since ξ̄ > 0. This concludes
the proof of Proposition 4.2.

Remark 4.1. Since η(0) = 1, a traveling wave solution exists when ξθa→π = ξηa→1,
where the latter denotes the time for ηu to progress from ηa up to 1. Like θa, the value
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ηa decreases as c increases (see (14)). Correspondingly, we can see, by integrating
dη/dξ = η from η = ηa up to η = 1, that

ξηa→1(c) = ln

(
gsync

−β(1 + c)

)
with

∂ξηa→1(c)

∂c
=

1

c(1 + c)
> 0.

That is, like ξθa→π, the time ξηa→1 is a monotone increasing function of c. Thus,
although it takes longer for θ to reach firing phase when c is larger, it also has a longer
time available to do so before η = 1 and correspondingly ξ = 0. The competition of
these two effects generates exactly two solutions in numerical simulations, given by
two intersections of ξθa→π(c) and ξηa→1(c), as seen in Figure 11. However, uniqueness
may in theory fail through the following scenario. Suppose that, as we increase c, we go
from undershoot to overshoot and back to undershoot again, obtaining two traveling
wave solutions. If h subsequently experiences a sharp increase in c, then it is possible
for another transition to overshoot to occur, generating additional traveling waves.

4.2. Lower bounds on the synaptic strength required for waves to exist.
One of the interesting features of dynamical system (7), observed numerically, is
that traveling wave solutions cannot exist if the coupling strength gsyn is too small.
The numerical simulations shown in Figure 4 demonstrate that for a specific choice
of h(ξ, c) a saddle-node bifurcation occurs: two traveling wave solutions exist with
different speeds for gsyn sufficiently large, and these coalesce into a single solution
and then vanish as gsyn decreases. Finding the bifurcation value of gsyn analytically
is not possible. However, here we derive an analytical lower bound for it, as a function
of the parameter γ := −β; this also proves that traveling waves to (7) cannot exist
when the coupling strength is too small.

Let θf denote the value of the θ-coordinate of the unstable manifold (θu, ηu) when
ηu = 1. In theory, one would obtain a graph of the bifurcation value of gsyn versus
γ as follows: for fixed γ, one would take the value of gsyn for which the maximum of
θf over all possible wave speeds c is π. Since we cannot compute this analytically, we
instead derive a lower bound on gsyn through the use of approximations that increase
θf ; if a value of gsyn is so small that the increased θf is less than π for all c, then the
actual θf is less than π for this gsyn for all c, and no waves exist.

We split the tracking of (θu, ηu) into subintervals. The first interval to consider
is η ∈ [0, ηa], where ηa was defined in (14). We know that the unstable manifold is
confined to the left of the θ-nullcline in (θ, η)-space. As a consequence, θa = θ(ηa) < 0.
We thus make the approximation θ(ηa) = 0, which will increase θf .

Starting from θ(ηa) = 0, we next integrate (8) over [ηa, ηT ], defined as in sub-
section 3.3 such that θ(ηT ) = θT , neglecting the term f(θ). Since f(θ) < 0 on this
interval, this gives a smaller value of ηT than would result from integrating the full
equation and consequently increases θf , as our bounding approach allows. Neglecting
f(θ) in (8) yields

dθ

dη
=

(1 + cos(θ))gsyn

1 + c
.

From here, by separation and integration from 0 to θT in θ and from ηa to ηT in
η, we easily obtain

ηT = ηa +

√
γ

gsyn
(1 + c) =

γ

gsyn

1 + c

c
+

√
γ

gsyn
(1 + c).(30)
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Note that if ηT = 1, then θf = θT < π. Substitution of ηT = 1 reduces (30) to

−γ + (gsyn − γ −√
γ)c−√

γc2 = 0.(31)

We can solve for the roots of (31) to find the speeds c1,2 at which ηT = 1 is
realized. This gives

c1,2 =
(gsyn − γ −√

γ)±
√
(gsyn − γ −√

γ)2 − 4γ
3
2

2
√
γ

.(32)

The existence of traveling waves requires θf > θT , which can only occur for
c ∈ (c1, c2). The two roots c1, c2 collide, such that the interval (c1, c2) ceases to exist
and traveling waves cannot occur, when the term under the square root in (32) is 0.
This leads to the following formula for a lower bound on the strength gsyn required
for traveling waves to exist:

gsyn = γ +
√
γ + 2γ

3
4 .(33)

The discriminant is also zero when gsyn = γ+
√
γ−2γ

3
4 , but this is not relevant, as it

gives c1, c2 ≤ 0 in (32). The lower bound (33) is plotted versus γ as the dash-dotted
curve in Figure 14; the numerically computed lower bound on gsyn, required to make
θf > θT , is plotted as the dotted line for comparison.

