Coupled differential equations

Example: 4/1/2018
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d);l =a; Yy, + a12y2+b1 (X)

d

%:a21y1+a22y2+b2 (X)

Consider the case with b, =b, =0

d(y a, a, (Y One way to address this sort
dtly,) la, a,)ly, of problem, is to find the

dt

dy eigenvalues of the matrix
A

o Ay =y =¢€vy, and transform to the
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with the proper choice of P, we can diagonalize A

PAP = Fl 0 }
0 4,

z
(i)
X X L N\Z Note: A might not be Hermitian (or even

dz, _ o aAX symmetric). In such a case P! can be
- ﬂlzl — 7, =C¢€ . . .
dx determined using cofactors and the determinant

dz, (See updated notes on Matrices)

o A,2, = 7, =C,e™%

to find y multiply z by P

y =Pz



Example dy,

&:y1+2y2
d
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y = —_— —_—
2\-1 1){c,e* 2\ —ce ™ +c.e*
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y, = —2(cle +c,e° )

L7 i(—cle‘X +3c,e™ )

dt /2

Y, +2y, =ce +¢,e¥ +2(—ce +¢,e¥) =—ce +3c,e” Consistency check



Higher order differential equations can be converted to systems of first-order equations

2
Consider m%Jr kx =0

2

CEL

dt® m

dt

Then

dv  k Thus, we have converted 2"-
—V+—X =0 order differential equation to
e m two coupled first-order
ax_ -0 equations
dt
d [vj ( 0 k/mj(vj Initial conditions
dt X —1 0 X X(O):XO V(O):VO

Can solve using matrix techniques

Can also solve numerically using Euler or Runge Kutta methods



Consider Euler

x(0) At Note: could also use x; at this point since
the first equation gives a new value of x.

See posted handout as to how to solve
numerically with Mathematica



Power series solutions to differential equations

d
E.g. & Ky | suppose we didn't know how to solve this

dt

Write y=a,+at+a,t’+..=> at"
n=0

%:ai+2a2t+3a3t2+...:k[ao+a1t+a2t2+...]:>

(a, —ka,)+(2a, —ka, )t +(3a, —ka, )t*+...=0

For this to be satisfied in the general case, each

term in parentheses must be 0.

= a, =ka,
1,1
a, =—ka, = =k?
2 =5k, =2k,
1 1 1
= ~Ka, =—k%a, = —K°
BT T AT
y -4, [1+kt+1(kt)2+1(kt)3..}
2 6
y =a.e"

t=0=>8, =Yy, = Y =Y,e"

The eq. expressing the high order
coefficients in terms of lower order
coefficients is called a recursion
relation




Now lets treat the quantum mechanical
particle-in-the-box problem
—h* d?
—Y=Ey, 0<x<a
2m dx? v

Inside the box

dar o oo 2ME
a dX2 4 v, hz

2

dy
dx’
[ 22, +3:28,x+4:3x" +... | +a| @, +ax+a,x’ +... |

+ay =0

2a, +aa, =0—>a, =—%a0

6a3+o:a1=0—>a3=—%a1

recursion
a a’ lati
12a,+ea,=0—>a, =-— a, = a, relations
43 4e3e2
2
a a
20a. +aa, =0—a. =— _
5 a3 5 5.4a3 5.4.3.2 a1



—a|1-%x2y a’ x4 ra  x—Zxd a —
V=% 2 fe3e2 T A 3e2 Gele3e2

We also know w(0)=0=a,=0
3 5
Note Sin(kx):kx_&_{_&_
3! 5!
k?x®)  Kk4x
lsin(kx):x—u+k—x—...
K 3! 5!
1 A let 2 —
l/l—ﬁ|:\/gx— 3 + g —...}—Esm(kx) a

Apply boundary condition at x = a

Jaa= nﬂ:ﬁz%
sin(kx)=sin(%]

a
2mE  n?z?
T T
n®z%h®>  n’h?
E, = =gy N=123..

but

n=1: E,y,
n=2: E, vy,

etc.



Now consider the quantum harmonic oscillator

h* d? 1
e T2V
d’y mk 2mE
o YT Y
d’y
dx?

try w — e—ax2

+ax’ =ey

y' = —2axe ™

p" =(-2a+4a’x’) e =
~(—2a+4a’%* )+ax’ =¢

e=2a, a=4a°

2
2sz _0a, E=-/"2
h m
o _Na _Jmk
2 2h
2
g ymk _Jkn_ 1, 1.

m 2h m2 2 2

We will see later how we can
solve for the excited state.

What would be reasonable guess
for the wave function of the first
excited state?

: —ax?
For a general solution, we couldtry w =€ [a,+aX+...]



