Electron Spin Chem 2340

In 1925 Uhlenbeck + Groudsmit: postulated that electrons have spin.

There is no classical analog.

In 1928 Dirac showed that relativistic QM → spin

We postulate that spin is associated with a set of operators that behave like angular momentum operators.

$$\hat{S}^2, \hat{S}_x, \hat{S}_y, \hat{S}_z$$

$$\left[\hat{S}_{x}, \hat{S}_{y} \right] = i\hbar \hat{S}_{z}, \quad \left[\hat{S}_{y}, \hat{S}_{z} \right] = i\hbar \hat{S}_{x} \quad \left[\hat{S}_{z}, \hat{S}_{x} \right] = i\hbar \hat{S}_{y}$$

$$[\hat{S}^2, \hat{S}_x] = 0, [\hat{S}^2, \hat{S}_y] = 0, [\hat{S}^2, \hat{S}_z] = 0$$

$$\hat{S}^2 \gamma = s (s+1) \hbar^2 \gamma$$

eigenfunction, possible value of s, 0,1/2, 1, 3/2...

$$\hat{S}_z \gamma = m_s \hbar \gamma$$
, where $m_s = -s, -s+1,...,s$

Electrons have $s = \frac{1}{2}$ Photons have s = 1

$$\sqrt{\frac{1}{2}\frac{3}{2}\hbar^2} = \frac{\sqrt{3}}{2}\hbar = \text{magnitude of spin angular momentum of an electron.}$$

$$m_s = \frac{1}{2} \rightarrow \alpha, \quad m_s = -\frac{1}{2} \rightarrow \beta$$

$$\hat{S}_z \alpha = \frac{1}{2}\hbar\alpha, \quad \hat{S}_z \beta = -\frac{1}{2}\hbar\beta$$

$$\hat{S}^2 \alpha = \frac{3}{4}\hbar^2\alpha, \quad \hat{S}^2 \beta = \frac{3}{4}\hbar^2\beta$$

Levine adopts m_s as the spin coordinate

$$\alpha = \alpha(m_s); \quad \beta = \beta(m_s)$$

$$\langle \alpha \mid \alpha \rangle = 1, \ \langle \beta \mid \beta \rangle = 1, \ \langle \alpha \mid \beta \rangle = 0$$

In going forward we let $d\tau$ denote integration over both spatial and spin coordinates (since spin is discrete this is actually a sum in this case).

H atom:
$$\psi(x, y, z) \rightarrow \psi(x, y, z) \alpha$$
, $\psi(x, y, z) \beta$

The \hat{H} that we considered for the H atom is independent of spin, so the α or β does not impact the energy.

Actually, one can tack onto H a term that couples \vec{L} and \vec{S} . In that case ℓ and s cease to be "perfect" quantum numbers (when both are non-zero)

Let
$$\{x_i, y_i, z_i, m_{s_i}\} = q_i$$

Then for a many particle system $\psi = \psi \left(q_2, q_1, q_3, ...q_n\right)$

The Permutation Operator

 $\hat{P}_{\!\scriptscriptstyle 12}$ swaps coordinates of particles 1 and 2

$$\hat{P}_{12}\psi(q_1,q_2,q_3,...q_n) = \psi(q_1,q_2,q_3,...q_n)$$

The eigenvalues of \hat{P}_{12} are ± 1 Interchanging the coordinates of two electrons causes a change in sign of the wave function.

Spin Statistics Theorem

Particles with spin, 1/2, 3/2, etc. are fermions (antisymmetric wavefunctions)

Particles with spin 0,1,2,...are bosons (symmetric wavefunctions)

For a system of <u>identical</u> fermions

$$\psi(q_1, q_2, q_3, ...q_n) = -\psi(q_2, q_1, q_3, ...q_n)$$

This \implies that if two electrons have the same coordinates (spin and space): $\psi=0$

Helium atom

ground state
$$1s(r_1)1s(r_2)[\alpha(1)\beta(2)-\beta(1)\alpha(2)]$$

antisymmetry comes from the spin part of the wavefunction

What about the 1s2s excited state?

$$\begin{array}{c}
\boxed{1} \left[1s(r_1) 2s(r_2) - 2s(r_1) 1s(r_2) \right] \begin{cases} \alpha(1)\alpha(2) \\ \alpha(1)\beta(2) + \beta(1)\alpha(2) \end{cases} \\
\beta(1)\beta(2)$$

For (2) the antisymmetry comes from the spin function.

This is a singlet state.