Instead of taking ηT = 1, we can take ηT from (30) and make further approxi-
mations over the interval [ηT , 1] that ultimately improve our lower bound on gsyn(γ).
However, the utility of the resulting formulas for gsyn(γ) is compromised by their
complexity, and they are omitted here. We obtained an additional lower bound on
gsyn(γ) by using (30) in numerical simulations of (9). In these simulations, for each
fixed γ, solutions were followed from the initial condition (θT , ηT ) up to η = 1, with
ηT given in (30). For fixed gsyn, we checked whether any c values gave θ ≥ π at
η = 1. This enabled us to approximate the minimum value of gsyn required for any
trajectories from (θT , ηT ) to reach (π, 1). This represents a lower bound on the gsyn

needed for traveling waves to exist since, by construction, (θu, ηu) lies to the left of
the trajectory through (θT , ηT ) in the (θ, η)-plane, for all c. The resulting additional
bound is plotted as a function of γ as the dashed curve in Figure 14, while the bifur-
cation value of gsyn(γ) based entirely on numerical simulations of (9) is shown as the
solid curve for comparison.

5. Discussion.

5.1. Generalizations. The results of the previous two sections hold for general
integrable J, α satisfying hypotheses (H1) and (H2). When these hold, the function
h(ξ, c) has the following properties:




h(ξ, 0) = 0, ξ < 0,
h(ξ, c) > 0, c > 0, ξ < 0,

h(ξ, c) → c̄ ≥ 0 as c → ∞,
h(ξ, c) → 0 as |ξ| → ∞,

h(ξ, c) > h(−ξ, c), ξ > 0,

(34)
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Fig. 14. Four different estimates of the lower bound of gsyn needed for traveling wave solutions
to (9) to exist. Dash-dotted curve: analytical bound from (33). Dotted curve: numerically computed
bound on the value of gsyn needed for any solutions to reach θT before η reaches 1. Dashed curve:
bound derived from numerical continuation of (0, ηT ) to (π, 1), with ηT computed analytically from
(30). Solid curve: numerically computed bound on gsyn.

for a constant c̄ < ∞. In particular, the last property follows from the general
expression for h(ξ, c):

h(ξ, c) =

∫ ∞

0

dξ′J(|ξ − ξ′|)α(ξ′/c).

To see this more clearly, we use the notation:


h+(ξ, c) = h(ξ, c) =
∫∞
0

dξ′J(|ξ − ξ′|)α(ξ′/c), ξ > 0,

h−(ξ, c) = h(−ξ, c) =
∫∞
0

dξ′J(| − ξ − ξ′|)α(ξ′/c), ξ > 0.
(35)

It can be clearly seen that h+(ξ, c) > h−(ξ, c) for ξ > 0, since | − ξ− ξ′| > |ξ− ξ′| and
J(ξ) is a decreasing function of ξ > 0.

With these properties, the proof of existence of traveling waves is similar to that
in section 3. The asymptotic behavior of h in ξ ensures that compactification can be
performed to map (−∞, 0] to [0, 1]. The definition of η and the term gsynA0

c0

1+c0
in

(8) depend on the particular form of h. Nevertheless, we can still bound η̄(ξδ) as in
(11) by increasing gsyn and decreasing δ, and thus the overshoot argument holds.

Similarly, we still have the knee of the θ-nullcline at (0, ηa(c)) with ηa(c) > 1 for
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c sufficiently small, since h(ξ, 0) = 0 for ξ < 0 (see (7)). Thus, we get undershoot for
small velocities.

For large velocities, we can substitute any particular h(ξ, c) into (16), and we get
ηT > 1 for c sufficiently large since h tends to a finite asymptotic value as c → ∞.

The last property in (34) ensures that, in each traveling wave solution, the system
will not return to the rest state until each cell fires more than one spike.

Section 4 also carries over, but analytical formulas may become more complicated
when the form of h(ξ, c) necessitates the use of more complicated compactifications
than η = eξ to convert (7) to an autonomous system.

