Electron Spin
Chem 2540



In 1925 Uhlenbeck + Groudsmit: postulated that electrons have spin.

There is no classical analog.

In 1928 Dirac showed that relativistic
QM =—> spin

We postulate that spin is associated with a set of operators
that behave like angular momentum operators.
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x> y2z

§2y=s(s+1)h27/

Teigenfunction, possible value of s, 0,1/2, 1, 3/2...

SZV = msh% where m =-s, —s+1,...,s

Electrons have s =14

Photons haves=1

itude of spin
173 5 _ﬁ B magnitu
lééh = 5 /i = angular momentum

of an electron.
m = 12—)05, ms=—y2—),8
S.a=Yina, S.p=-Ynp
Sa=3¥ w'a, $’p=Y,1p

Levine adopts m_ as the spin coordinate

a=a(m): p=p(n)
(@la)=1, (B15)=1. {a|p)

0



In going forward we let d7 denote integration over both spatial and spin
coordinates (since spin is discrete this is actually a sum in this case).

H atom: y/(x,y,z) —> W(x,y,z)a, w(x,y,z),B

The A that we considered for the H atom is independent of
spin, so the (¢ orIB does not impact the energy.

Actually, one cantack onto H a term that couples Z and 5. Inthat case
2 and s cease to be “perfect” quantum numbers (when both are non-zero)

Let {xi,yiazi,msi} =q;

Then for a many particle system i = ¥/ (q2 v q15955---9, )

The Permutation Operator

P12 swaps coordinates of particles 1 and 2

By (99-9-4,)=v(29,-9::--4,)

Interchanging the coordinates of two electrons

The eigenvalues of F,are 1 - _
causes a change in sign of the wave function.



Spin Statistics Theorem

Particles with spin, 1/2, 3/2, etc. are fermions
(antisymmetric wavefunctions)

Particles with spin 0,1,2,...are bosons
(symmetric wavefunctions)

For a system of identical fermions
v (4-9-955-4,) ==V (95-91- 954, )

This = that if two electrons have the same
coordinates (spin and space): |y = 0

Helium atom

-p(1)a(2)]

antisymmetry comes from the spin part of
the wavefunction

ground state 1s(#)1s(n)[ a(1) B(2)

What about the 1s2s excited state?

2(1a(2)
(@) [s(n)25(5) - 25(n)15(5)] () p(2)+ (1)a(2)

A(1)B(2)
@ [ls +2S :”:a 1)05(2)]

For @ the antisymmetry comes from the spin function.

Thisis a singlet state.

For @ the antisymmetry comes from the spatial function.

This is a triplet state.
For the singlet state 5’21// = ()(//, So S=0, MS =(

For the triplet state 521// = 2(1)h21ﬂ, So S =1, MS =-1,0,1



How does this impact the energy?

consider (v | H [y ) = % [[1s(1)2s(2)+25(1)1s(2) JA [ 1s(1) 25 (2) + 25 (1) 15 (2) ] d=
Here we have integrated out the spin. So d7 = df‘{dfz

E, = [15(1)2s(2) A1s(1)2s(2) dz+ [15(1) 25(2) A2s(1)15(2) dz
Now consider (W | |y ) =% [[1s(1)25(2) - 25(1) 1s(2) JAr 1s(1) 25(2) - 25(1) 1s(2) ] d=
=% J1s(1)25(2)As(1)25(2) dr - [ 1s(1) 25 (2)725(1) 15(2) d=

Again the spin has been integrated out.

The 2™ integral is the exchange integral K

K is positive, so the triplet is below the singlet, and the states are split by 2K.



