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Localized Bumps of Activity Sustained by Inhibition
in a Two-Layer Thalamic Network
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Abstract. Based on head direction experiments in rats, the existence of localized bumps of thalamic activity has
been proposed. We computationally demonstrate the existence of a novel class of localized bump solutions in a
two-layer conductance-based thalamic network and analyze the mechanisms behind these stable patterns. In contrast
to previous models of bump activity, here inhibition plays a crucial role in initially spreading neuronal firing and in
subsequently sustaining it. In our model, we incorporate local strong, fast GABAA inhibition and diffuse weak, slow
GABAB inhibition, based on previous biophysical experiments. These forms of inhibition contribute in different,
yet complementary, ways to the observed pattern formation.
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1. Introduction

Spatially localized, sustained neuronal activity in the
form of a bump attractor has been proposed for the
head-direction system in mammals (Skaggs et al.,
1995; Blair, 1996; Redish et al., 1996; Zhang, 1996),
working memory (Wilson and Cowan, 1973; Amit and
Brunel, 1997; Rao et al., 1999), and orientation selec-
tivity in models of the visual system (for example, see
Somers et al., 1995; Hansel and Sompolinsky, 1998,
and the references therein). In these previous models,
stable bumps are sustained by local recurrent excita-

tions and localized by lateral inhibition (Amari, 1977;
Ermentrout, 1998).

Experiments on rats have found sets of neurons that
respond only when the animal faces a given direction.
It has been proposed that these cells fire collectively
within a bump that moves in concert with the head
around a network with the topology of a ring. These
head-direction (HD) cells are found in the postsubicu-
lum (PoS) (Taube et al., 1990) and in the anterior tha-
lamic nuclei (ATN) (Taube, 1995), which are at least
partially recurrently connected (Van Groen and Wyss,
1990, 1995). In particular, it appears that head-direction
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activity from the anterior dorsal thalamic nucleus (AD)
is transmitted to the PoS, which in turn refines AD ac-
tivity (Goodridge and Taube, 1997). However, it is not
understood how the ATN, which lacks recurrent ex-
citatory connections, could support localized activity.
Here, we demonstrate that a localized bump may be
sustained by the combined inhibitory and excitatory
connections in a thalamic network.

This work is done in a two-layer thalamic network
model composed of sets of conductance-based ordi-
nary differential equations for a number of thalamo-
cortical relay (TC) and thalamic reticular (RE) cells
and the synaptic connections between them. Thanks
to the properties of RE and TC cells and their con-
nections, the network can exhibit temporally periodic,
spatially nonlocalized activity after transient stimula-
tion, even when no individual cells are spontaneously
oscillatory, as seen previously in simulations and anal-
ysis (Destexhe et al., 1993; Golomb et al., 1994; Wang
et al., 1995; Destexhe and Sejnowski, 1996; Terman
et al., 1996, 1998; Rubin and Terman, 2000; Rubin and
Terman, in press). In the resultant rhythms, activity is
maintained through a repeated sequence in which RE
cells fire in response to excitation from TC cells, TC
cells are inhibited by RE cells, and then TC cells fire
through postinhibitory rebound (PIR). Without inhi-
bition, activity could not spread through the network,
which includes no recurrent excitation (e.g., Steriade
et al., 1993, 1997).

In our model networks, we include two types of in-
hibition from RE cells to TC cells—namely, fast, local
GABAA inhibition and slow, long-range GABAB in-
hibition (Sohal and Huguenard, 1998); we explore a
variety of architectures of GABAB connections. Un-
like previously analyzed thalamic sleep rhythms, the
bump solutions reported here involve activity only over
a restricted, connectively localized portion of the cells
in the network. Moreover, the firing patterns of cells
within the bumps can be quite disorganized, as seen in
the wake of some propagating activity by Rinzel et al.
(1998), which contrasts with previously observed syn-
chronized or clustered thalamic rhythms.

However, the thalamic bumps do share some char-
acteristics with these other rhythms, and these distin-
guish them from bumps seen previously in other com-
putational models. In particular, PIR is necessary for
the existence of these bumps. The absence of lateral
excitatory connections in the thalamus implies that
excitation alone is completely inadequate for produc-
ing or maintaining thalamic bumps. Instead, inhibition

and excitation interact to sustain them, and inhibi-
tion largely shapes them. Classic rate models (e.g.,
Wilson and Cowan, 1973; Amari, 1977) and some more
recent integrate-and-fire models (e.g., Somers et al.,
1995; Laing and Chow, forthcoming), require lateral
excitatory connections for bump formation and do not
allow for the rich temporal structure of inhibitory cur-
rents that our thalamic bumps require (see Ermentrout,
1998). The bumps in this work also do not require sus-
tained external input to stay active, as needed in other
models (Somers et al., 1995; Hansel and Sompolinsky,
1998).

Our aim is to demonstrate how certain basic intrinsic
and synaptic features of an RE-TC network interact to
produce sustained, localized bumps of activity. Thus,
the model network presented in Section 2 consists of
a simplified version of an RE-TC network. If one con-
siders the TC cells to represent the HD cells in the rat
ATN, which receive RE inputs and project to the PoS
(Kultas-Ilinsky et al., 1995; Shibata, 1992; Van Groen
and Wyss, 1995), then the mechanisms that generate
localized bumps of sustained TC activity in this model
may be relevant in explaining experimentally observed
firing properties of these HD cells. In Section 3.1.1, we
mention specifics about the coupling used in our sim-
ulations, while Appendix A is devoted to further nu-
merical issues, including actual parameter values used.
Section 3.1 presents results of the simulations. Here we
describe the spread of activity, its localization, and the
activity within the bumps that arise. The results in Sec-
tion 3.1.5 show that local transient excitation to cells
in either population in the network can initiate bumps
of activity, and in some cases can translate established
bumps, while a more widespread excitation to either
population terminates activity through a synchroniza-
tion effect.

Biophysical features of our thalamic model network
are responsible for the particular characteristics of its
activity patterns. In Section 3.2, we analyze how these
details sustain and shape this activity. In particular, we
compute an estimate for the size of a bump that will de-
velop in a network, depending on intrinsic and synap-
tic cellular parameters. This involves computing the
level of inhibition that must be present at the edges of
the bump. We also consider mechanisms for bump ter-
mination and translation, as would be necessary in a
head direction system. We conclude in Section 4 with
a summary of our findings and a further contrast of
these results with studies of activity bumps in other
models.
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2. Methods: Models for Cells
and Synaptic Coupling

We performed simulations with a recent version of
XPPAUT (Ermentrout, 2000). Certain aspects of the
code are discussed in Appendix A. The model network
we simulated and analyzed includes two populations of
oscillators, an excitatory population corresponding to
TC cells and an inhibitory population corresponding to
RE cells. We refer to these two populations as E-cells
and J -cells, respectively. The model also incorporates
synaptic connections between these populations as well
as cortical inputs they receive.