Non-linear differential equations
Logistic equation

Ccli_? =eA—0oA?,  A=population

&A > population growth

2 . . oy
—cA” Intraspecies competition for resources

In the absence of the oA’ term

dA
—=—cA = A= Ae"
dt %



Critical points (equilibrium points)

dA

—cA—0cA?,
dt

eA—o A’ =0
= A=0,

or A=¢lo

if A0 ore/ o

dA

— =t
sA— oA’

1 (A‘i)‘A
1, _
A aft A(A—gj
(o2 (o2
&
-Z )
& ~A’c+eA



—8/(7+A_
A
—¢lo+A=Ace™

A(ce‘gt —1) =—-<¢lo

Ce—gt

Ao elo
C1-ce™

A(0)=A,

,%:iii—) (I-c)A =¢lo
A =A-¢lo
coh-¢lo

A

A =0=>A=0

A =¢lo= A=¢&/o carrying capacity

With either of these initial
conditions, the population
does not change with time




efo
————

— ‘\x A=dda(t)=¢lc
|:8 O'Ao}egt

From Boyce and

- DiPrima
/A= $1(t)=0
. . . 0 —_—t
As t—>wo A— ¢glo = carrying capacity (if A #0) SCURE ST QA = o — i 0,05 0,
Limiting behavior can often be established f;:l
without solving the differential equation \
Consider plot of dA/dtvs. A, £>0, &>0 From Boyce and
elo e SRR DiPrima
if dA/dt +, A increases toward ¢/ o 0] —— \ — :
if dA/dt -, A decreases toward €/ o

. . . . . . FIGURE 9.2 dA/dt = eA —cA® € > 0,0 > 0.
A =0is an unstable critical point, since if A, is only ft = e el L

infinitesimally >0, the system evolves to ¢/o A y

A=¢/o isan asymptotically stable critical point /
o<0 / From Boyce and

Now consider ¢ <0, — —

_— DiPrima
. I

any start with 0<Ay<e&/o evolvesto 0 i

T
any start with A, > &/ o grows without bound D[«\;\:}&L JAm oo

FIGURE 9.5 dAjdt = ed — ad® e <0,0 <0.




Coupled Non-linear Differential Equations

dx
—=F(X,
dy
—=G(Xx,
Example
dx )
PraalcLisY —a Xy =X(&-oX—a,y) _0, 2" equation & -o,y=0
_ st . _ _
%=ezy—azy2—a2xy=y(sz—o—zy—azx) y=0, 1% equation ¢&-o0,x=0

critical points (x,y)=(0,0), (0,&,/0,), (&/0,,0)
also constant solution if ¢ —o,X—ay and &, -0,y —a,X intersect.
With increasing time:

x increases (decreases) if & —ox—ay  >(<)0
y increases (decreases) if o _ 5 y—q,x >(<)0



Example

dx
—=X(1-x-

ai ~XE7Y)
(11,3,
dt 2 47 4

critical points (0.0), (0.2), (L0), (%%j

In many cases, one can learn about the behavior of the solutions
in the vicinity of the various critical points by linearizing about each critical point

E.g., (0,0)
ooy 1
d dt 2
Xx=e'
y:e0.5t

This is an unstable critical point



Now consider (X, y)=(1,0)

Let x=u+1l y=v

du )
—=-U-V-U‘—uv
dt
dv 1 1, 3
—=—V-—ZV ——uv
d 4 4

Linearize
Qu_ .., Gv_ 1
dt Coodt 4

u= —%Ae‘“4 +Be™’, v=Ae"

This is an asymptotically stable point

©,2) /

From Boyce and
DiPrima

B\

o, 0))/1\ 11, 0)&

FIGURE 9.27a



Specialize to predator-prey problem

d_R:aR_aRF Rabbit
dt assume all constants
are positive
O FyRF Fox
dt

Find the critical points
R(a—aF) =0
F (—C+7/R) =0

critical points  (R,F)=(0,0), [;,;j



dr C C (a j

—=a|—+r|-a|—+r || —+f

dt [7 j (7 ] a

dr ac ca C a

—:—+ar—a[—+—f+—r+rfj
ey 7

dr ac ac ac
—=—+ar——-——f -ar—arf

dt y oy
\/

=8 o
V4

For (r,f) the critical
pointed is shifted to
(0,0)



O FiyRF
dt

df a C a
—:—c(—+ fj+7(—+ rj(—-F f
dt a y a

S +(c+yr)(i+ f
o o

ca ca ya

)

J

=———Cf +—+cf +—r+prf

a [ a | a
:Zir+yﬁ
a

The linearized equations become

dr  ac ;. df::Zfir

dt y o dt o«
0 _%¢
d(r B 4 r
dtlf) | ya o N
o
A =ivac, A =-ivac
So
iact ~i/act
r=ce™ +c,e ™™
f =c,e"* +c,e ™

acya_
Yy o

ﬂ,=+i\/§

+A%+ 0

Eigenvalues
of matrix

Both populations oscillate. If we solve for
the coefficients we will see that, the
rabbit population grows, which causes
the fox population to grow.

Once the fox population gets high, the
rabbit population begins to fall, followed

by a drop in the fox population.

This cycle repeats itself.

Population
F 3

From Wikipedia