He atom in its ground state: Slaterd

eterminant

= ‘ISE‘ «—

1s(e(1) 1s(1) B(1)
y‘/ils(Z)a(Z) 15(2) 5(2)

Shorthand
nomenclature

= /ﬁ[ls(l)u(z)a(l)ﬂ(z)—1s(1)1s(2
= /ﬁm(l)ls(z)(aﬂ—ﬂa)

The energy can be approximated as

E=(1s(n)1s() 14 15(n)15())

=2E0 + [ s ()| ri\ls(rz)f drdF,
12

=2 +J

1s,ls

1s2s Triplet (1s25 — 2Sls)aa
Singlet(ls2s + ZSls)(aﬁ - ,Ba)

E(N)=E" +E +J

1s,2s

E(S)=E " +E "+,

- K

15,25

+K

$,28 1s,2s

)B(1)a(2)]

J =Coulomb
repulsion




Now lets consider the Li atom

2)|=|1s1s2s]

Note: the short-hand nomenclature
for a Slater determinant

W = %@ 1s(2)a(2) 15((2),[)’(2) 2s

1

Vs

One can show that we only need to consider:

(ISEZS —152sls — 1sls2s + 1s2s1s 4 251s1s — 2SEIS)

(Is1s2s | H |1s1s2s — 1s2sls —1s1s2s +1s2sls + 2slsls - 2slsls)

= <lsﬂ2s | H | 1SE2S> — <1SEZS | H | 25Els>

2Els(0) + E2s(0) + J + 2Jls,2s - KIS,ZS

1s,1s

EO=-2755ev, EW=835evV—o EY+ED =_1920eV

If we optimize the exponents E = -201.2 eV

Note that this can not be
written as a spatial function
times a spin function

It doesn't matter which
of the six terms we
retain on the left.

Exact energy = -203.5 eV



He 1s2s excited states and Slater determinants

/\/5 = y\/g(ISZS—Zsls)aa
0= /\/5 1s2s = y\/z(lsﬁ—%ls) = y\/z(lﬂsaﬂ— ZSIS,Ba)

1s2s
X, = y\/z = yﬁ(EZS — ZSE) = y\/z(ISZS,Ba — 2S1S0(,B)

Note that X, and X2 do not correspond to the singlet and triplet
wavefunctions that we considered previously.

1s2s
Is2s

1525
1s2s

Lets consider: yﬁ(% + Zz)

= % [Ls2sa8 — 2515 fa +152s P — 2515 3]
= Y 1s2s(ep + por) - 2s1s (ap + fa)]
= %(ISZS —2sls)(af + Ba)

which is the M;=0 component of the triplet



yﬁ(% _;(2) = %(152s+2sls)(aﬂ—ﬂa)

is the wavefunction for the singlet.

If we use either x; or X, asthe wavefunction in an electronic
structure code, we would be describing a linear combination
of the singlet and triplet states.

We can treat the triplet with a single Slater determinant,
by using the OX spin arrangement.

Now lets consider the next few elements of the periodic table.

Be atom: ‘ISEZSZ‘ S
B atom: | [isls252s2p| 2p
C atom: ‘1sﬂ2s2_s2 pz‘ 2

The C atom presents the first real challenge

M. '+ 0 -1

There are 15 possible arrangements of the two p electrons



M,=2, M;=0 1D
M,=-2, M;=0 1D
Mz=1,M=1 3p
M,=1, M_=0

(*D,3P)
M,=1, M_=0
M,=1, M;=-1 3P

M,=-1,M=1 3P
M,=-1, M,=0
(*D, 3P)
M,=-1, M =0
M=-1,Mz=1 3P

M,=0, M.=0

M.=0, M=-1 (3P)
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We can immediately see that there is a*D and
a 3P state. This accountsfor1x5+3x3=14

combinations.

This means that there is also a S state.

3D, *P, or 3S would violate the Pauli principle.

There are 3 arrangements with M, =0, M.=0

These give rise to 1D,2S, 3P

There are 3 arrangements with M =0,
M.=1 and one with M=0, M =-1.

These are associated with 3p



PP (0!,3— ,30()
PP (aﬂ_ﬂa)

D

(plpo — Do P, ) aa
3P (PP — PoP) PP
(ppo— Pop, ) (aff + par)

(Plpo + popl)(aﬂ — far) must be *D, etc.