Individual cells are represented by conductance-
based single-compartment models (Destexhe et al.,
1993; Golomb et al., 1994). The equations of each E-
cell are

v′ = −IT (v, y) − IL(v) − IA − IB − Ictx

y′ = φ(y∞(v) − y)/τy(v).
(1)

The equations of each J -cell are

w′ = −IT ′(w, z) − IL ′(w) − IA′ − IE − Ictx′

z′ = ψ(z∞(w) − z)/τz(w).
(2)

The variables v, w in (1), (2) represent membrane
potentials. The terms IT , IL are intrinsic currents,
namely a low-threshold T -type calcium current and
a leak current. They are given in (1) by IT (v, y) =
gCam2

∞(v)y(v − vCa) and IL = gL(v − vL) with simi-
lar forms in (2). The variables y, z denote the inac-
tivation levels of the corresponding T -type currents.
Explicit formulas for the nonlinear voltage-dependent
functions m∞, y∞, z∞, τy, τz are given, along with
parameter values, in Appendix A. These are chosen
such that without coupling, E- and J -cells are silent.

The other currents in the v equation in (1) and the
w equation in (2) represent inputs to the cells. The
E-cells receive GABAA and GABAB inhibition from
the J -cells, with the currents generated by these in-
puts represented in (1) by IA and IB , respectively. The
J -cells receive GABAA inhibition IA′ from other J -
cells and AMPA excitation IE from E-cells. The cur-
rents Ictx, Ictx′ denote excitatory input from the cortex.
The forms of all of these coupling currents appear in
Appendix A.

The existence of two types of RE cells has been
reported (Cox et al., 1996, 1997). One is coupled
to TC cells only via weak connections extending

Figure 1. Model thalamic network: example connectivity diagram.
Solid lines from J to E-cells represent GABAA inhibition, while
dashed lines represent weaker, more widespread GABAB inhibition,
or ticklers; in this illustration, ticklers are not uniformly distributed.
Solid line from E to J represents excitation. Connections between
other cells are analogous to the ones shown.

sparsely over a large radius, approximately five times
the footprint of the other group’s inhibitory connec-
tions; these are called ticklers by Sohal and Huguenard
(1998). The two types of RE cells have similar intrin-
sic properties. Hence, following Sohal and Huguenard
(1998), we model the corresponding two types of con-
nections to E-cells as coming from a single J -cell
population.

The GABAB connections in (1) in our model repre-
sent the ticklers, as shown in Fig. 1. Note that GABAA

turns on and off on much faster time scales than
GABAB (Golomb et al., 1994; Huguenard and Prince,
1994; Destexhe and Sejnowski, 1995). Correspond-
ingly, we omit long-range GABAA connections in our
model, since these will be weak and wear off quickly
(Cox et al., 1997). We also omit any stronger local
GABAB connections, since Golomb et al. (1996) found
these to be of limited importance for related rhythms.

The curves where v′ = 0 and y′ = 0 hold in (1),
called the v- and y-nullcline respectively, are shown in
Fig. 2; the w- and z-nullclines, also shown, are qual-
itatively similar. We choose φ, ψ as relatively small
parameters. Hence, each E-cell’s (v, y) values gener-
ally lie on the left or right branch of its v-nullcline,
except for fast jumps between these branches. When a
cell has voltage and inactivation values (v, y) on the
left (right) branch of its v-nullcline, we say that it lies in
the silent (active) phase. Jumping up from the silent to
the active phase corresponds to action potential gener-
ation or firing (Rubin and Terman, forthcoming). Note
in Fig. 2 that the v- and y-nullclines intersect on the
left branch of the v-nullcline. Their intersection yields
a rest state corresponding to the state of uncoupled E-
cells without external input. Similar statements hold
for J -cells.

As discussed in Appendix A, GABAA input affects
E-cell v-nullclines as shown in Fig. 2; GABAB input
has a similar, albeit weaker, effect. This implies that if
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Figure 2. Nullclines for A) E-cells and B) J -cells. Inhibition raises
an E-cell’s nullcline while excitation lowers a J -cell’s nullcline.

an E-cell receives sufficiently strong GABAA inhibi-
tion for a sufficiently long time, then its T -current dein-
activates sufficiently that it can fire by postinhibitory
rebound (PIR) upon release from inhibition, as shown
in Fig. 9 below and discussed in Section 3.2.1 (see
also Rubin and Terman, forthcoming). Such genera-
tion of action potentials by PIR plays a crucial role
in producing the activity patterns discussed in this
work.

E-cell excitatory input to J -cells affects their w-
nullclines as shown in Fig. 2. Hence, sufficiently strong
excitation to a J-cell at rest causes this J-cell to generate
an action potential. Cortical excitation can analogously
enable the E- and J-cells that it impacts to fire, if the
target cells are sufficiently close to their rest states.

Remarks:

1. Note that we omit the sodium current in (1), (2).
Hence, the active phase of each cell corresponds to
a calcium-induced burst, with sodium spikes omit-
ted; sample voltage traces from an E-cell and a cor-
responding J -cell are shown in Fig. 3. Frequencies
of firing discussed below thus represent interburst
frequencies.

2. We will use the term synchrony among coupled cells
to denote simultaneous or near-simultaneous firing
(see Bose et al., 2000, for a precise notion of near-
simultaneity). When we refer to asynchrony among
a group of active cells, we mean that all cells in the
group are firing within some time interval, but they
do so at different times in the interval.

3. Simulations

3.1. Bumps of Activity in a Variety
of Coupling Architectures

We generated sustained, localized bumps of activity
in numerical simulations of (1), (2) with each of the
architectures discussed below and in Appendix A. In
these simulations, we used chains of 50 E-cells and
50 J -cells; for clarity, we can think of the E- and J -
cell populations as linear chains of ordered cells. As
mentioned in the Discussion (Section 5), these order-
ings are based on connectivity but do not necessarily
correspond to spatial positions.

We set up networks in which the GABAA inhibi-
tion to cell Ei comes from the three closest J -cells—
namely, Ji−1, Ji , Ji+1; we say that the GABAA inhibi-
tion from the J -cells to the E-cells has a footprint width
of three. In (2) in our simulations, each J -cell receives
excitation from only one E-cell, as in the classic Amari
model (Amari, 1977); see Fig. 1. That is, the excitation
in the network has a narrower footprint than the fast
inhibition across the layers, as observed in thalamic
networks (Sohal and Huguenard, 1998). Also in (2),
each J -cell sends GABAA inhibition to its two near-
est neighbors (but not to itself). For all fast inhibitory
and excitatory connections in the network, we scale the
conductances of inputs to cells at the ends of the chains
for uniformity. While the exact footprint widths used
are not important for our results, the relative footprint
sizes shape the activity patterns we observe.