5.2. Existence of traveling waves. We have considered a model one-
dimensional network of theta neurons with excitatory coupling, representing a contin-
uum of cells that are nearby in parameter space to saddle-node bifurcations in their
voltage dynamics. Using a regular, or smoothly propagating, traveling wave formula-
tion, under the assumption that excited cells fire only single spikes and then return to
rest, we have derived a differential equation for traveling wave solutions. The single
spike assumption affects the form of coupling function h(ξ, c) in the equation. We
have employed a shooting argument to prove the existence of two traveling wave so-
lutions to this equation, a fast wave and a slow wave, when the synaptic coupling
conductance gsyn is sufficiently large; note that gsyn is a parameter that can be varied
independently of h. Since coupling is excitatory, additional spikes would lead to a
more positive form of h; hence, these results also imply the existence of two traveling
waves (with different speeds from the originals) without the single-spike assumption;
see Remark 3.1. These results are consistent with the findings of Golomb and Ermen-
trout [10] for a one-dimensional network of integrate-and-fire neurons with excitatory
coupling.

We also have proved that when a cell at the leading edge of an existing wave
receives the form of coupling corresponding to the single-spike assumption, this cou-
pling will be sufficient to force the cell to fire more than one spike before returning
to rest. This shows that the network model considered here does not support trav-
eling waves in which each cell in the continuum fires only a single spike. Moreover,
it agrees with numerical simulations (e.g., Figure 3(a)), in which multiple spikes are
always observed in this model. Analysis of how many additional spikes each cell fires
is beyond the scope of this work, as it requires removal of the single-spike assump-
tion, which leads to more complicated traveling wave equations. A form of synaptic
depression could be implemented that affects only the form of the synaptic coupling
s(x, t), and thus h(ξ, c), to achieve single spiking (e.g., Figure 3(b)). For example,
if this adaptation left h unchanged from the form considered here for negative ξ but
made h weaker for positive ξ (or even in ξ), then our shooting arguments would still
hold, but single spiking would result (see Figure 10). Alternatively, inclusion of an
afterhyperpolarization in the intrinsic theta neuron dynamics would make cells more
refractory [4]. Sufficiently strong afterhyperpolarization would prevent each cell from
firing more than one spike.

In summary, our results rigorously establish that at least two regular traveling
wave solutions exist for a one-dimensional network of theta neurons. In these solu-
tions, cells fire more than one spike before returning to rest.

5.3. Further results. Our analysis shows that solutions are created by a bal-
ance of two competing effects as the wave speed c varies. One effect is that the knee
of the θ-nullcline, (θa, ηa), for system (9) drops towards η = 0 as c increases, and thus
cells can get beyond threshold faster. The other effect is that θ increases more slowly,
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relative to η, as c increases, and thus it takes longer for cells to spike. In the notation
of section 4, the two times ξθa→π and ξηa→1 both increase with c.

When c is sufficiently small, ξηa→1 = 0 < ξθa→π. The existence of two traveling
waves implies that ξηa→1 intersects ξθa→π at least twice as c increases. We do not
have a uniqueness theorem because we have not ruled out additional intersections,
although we have not observed these numerically, at least for the form of α-function
that we have considered.

The traveling waves exist for gsyn sufficiently large. We give an analytical lower
bound for the minimum value of gsyn for which traveling waves exist. Sharper an-
alytical estimates can be derived, but the complexity of the resulting expressions
compromises their utility. Derivation of a useful analytical upper bound on this min-
imum gsyn also remains open, as does analytical computation of the speeds at which
waves exist. Note that wave speed depends on the form of J(x), α(t) used to couple
the neurons in the network. For exponentially decaying J and α, faster decay rates
correspond to weaker coupling, which would be expected to slow down the fast wave;
this is borne out numerically (Figure 6).

Our results generalize to a wide class of coupling functions J and α. These include
the most common biologically motivated forms of J , namely a Gaussian, exponential,
or step function, and of α, namely an exponentially decaying function or a difference
of two exponentials. Consideration of traveling waves in a model one-dimensional
network of conductance-based Type I neurons, governed by Morris–Lecar or similar
equations, should follow analogously.

Finally, we do not analyze stability of the traveling wave solutions for this sys-
tem. Recent work has begun to consider linearized stability of traveling waves in
conductance-based networks with continuous coupling [20]. However, results are lim-
ited to cases in which eigenvalue problems take the form of nonautonomous ordinary
differential equations with limited nonlocal terms. Here, the stability problem derived
from linearization of (6) about a traveling wave solution is a fully nonlocal integro-
differential equation.
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