In our simulations, we observed bumps in several
different architectures of GABAB tickler connections.
These appear in Figs. 4, 5, and 6. In an off-center ar-
chitecture (not shown), each J -cell sends ticklers to
a small group of E-cells a certain distance (along the
chain) away, with no connections to closer E-cells. In a
uniform architecture, each J -cell sends ticklers to a uni-
formly distributed subset of E-cells within a footprint
width of 29 (i.e., a subset of the 14 E-cells to either side
of the nearest E-cell for each J -cell). We use this ex-
aggerated tickler footprint width in all of our networks
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Figure 3. Voltage versus time for an E-cell and the corresponding J -cell in a simulation of the uniform architecture. Note the relatively fast
transitions between prolonged silent and active phases. Note also that after the E-cell fires, it receives GABAA input from the responding J -cell.
This causes the E-cell to make a fast jump to a lower right branch, decreasing its voltage towards 0 mV.

to produce wider bumps for illustrative purposes; how-
ever, this is not necessary for bump generation. A bump
of activity in a uniform architecture is shown in Fig. 4.

In a balanced random architecture, each E-cell re-
ceives five tickler inputs coming from J -cells randomly
selected from within ±14 places of it. As in Sohal
and Huguenard (1998), cells with identical numbers of
tickler inputs have identical maximal GABAB conduc-
tances. We scale the conductances of inputs to E-cells
near the ends of the E-chain so that the maximal tick-
ler input strength to all E-cells is identical. A bump of
activity in a balanced random architecture is shown in
Fig. 5.

In an unbalanced random architecture, each J -cell
sends out five tickler inputs to a random set of E-cells
within ±14 places of it. A J -cell may send more than
one of its ticklers to the same E-cell. A bump of activ-
ity in an unbalanced random architecture is shown in

Fig. 6. We did not scale the inputs to E-cells near the
ends of the E-chain for this architecture because by
design, different E-cells receive input from different
numbers of ticklers. Note in Fig. 6, however, that we
simulated sufficiently large networks that the bumps
did not interact with the ends of the chains of cells
(also see Appendix A).

3.2. Spread of Activity

Initial conditions were selected with all E-cells at rest.
All J -cells also began at rest except for a small subset
of cells in the middle of the chain; some of these were
started in the active phase and others were started in
the silent phase but not at rest. Alternating excitation
and PIR spread activity from the central J -cells. At the
start of a simulation, the small group of active J -cells
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Figure 4. Activity bumps in A E-cells and B J -cells in the uniform
architecture. Each plot shows voltage levels for cells 10 to 40 in the
center of a chain of 50 cells, with the grey scale shown at the bottoms
of the plots. We have cut off the scale at 10 mV, although voltage may
transiently reach higher levels (see Fig. 3). Initially, cells J23, J24

were excited. These plots show activity after the resulting bump
of width 11 was established, with time (in milliseconds) evolving
downwards. Note that E-cells have a shorter firing duration than J -
cells and that E-cells adjacent to the bump become hyperpolarized
but do not rebound. Parameter values are given in Appendix A.

Figure 5. Activity bumps in A E-cells and B J -cells in the balanced
random architecture. Each plot shows voltage levels for cells 10 to
40 in the center of a chain of 50 cells. B shows how an activity
bump of width 13 developed directly from the start of simulation
with a central group of excited J -cells; A shows the second half of
the simulation shown in B. Note the relative disorganization in firing
times (especially of E-cells, which have a shorter firing duration than
J -cells). Parameter values are given in Appendix A.
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Figure 6. Activity bumps in A E-cells and B J -cells in the unbal-
anced random architecture. Each plot shows voltage levels for cells
10 to 40 in the center of a chain of 50 cells. These plots show activ-
ity after a bump of width 15 was established from initial conditions
with cells J23, J24 active. The location of activity showed a slight
rightward drift before stabilizing. Note the difference in time scales,
selected because E-cells have a shorter firing duration than J -cells.
Parameter values are given in Appendix A.

send GABAA inhibition to the E-cells to which they
are coupled. Since the GABAA wears off quickly after
the J -cells become inactive, the E-cells are able to fire
by PIR. Each E-cell sends excitation back to its part-
ner J -cell, which fires in response if parameters are
chosen appropriately. With the model given in the Sec-
tion 2, GABAA starts to decay soon after the J -cells
become inactive, such that J -cells have little recovery
time before being excited. Thus, for the J -cells to re-
spond, parameters must be chosen such that the excita-
tion from the E-cells is sufficiently strong; the turn-on
of excitation is not too fast; and the J -cells need very
little recovery time before they can fire again (Rubin
and Terman, 2000). This is not difficult to achieve in
simulations.

Since each J -cell inhibits three E-cells, the num-
ber of E-cells that rebound exceeds the number of J -
cells that are initially active. Since each E-cell excites
a distinct J -cell, after one such cycle the number of
active J -cells has grown, and the bump starts spread-
ing. Some previously active J -cells may not recover in
time to fire on the next cycle, and clusters may develop
as discussed in Section 3.4, but this does not interfere
with the spread of activity, and such cells fire again on
later cycles. This mechanism for the spread of activity
is similar to the propagation of spindle waves in tha-
lamic networks (Destexhe et al., 1996; Golomb et al.,
1996; Rinzel et al., 1998; Terman et al., submitted).
However, certain differences arise when our network’s
tickler connections come into play, which we discuss
in subsequent subsections.

3.3. Block of Propagation

The long-range, slowly decaying tickler inputs local-
ize the bumps. This occurs as long as more GABAB

builds up in outlying E-cells than in E-cells involved
in a bump. Note that due to the wide footprint of the
ticklers, outlying E-cells receive GABAB input before
any GABAA input arrives. Although individual tickler
inputs are weak, once enough J -cells are firing, cer-
tain outlying E-cells may receive sufficient GABAB

such that when GABAA inhibition does reach them
and then wears off, they cannot rebound. As long as the
frequency of oscillations of active cells in the bump is
faster than the time scale on which GABAB decays, the
GABAB level of these outlying E-cells is maintained at
a sufficiently high level to suppress their activity. This
suppression acts as a firewall to prevent the spread of
activity beyond these E-cells in the chain. We give a
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mathematical analysis of this block of propagation and
the size of the resulting bumps in Section 4.1.

3.4. Activity Within Bumps

As seen in Figs. 4, 5, and 6, cells within bumps can be
loosely grouped into clusters that alternate firing. Even
within clusters, however, activity is somewhat disorga-
nized, and cluster membership varies significantly over
time in an architecture-dependent manner; indeed, as
we show below, bump existence requires a certain de-
gree of asynchrony in cell activity, as also seen by Laing
and Chow (forthcoming). A GABAA footprint width of
three generally limits the network to the coexistence of
two alternating clusters at any one time.

3.4.1. Cluster Formation. The formation of clusters
within bumps of activity, through the fast decay of
GABAA, is analogous to cluster formation among RE
and TC cells in the spindle sleep rhythm (Steriade et al.,
1993; Wang et al., 1995; Terman et al., 1996; Rubin and
Terman, in press). Suppose that one group of J -cells
fire in the first cycle of oscillations after activity is ini-
tiated in our model and a larger group of E-cells then
fires by PIR, exciting a corresponding group of J -cells.
Once the J -cells fall down from the active phase, the
input to those E-cells that they have inhibited quickly
wears off. Some of the inhibited E-cells had been at rest
and fire as a result (assuming GABAB input does not
stop them). The E-cells that have already fired once,
however, will not have fully recovered yet, assuming
the J active phase is not too long. Hence, they will not
fire on this cycle but will continue towards a rest state in
the silent phase until firing at the next PIR opportunity.

3.4.2. Role of Ticklers. To a large extent, the fre-
quency of oscillations within the bumps is determined
by the duration of the J -cell active phase, since some
E-cells fire as soon as each set of active J -cells returns
to the silent phase. Since GABAA turns off as soon as
J -cells become inactive, it does not contribute to set-
ting oscillatory frequency. Slow decay of tickler inputs,
however, may delay the firing of E-cells and slightly
prolong the period of some cycles.

Tickler connections are also crucial for maintain-
ing asynchrony even within clusters of active cells and
for controlling the extent to which cluster membership
varies over time. In the uniform architecture, after ac-
tivity is initiated within the J -population, all active E-
cells receive similar numbers of tickler inputs, such that

fairly regular clusters develop within a localized bump
of activity through the mechanism described above.

In the balanced and unbalanced random architec-
tures, the randomness in tickler connections leads to
networks with variability in the numbers of tickler in-
puts that E-cells receive from active J -cells. In both
cases, this produces two groups of cells within localized
bumps of activity, with different firing frequencies in
each group. We refer here to “groups” rather than “clus-
ters” because in these architectures, cells with similar
frequencies do not necessarily fire together. E-cells in
the lower frequency group received more of their tick-
ler inputs from active J -cells than did E-cells in the
higher frequency group, giving them a disadvantage in
rebounding when released from GABAA.

In our simulations with the balanced random archi-
tecture, E-cells in one group fired at about 6 Hz while
E-cells in the other group fired at about 3 Hz. Neigh-
boring E-cells could fire together repeatedly before
eventually diverging. The firing patterns of cells in the
balanced random architecture were generally more dis-
organized than those in the unbalanced random archi-
tecture. A simple combinatorial calculation shows that
the balanced random architecture leads to more vari-
ability in the number of tickler connections from active
J -cells to each E-cell, which may cause this extra dis-
organization. In our simulations with the unbalanced
random architecture, E-cells in the two groups fired
at about 4 and 10 Hz, respectively. Moreover, group
membership tended to alternate between neighboring
E-cells, due to GABAA-induced PIR.

3.4.3. Effects of Inhibition Between J-Cells. Since
thalamic reticular cells inhibit each other, we included
inhibition between J -cells in simulations through two
different experiments. We performed these experi-
ments with the balanced random architecture, since it
was observed to be the least conducive to cluster for-
mation. First, after a bump was established, we intro-
duced nearest-neighbor J -to-J inhibition by switching
gJ

A from 0 to 0.5—namely, one half of the strength of
the GABAA inhibitory conductance from the J -cells
to the E-cells. Second, we set gJ

A = 0.5 from the start
of simulation. In both cases, the cells formed clusters
which took turns firing, with neighboring cells of the
same type (E or J ) generally ending up belonging to
different clusters; however, the E-clusters were less
regular than the J -clusters.

It is clear why inhibition between J -cells promotes
clustering (Rubin and Terman, 2000). Suppose several
neighboring E-cells fire. If their firing times vary
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slightly, then some J -cells receive excitation earlier
than others and fire, inhibiting their neighbors in the
J -chain. When the firing J -cells fall down to the silent
phase, they release these neighboring J -cells, along
with the E-cells they inhibited. These previously in-
hibited J -cells are ready to fire in response to excita-
tion, whereas the previously active J -cells still need
to recover, such that an alternation of firing between
neighboring J -cells results.

Some alternation between neighboring E-cells is en-
couraged by the alternation between J -cells together
with the GABAA footprint width of three. That is, the
E-cells corresponding to active J -cells only receive
GABAA from one J -cell each, whereas the neighbor-
ing E-cells, corresponding to silent J -cells, actually
each receive GABAA from two J -cells. This allows
the neighboring E-cells to recover slightly faster than
those E-cells corresponding to active J -cells, such that
they have a slight advantage in rebounding when the
J -cells’ activity finishes.

3.5. Control of Bumps Through External Inputs

3.5.1. Initiation. We performed simulations of the
balanced random architecture with applied excitatory
inputs. Starting with the network in the silent rest state,
application of cortical excitatory input to five central
E-cells initiated a sustained, localized bump of activ-
ity. This bump spread to 12 cells in each population
and then stabilized. As in the other simulations, this
spread occurs through PIR induced by the inhibitory
connections from the J -cells to the E-cells.

Application of excitatory input to central J -cells also
leads to bump initiation, as shown in Fig. 7. However,
when the initial excitation was applied to a larger group
of J -cells, certain central cells in the resulting bump
showed less activity in early activity cycles than did
other cells in the bump. This occurs because outlying
E-cells adjacent to the excited region are the first to
fire by PIR after the initial excitation, and after they
rebound, the activity must propagate back inward to
the center of the initially excited group.

3.5.2. Termination. Once a bump was established, it
could be terminated by application of a brief cortical
excitatory input to all E- or J -cells, as shown in Fig. 8.
This input caused all the cells in the excited population
to fire together. When all E-cells were excited, all J -
cells fired in response. In both cases, network activity
ceased after the J -population fired.

Figure 7. Initiation of activity via applied excitation. A network
with the balanced random architecture was simulated with initial
conditions at rest. After 100 ms, gctx′ was set to 1.0 for cells
J24, J25, J26, J27, J28 to simulate cortical excitation to those cells.
The cortical input was removed by returning gctx′ to zero after
100 ms, and an activity bump developed.



322 Rubin et al.

If a sufficiently large subset of J -cells was excited to-
gether (either directly through Ictx′ or indirectly through
Ictx to the corresponding E-cells), then under appropri-
ate parameter choices, activity still terminated. Cortical
input to only a small subset of the active cells in the
appropriate population did not prove sufficient to ter-
minate activity, however.

3.5.3. Translation. If a network represents thalamic
head-direction cells, then bumps of activity within that
network should move in concert with the head. That is,
there should exist a mechanism to induce translation of
established bumps.

We attempted to induce translation of established
bumps in our various network architectures, with re-
sults depending on the architecture simulated. In the
uniform architecture, we set gctx = 1 (gctx′ = 1) for
100 msec for the E-cell (J -cell) adjacent to one side
of the bump. This caused the absorption of that cell
and the corresponding cell in the other layer into the
bump along with the removal from the bump of the
pair of cells at the opposite edge of the bump (see
Fig. 9). By experimenting with the nature of the cur-
rent applied, we found that application of excitatory
input to J -cells produced more robust bump transla-
tion than input to E-cells. This is consistent with the
IPSP dominance in TC cells in thalamocortical net-
works (Destexhe et al., 1998, 1999), which implies
that cortical excitation to RE cells has a stronger ef-
fect than that to TC cells, such that cortical inputs to
RE cells would likely be used for bump control. In-
duction of bump translation in random architectures
was less successful. This coincides with past obser-
vations that heterogeneous input interferes with trans-
lation invariance of bumps (Tsodyks and Sejnowski,
1995).

We also achieved bump translation via less narrowly
focused inputs, with input timing set independently of
E- and J -cell activity. After a bump was established,
we set gctx′ = 1 for sets of 5 J -cells for 10 msec inter-
vals out of each 50 msec, with gctx′ = 0 for all J -cells
during the other 40 msec. As we slid the target set of J -
cells receiving these inputs through the J -population,
the center of the bump of activity of E- and J -cells
slid to follow the input location, while the bump itself
remained wider than 5 cells. This translation worked
at both sliding speeds—namely, 1 E-cell per 100 msec
and 1 E-cell per 150 msec—that we tried (data not
shown). This issue will be explored further in future
work.

Figure 8. Termination of activity via applied excitation. In simu-
lation of the balanced random architecture with a bump of activity,
gctx′ was set to 0.1 for 50 ms to simulate cortical excitation to J -cells.
E-cells were hyperpolarized by resulting J -cell firing, and then the
network became silent. Plots show cells 10 to 40 in the center of each
chain.
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Figure 9. Bump translation by applied excitation. In this simula-
tion, a bump of width 11 (cells 20 to 30) was established in a network
with the uniform architecture with no cortical input. From time 1500
to 1600, gctx′ was set to 1 for J -cell J31. This caused J31 and E31

to join the bump and eliminated J20, E20 from the bump. Similarly,
application of gctx′ = 1 to J32 from time 3000 to 3100 and to J33

from time 4000 to 4100 allowed J32, E32 to replace J21, E21 in the
bump and then J33, E33 to replace J22, E22 in the bump, and so on
(however, at some later stages, excitation was applied to more than
one J -cell to translate the bump effectively). Note that at each stage,
excitation did not spread beyond the new cell added.

4. Analysis and Mechanisms

4.1. Block of Propagation and Bump Size

Here we derive an analytic expression for the size of
the bump. This will not be a perfect estimate quantita-
tively, but it performs reasonably well. Most important,
the associated analysis elucidates the mechanism for
propagation block, including the roles of biophysical
parameters in Eqs. (1) and (2) and associated synaptic
currents, in this mechanism. We can attain this insight
because we use the conductance-based formulation of

Eqs. (1) and (2) and incorporate synaptic dynamics (see
also Appendix B). Recall from Section 3.3 that propa-
gation of activity is blocked if outlying E-cells receive
sufficient GABAB inhibition to prevent cells from re-
bounding when GABAA inhibition wears off. Hence,
to estimate the bump size, we need to compute two
things: (1) the amount of GABAB inhibition each cell
receives if the bump is of a given size and (2) the amount
of GABAB inhibition that is required to prevent a cell
from rebounding.

In what follows, we consider the continuum limit
of Eqs. (1) and (2) as the number of cells in each
population becomes unbounded. Thus the variables
v, y, w, z depend on space and time. In this limit, the
GABAA input to the E-cell at position x and time t is
given by IA(x, t) = gA(v(x, t) − vinh)

∫ ∞
−∞ WA(x −

y)sA(y, t) dy for a weight function WA(x), and inputs
IB(x, t), IA′(x, t), IE (x, t) have similar forms. We
assume that the bump is of size L , to be determined,
and cells within the bump correspond to 0 < x < L .

Assume that a bump solution exists and that GABAB

inhibition wears off slowly. This implies that to
a first approximation, the GABAB conductance is
time-independent—call it S(x, L). Hence, we can set
IB(x, t) = S(x, L)(v(x, t) − vinh) for

S(x, L) = gB

∫ L

0
WB(x − y) dy.

Let σL = S(0, L) = S(L , L). One can evaluate the in-
tegral explicitly if WB is simple enough. This is done
later for the case of a square, off-center architecture.

We next determine an expression for how much
GABAB inhibition is required to prevent a cell from re-
bounding. We first recall the mechanism for PIR (e.g.,
Rubin and Terman, forthcoming). While a silent cell
receives GABAA inhibition, its (v, h) values lie on
the left branch of the v-nullcline corresponding to the
total inhibition level it receives. At some time, sup-
pose that its GABAA inhibition is removed. Then, un-
der the dynamics of (1), its (v, h) values quickly jump
toward the v-nullcline corresponding to setting IA = 0
and keeping IB constant. If the trajectory lies above
the left knee of this new nullcline, then the cell will
jump up; if it lies below the left knee, then the cell will
be unable to rebound (see Fig. 10). This observation
separates cells into those that fire in response to the
removal of GABAA inhibition and those that do not,
based on the level of GABAB input they have received.
It is this dichotomy that we use to estimate bump size
below.
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Figure 10. Diagram illustrating firing by post-inhibitory rebound
(PIR) and block of rebound. In A, when inhibition is applied (sA

raised from 0) to an E-cell at rest, the cell approaches a new fixed
point. Then, when inhibition is removed, the dynamics of the v-
equation in (1) carry it to the right branch of the v-nullcline corre-
sponding to sA = 0: it rebounds. In B, when inhibition is applied,
the E-cell approaches a new fixed point. But, since this fixed point
lies below the left knee of the sA = 0 v-nullcline, the cell cannot
rebound when inhibition is removed.

We introduce some notation. Let YFP(S) and YLK(S)

denote the y-coordinates of the fixed point and left
knee, respectively, along the left branch of the cubic
with total inhibitory input S. We denote by σA the
level of GABAA inhibition that each cell receives dur-
ing a cycle in which it is silent. Note that σA should,
in general, depend on both space and time; however,
we will ignore this dependence. This is discussed in
more detail later, when we derive an explicit expression
for σA.

It follows that a bump exists with size L if

YFP(σA + σL) = YLK(σL) (3)

as illustrated in Fig. 11, and

YFP(σA + S(x, L)) > YLK(S(x, L)) for 0 < x < L .

(4)

Figure 11. Diagram illustrating the amount of GABAB inhibition
at the edge of a bump. For fixed σA , this amount, σL , is exactly the
level of inhibition such that YFP(σA + σL ) = YLK(σL ).

Note that (4) implies that cells within the bump are able
to rebound, while (3) implies that the boundary of the
set of such cells is at x = 0 and x = L .

Consider (3) only for the moment. We find sufficient
conditions so that if σA is fixed, then there must exist a
solution of (2) for some σL . Note that YFP(S) < 1 for
all S; moreover, we show in Appendix B that YLK > 1
for S sufficiently large. It then follows that YFP(σA +
σL) < YLK(σL) if σL is sufficiently large. We assumed
in Section 2 that if E-cells receive sufficient GABAA

inhibition, then in the absence of GABAB, they can
rebound once their GABAA input is removed. Assume
that σA represents sufficient GABAA inhibition for this
rebound. Then, YFP(σA) > YLK(0). It now follows that
there must exist a solution of (3) for some σL .

To obtain an explicit expression for the solution σL ,
we need to have expressions for the curves YLK(S) and
YFP(S). Suppose that YLK(S) is linear—say,

YLK(S) = yLK + αS. (5)

This is usually a good approximation, and it is not dif-
ficult to estimate yLK and α for a given model (see
Appendix B). Recall that YFP(S) < 1 for all S. Hence,
YLK(σL) is strictly less than one, which gives the a priori
bound

σL <
1 − yLK

α
.

We next assume that YFP(S) is linear as long as
YFP(S) is not too close to 1—say,

YFP(S) = yFP + βS. (6)

Our rebound assumption implies that yFP < yLK , and
we assume now that β < α. This latter assumption
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is reasonable since Y ′
FP(S) → 0 and Y ′

LK(S) is quite
large for large S, as discussed in Appendix B. Then (3)
together with (5) and (6) imply that

σL = min

{
yFP + βσA − yLK

α − β
,

1 − yLK

α

}
(7)

as illustrated in Fig. 11. We note that yFP + βσA > yLK ,
since YFP(σA) > YLK(0).

We now consider σA. Recall that this is the level
of GABAA inhibition that the cells receive while they
are silent. We suppose that the architecture is such that
GABAA has a square wave footprint—say, WA(x) = 1
if |x | < λA and WA(x) = 0, otherwise. We also assume
that at any given time, a certain fraction of the cells
are active. We denote this fraction by ρ. For example,
if the network breaks up into two clusters that take
turns firing, then ρ = 1/2. It follows that the GABAA

inhibition that the cells at x = 0 and x = L receive is
σA = ρgAλA/2.

Finally, we need an explicit expression for the
amount of GABAB input a cell receives from a bump of
size L . We then substitute this expression for σL into (7)
to obtain a formula for the bump size. We suppose the
network has a square, off-center GABAB architecture.
That is, there exist positive γ and ω such that WB(x) = 1
if γ < |x | < γ + ω ≡ λB and WB(x) = 0, otherwise. We
will assume that λB > λA. Then a straightforward cal-
culation demonstrates that

(a) If L > λB , then S(x, L) = ωgB for 0 < x < L −λB

and S(x, L) < ωgB for L − λB < x < L .
(b) If γ < L < λB , then σL = gB(L − γ ) and

S(x, L) < σL for 0 < x < L .
(c) If L < γ , then S(x, L) = 0 for 0 < x < L .

We note that the level of GABAB inhibition within the
bump must be largest at the bump’s boundaries—that is,
we must have S(x, L) < σL for 0 < x < L . Therefore,
the size of the bump must satisfy (b) above; in this case
σL = gB(L −γ ). If we substitute this into (7), then we
obtain the desired formula for the bump size—namely,

L = γ + 1

gB
min

{
yFP + βρgAλA/2 − yLK

α − β
,

1 − yLK

α

}
.

Remarks:

1. Since L < λB , this leads to a lower bound on the
maximal GABAB conductance gB .

2. Similar analysis can be done for nonrandom dis-
crete tickler architectures, such as the uniform
architecture.

3. A numerical example of these curves, together with
trajectories of a cell that belongs to a bump and a cell
outside of the bump, appears in Fig. 12. Note that
the assumptions of linearity on YLK(S) and YFP(S)

are accurate locally: YFP is approximately linear at
least up to about y = 0.6 and, after an initial non-
linearity, YLK is quite close to linear. Note too that
if the cells’ positions are not close to YFP(S) when
GABAA turns off, as in Fig. 12, then yFP should be
replaced by a smaller parameter found by translat-
ing the critical point curve to the cells’ turn-off po-
sitions. Numerical estimate of parameters in (7), to-
gether with this translation, yields σL ≈ .21, which
only slightly overestimates the value of s for the
silent cell after GABAA turns off in Fig. 12. Divi-
sion by the small parameter gB in the estimate for
L magnifies errors in σL . In typical simulations, the
formula nonetheless overestimates bump size only
by about 2 cells.

4.2. Bump Termination via External Inputs

Consider a bump of active E- and J -cells. If Ictx is
applied to all E-cells, causing all E-cells to fire, then all
J -cells fire in response. The E-cells then return to the
silent phase before the J -cells but cannot rebound when
the J -cells later inactivate and the GABAA input to the
E-cells turns off. Hence, activity terminates. Unlike
the synchronization instability of the bumps in (Laing
and Chow, forthcoming), this synchronization-induced
silence is not solely controlled by synaptic timescales.
Indeed, it can work through two different mechanisms,
one depending on intrinsic E- and J -cell properties
instead of synaptic timescales.

This intrinsic mechanism for synchronization-
induced silence occurs for a choice of parameters such
that the J active phase is short. If the J active phase
lasts a sufficiently short time, then E-cells cannot re-
cover sufficiently for PIR. A second, synaptic mecha-
nism for this activity termination arises through tickler
inputs when the J active phase is not so short. When
all J -cells fire and stay active for a sufficiently long
time, all E-cells receive tickler inputs. The resulting
GABAB inhibition to the E-cells persists beyond the
fast turn-off of GABAA. It is known that a slow decay of
inhibition in a synchronized E-cell population can lead
to absence of subsequent activity (Rubin and Terman,
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Figure 12. Dynamics of E-cells in the silent phase. The solid lines denote the critical point curve {y = YFP(s)} and the jump-up curve
{y = YLK(s)}, respectively. The other curves are trajectories of E-cells generated by (1) with fixed GABAA input but different levels of GABAB

inputs. When GABAA turns off, both E-cells experience rapid drops in their total synaptic inputs s, as indicated by the dashed lines. (Note that
s here denotes gAsA + gB sB .) The active cell (dashed curve) hits the jump-up curve at some (y, s) ≈ (0.35, 0.18) and then jumps to the active
phase where its y value begins to decrease (also shown as the part of the dashed curve below the jump-up curve). The tickler input to the silent
cell keeps its s value around 0.2 (corresponding to sB ≈ 5 since gB = 0.04), and it stays just above the jump-up curve. Thus, the silent cell
(dash-dotted curve) remains in the silent phase, where its y value decreases as it approaches the critical point curve from above.

2000) (although it can produce synchronized activity
under other parameter choices; see Wang and Rinzel,
1993 and Terman et al., 1998). Similar mechanisms un-
derlie the termination results, presented in subsection
3.6.2, when J -cells receive cortical excitation. For ex-
ample, in Fig. 8, some E-cells that are hyperpolarized
due to cortical excitation of the J -cells are prevented
from rebounding by ticklers.

4.3. Bump Translation via External Inputs

The mechanism for bump translation via localized ap-
plication of cortical input involves tickler connections
in two ways. First, the activity of the externally ex-
cited cell that joins the bump must cause activity to

cease fairly quickly in an E-cell on the other side of
the bump. This occurs through the added tickler input
from the newly active J -cell. Of course, excitation of
multiple cells may be required for bump translation
when changes in activity and corresponding tickler in-
puts due to excitation of single E- or J -cells are insuf-
ficient to achieve this suppression. Second, the activity
must not spread to previously silent E-cells adjacent to
the newly active E-cell. This spread is blocked by tick-
lers from the various active J -cells in the translated
bump. Both of these effects are displayed in Fig. 13
and can be analyzed with similar calculations to those
in Section 4.1.

An analogous mechanism leads to translation in our
experiments with less narrowly focused sliding inputs.
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Figure 13. Tickler inputs in bump translation. In this simulation, current was applied to E-cell 32 in a chain during time 3000 to 3100, bringing
it into an established bump of activity and pushing out E-cell 21. Top plot shows sB for E21 (solid), E32 (dashed) and E33 (dotted), while the
middle plot shows IB for these cells. The bottom plot contains the same data as the middle plot, but we have zoomed in on the lower range of
IB values. Note that the active cell among the three has lowest sB . IB to the cells is more variable; however, as the bottom plot shows, only the
active cell ever has its IB drop below a certain level.

There, periodic driving to a target zone that slides
through the J -population knocks out activity in one or
more (but not all) previously active J -cells and easily
prevents extra silent cells, adjacent to newly recruited
ones, from becoming active.

Translation via highly localized inputs often failed in
random architectures. This can occur because an inac-
tive cell that is excited outside one side of the bump may
not affect cells on the other side of the bump, given the
irregularity of the tickler connections in the network.
In both types of random architecture, the probability
that a central E-cell (i.e., an E-cell not within 14 units
of the edge of the E-chain) receives no ticklers from a
given J -cell within ±14 units of it is (28/29)5 = .8391.

We did not systematically explore changes in activity
in unsuccessful translation attempts or stimulation of
individual cells away from the edges of bumps.

5. Discussion

We have considered a model network of reciprocally
connected excitatory and inhibitory cells, representing
a minimal RE-TC thalamic network. Our model incor-
porates biophysical representations of thalamic cells
and the synaptic coupling between them, with a vari-
ety of connection architectures. In this setting, we show
that thalamic networks can support stable localized
bumps of sustained oscillatory activity. These bumps
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spread and persist through recurrent, alternate volleys
of excitation and localized fast inhibition, which in-
duces post-inhibitory rebound. They are localized by
long-range slow inhibition. Activity within the bumps
is clustered but disorganized; synchronization elimi-
nates activity. Computational HD cell models based on
classic voltage-based (Amari, 1977) or activity-based
(Wilson and Cowan, 1973) population models (Redish
et al., 1996; Zhang, 1996) require recurrent excitatory
connections (Ermentrout, 1998; Blair, 1996), which are
not known to exist in the thalamus, to support such
solutions. Our model yields bump attractors without
including such connections.

Occurrence of bump attractors in past models also
may require a sufficiently fast membrane time constant
for inhibitory cells (Redish et al., 1996) or a sufficiently
fast time constant for inputs to these cells (Ermentrout,
1998). Moreover, these models do not take into account
synaptic delays or refractoriness of cells. By consider-
ing conductance-based membrane potential equations
and dynamic synaptic conductances, we incorporate
more temporal details into our network dynamics. In
particular, our model takes into account the states of
cells (e.g., active or silent) when evaluating how they
are affected by the synaptic inputs they receive and
allows for synaptic inputs to persist after the corre-
sponding presynaptic cells become inactive, when ap-
propriate. Thus, we can clarify the roles of various
biophysical features (e.g., the parameters that control
nullcline shapes and the durations of various phases of
cellular activity) in the mechanisms for bump genera-
tion, maintenance, and spread. We also obtain more de-
tailed information about the activity of cells belonging
to bump solutions, beyond their firing rates or averaged
voltages. These results offer an important example of
how inhibition is useful in generating complex activity
patterns in bursting cells and highlight the importance
of the timescales of inhibitory synaptic dynamics in
pattern formation.

Since HD cells in ATN cease discharging without
volitional input (Taube, 1995), model networks should
include mechanisms for bump generation and bump
elimination. Since all cells in our model are intrinsically
silent, we have bistability of bump solutions with a co-
existent stable silent state of no activity in the network.
This contrasts with previous HD models, in which ac-
tivity bumps develop from random or arbitrary initial
states (Redish et al., 1996; Zhang, 1996). We demon-
strate bump elimination, through synchronization ini-
tiated by a widespread transient excitatory input, and

bump generation, through a transient excitatory input
to a small group of cells; both can be achieved via input
to either population in the network.

While nearby cells in the chains in our model are
active at the same time, this does not contradict the
finding that some nearby HD cells in ATN have dif-
ferent preferred directions (Taube, 1995). The cells in
our model should be interpreted as a group of cells that
share synaptic connections, representing only a subset
of a larger overall cell population. Correspondingly, the
cells in our chains are ordered by connectivity, not by
actual spatial location. The cells involved in the activ-
ity patterns we have described can thus be scattered
throughout a spatial region.

Our finding that the firing rates of cells are not con-
stant across a bump of activity is consistent with ex-
perimental measurements of HD firing in ATN (Taube,
1995). Our model does not, however, reproduce certain
other features associated with HD firing. For example,
while we present a mechanism for changing member-
ship in bumps, we do not consider how connections de-
crease a cell’s firing rate as the head moves away from
the center of its preferred firing range. Indeed, unlike
bumps in previous computational studies (e.g., Amari,
1977; Ermentrout, 1998; Laing and Chow, forthcom-
ing), our bumps do not show a smooth, pulse-like pro-
file of activity across the cells within the bump, with
activity levels decreasing near the edges; instead, each
cell in our simulations of bump translation essentially
fires at a fixed nonzero rate or a zero rate. Further, our
model does not produce a nonzero background firing
rate for cells outside of their preferred ranges. Both of
these features might be attainable with the inclusion of
additional randomness and noise in the model. For ex-
ample, fluctuations in tickler conductances could allow
certain cells to fire less frequently as the head neared
the outskirts of their preferred ranges. Even without
noise, weak excitation to an appropriate part of the net-
work could possibly decrease a certain cell’s firing rate,
through increased tickler inputs, while stronger excita-
tion would eliminate that cell’s activity, as seen in our
bump translation results. Careful investigation of these
issues remains for future consideration.

We did not try to reproduce quantitative details of
HD firing rates, to estimate the widths of preferred fir-
ing ranges, or to compute speeds of responses to change
in inputs. Our aim was to develop and explore a mini-
mal thalamic network model that supports bump activ-
ity. Correspondingly, details of how external (visual)
cues or vestibular inputs affect the ATN head direction



Localized Activity in a Thalamic Network 329

system and consideration of its interactions with the
PoS are beyond the scope of this work.

Appendix A: Numerics

In Eqs. (1) and (2), the voltage-dependent functions
take the form X∞(v) = 1

1+exp[(v−θX )/σX ] , where X can

be m, y, or z, and τX (v) = τ 0
X + τ 1

X
1+exp[(v−θτ

X )/σ τ
X ] where

X can be y or z.
We model the GABAA inhibitory current to cell Ei

by IA = gAsA = gA(
∑

j s j )(vi − vinh) and, similarly,
the GABAB inhibitory current to Ei by IB = gBsB =
gB(

∑
k sk)(vi − vinh). The sums in these expressions

are taken over the J -cells that are coupled to cell Ei

via GABAA and GABAB, respectively. Each synaptic
variable s j (sk) depends on the voltage w j (wk) of the
j th (kth) J -cell.

Since GABAA turns on and off relatively quite
quickly in response to changes in presynaptic mem-
brane potential, we choose the specific form IA =
gA(s∞(wi−1)+ s∞(wi )+ s∞(wi+1))(vi − vinh), where
s∞(v) = 1/(1 + exp(−(v − θA)/σA)) for constants
θA, σA, in our simulations. Here cell Ei receives in-
puts from cells Ji−1, Ji , Ji+1. The parameter vinh is
such that (v − vinh) > 0, and hence GABAA input
affects E-cell v-nullclines as shown in Fig. 2. Alter-
nately, our synaptic variables sk evolve according to
s ′

k = αF(wk)(1 − sk) − βsk for a monotone increas-
ing nonlinear function F . Experiments have shown a
delay between the firing of an RE cell and the GABAB

inhibition of coupled TC cells (Golomb et al., 1994;
Huguenard and Prince, 1994; Destexhe and Sejnowski,
1995). Hence, in our simulations, we use the slow, in-
direct scheme of Golomb et al. (1994), developed to
replicate these effects, for F in IB .

The GABAA current IA′ to the i th J -cell has the form
IA′ = gA′sA′ = gA′(

∑
j s j )(wi −vinh), where the sum is

Table 1. Basic set of parameter values for the conductance-based E-cell model.

Parameter Value Parameter Value Parameter Value Parameter Value

gCa 1.5 vCa 90.0 θm −45.0 σm −9.0

gL 0.2 vL −60.0 θy −72.0 σy 5.0

τ 0
y 100.0 τ 1

y 500.0

θτ
y −78.0 σ τ

y 3.0

gA 0.5 vinh −80.0 θA −40.0 σA 2.0

gB 0.03 α 2.0 β 0.002

gctx 1.0 vctx 0.0 φ 0.75

over the J -cells inhibiting cell Ji . The excitatory input
from E-cells to cell Ji also turns on and off quickly and
hence we model the resulting excitatory current as IE =
gE sEi (wi−vexc)where s ′

Ei
= αE k∞(vi )(1−sEi )−βksEi

for relatively large constants αk, βk . We take k∞(v) =
s∞(v) for simplicity. The parameter vexc is such that
(w − vexc) < 0, and hence E-cell input to J -cells
affects their w-nullclines as shown in Fig. 2.

Finally, cortical inputs to E-cells generate a current
that we model as Ictx = gctx(v − vctx ) for constants
gctx, vctx. We allow the strength of gctx to vary within
the E-cell population. Cortical inputs to J -cells take
an analogous form.

Parameter values used in simulations of our model
are given in Tables 1 and 2. These do not include units
because for our qualitative results, only relative param-
eter sizes are relevant. Note that for simulations with
the random networks, we used gA = 1.0, gB = 0.04
instead of gA = 0.5, gB = 0.03.

Appendix B: Formulas for Curves
of Fixed Points and Knees

The analysis of bump size in Section 4 relies on com-
parison of the rest states that E-cells approach in the
silent phase while inhibited to the knees of the appropri-
ate nullclines as inhibition wears off. Thus, it is useful
to examine how one can compute locations of curves
of fixed points and knees, as well as the slopes of these
curves.

First, we need to define mathematical representa-
tions of certain features in (v, y) phase space. Write
the first equation in (1) as

v′ = f (v, y) − gsyns(v − vsyn) ≡ F(v, y, s) (8)

where the gsyn term subsumes all synaptic currents
to the E-cell. We can do this by defining s = sA +
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Table 2. Basic set of parameter values for the conductance-based J -cell model.

Parameter Value Parameter Value Parameter Value Parameter Value

gCa 1.5 vCa 90.0 θm −45.0 σm −7.4

gL 0.2 vL −65.0 θz −72.0 σz 5.0

τ 0
z 100.0 τ 1

z 500.0

θτ
z −78.0 σ τ

z 3.0

gA′ 0.5 vinh −80.0 θA −40.0 σA 2.0

gE 0.1 vexc 0.0 αk 2.0 βk 0.1

gctx ′ 1.0 vctx ′ 0.0 ψ 1.0

gBsB/gA and gsyn = gA. The left branch of the corre-
sponding v-nullclines can be denoted by v = �(y, s),
where F(�(y, s), y, s) = 0. Note that the location of
this curve depends on s.

We have assumed that there is a critical point of (1)
on the left branch for each s. This is given by taking
v = �(y, s), such that v′ = 0, and solving

y∞(�(y, s)) − y = 0 (9)

such that y′ = 0 in (1); this is easily done numerically
(see Fig. 12). Label the solution curve {y = YFP(s)}.

Differentiating equation (9) with respect to s for y =
YFP(s) yields the equation

Y ′
FP(s) = (∂y∞/∂v)(∂�/∂s)

1 − (∂y∞/∂v)(∂�/∂y)
.

Since y∞ is a monotone decreasing function of v, con-
sideration of (8) and (1) shows that Y ′

FP(s) > 0. Fur-
ther, since y∞ → 1 as the E-cell is hyperpolarized,
∂y∞/∂v → 0 and Y ′

FP(s) → 0 as well.
The knees of the v-nullcline are defined by the con-

dition fv−gsyns = 0, with the left knee given by solving
this equation for v = �(y, s). Denote the resulting so-
lution curve by {y = YLK(s)}. We can solve numerically
and plot this so-called jump-up curve in (y, s) space;
we can then track the evolution of E-cells in the silent
phase in this space, as shown in Fig. 12. When a trajec-
tory of a cell hits {y = YLK(s)}, the cell fires an action
potential and jumps up to the active phase.

Differentiating the equation F(�(YLK(s), s),
YLK(s), s) = 0 with respect to s yields an equation for
Y ′

LK(s) [see also (Rubin and Terman, 2000)]. For the
specific currents in (1), this is given by

Y ′
LK(s) = gsyn(� − vsyn)

−gCam2∞(�)(� − vCa)
,

which, as the ratio of two positive quantities, is posi-
tive. Note that m∞(�) approaches zero, such that this
derivative becomes quite large, as the cell becomes hy-
perpolarized.

The curves YFP, YLK can be obtained numerically
(see Fig. 12), along with the various quantities in the
formulas for their derivatives.
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