For 1 the antisymmetry comes from the spatial function.

This is a triplet state.

For the singlet state
$$\ \hat{S}^2\psi=0\psi,\ \ {\rm So}\ \ S=0,\ \ M_{_S}=0$$

For the triplet state
$$\hat{S}^2\psi=2(1)\hbar^2\psi$$
, So $S=1$, $M_s=-1,0,1$

How does this impact the energy?

$$\operatorname{consider} \left\langle \psi_{S} \mid \hat{H} \mid \psi_{S} \right\rangle = \frac{1}{2} \int \left[1s(1) 2s(2) + 2s(1) 1s(2) \right] \hat{H} \left[1s(1) 2s(2) + 2s(1) 1s(2) \right] d\tau$$

Here we have integrated out the spin. So $d au \Rightarrow d\vec{r_1}d\vec{r_2}$

$$E_{s} = \int 1s(1)2s(2)\hat{H}1s(1)2s(2)d\tau + \int 1s(1)2s(2)\hat{H}2s(1)1s(2)d\tau$$
Now consider $\langle \psi_{T} | \hat{H} | \psi_{T} \rangle = \frac{1}{2} \int [1s(1)2s(2)-2s(1)1s(2)]\hat{H}[1s(1)2s(2)-2s(1)1s(2)]d\tau$

$$= \frac{1}{2} \int 1s(1)2s(2)\hat{H}1s(1)2s(2)d\tau - \int 1s(1)2s(2)\hat{H}2s(1)1s(2)d\tau$$

Again the spin has been integrated out.

The 2nd integral is the exchange integral K

K is positive, so the triplet is below the singlet, and the states are split by 2K.

He atom in its ground state: Slater determinant

$$\frac{1}{\sqrt{2}} \begin{vmatrix} ls(1)\alpha(1) & ls(1)\beta(1) \\ ls(2)\alpha(2) & ls(2)\beta(2) \end{vmatrix} = |ls\overline{ls}| \qquad \text{Shorthand nomenclature}$$

$$= \frac{1}{\sqrt{2}} \left[ls(1)ls(2)\alpha(1)\beta(2) - ls(1)ls(2)\beta(1)\alpha(2) \right]$$

$$= \frac{1}{\sqrt{2}} ls(1)ls(2)(\alpha\beta - \beta\alpha)$$

The energy can be approximated as

 $E(T) = E_{1s}^{(0)} + E_{2s}^{(0)} + J_{1s,2s} - K_{1s,2s}$

 $E(S) = E_{1s}^{(0)} + E_{2s}^{(0)} + J_{1s,2s} + K_{1s,2s}$

$$E = \left\langle 1s(r_1)1s(r_2) \mid H \mid 1s(r_1)1s(r_2) \right\rangle$$

$$= 2E_1^{(0)} + \int \left| 1s(r_1) \right|^2 \frac{1}{r_{12}} \left| 1s(r_2) \right|^2 d\vec{r_1} d\vec{r_2}$$

$$= 2E_1^{(0)} + J_{1s,1s}$$

$$= 2E_1^{(0)} + J_{1s,1s}$$

$$= 2 \operatorname{Ex}_1^{(0)} + J_{1s,1s}$$

$$= 2 \operatorname{$$

Now lets consider the Li atom

$$\psi = \frac{1}{\sqrt{6}} \begin{vmatrix} 1s(1)\alpha(1) & 1s(1)\beta(1) & 2s(1)\alpha(1) \\ 1s(2)\alpha(2) & 1s(2)\beta(2) & 2s(2)\alpha(2) \\ 1s(3)\alpha(3) & 1s(3)\beta(3) & 2s(3)\alpha(3) \end{vmatrix} = \begin{vmatrix} 1s\overline{1s}2s \end{vmatrix}$$

Note: the short-hand nomenclature for a Slater determinant

$$=\frac{1}{\sqrt{6}}\left(1s\overline{1s}2s-1s2s\overline{1s}-\overline{1s}1s2s+\overline{1s}2s1s+2s1s\overline{1s}-2s\overline{1s}1s\right)$$

Note that this can not be written as a spatial function times a spin function

One can show that we only need to consider:

$$\langle 1s\overline{1s}2s \mid H \mid 1s\overline{1s}2s - 1s2s\overline{1s} - \overline{1s}1s2s + \overline{1s}2s1s + 2s1s\overline{1s} - 2s\overline{1s}1s \rangle$$

$$= \langle 1s\overline{1s}2s \mid H \mid 1s\overline{1s}2s \rangle - \langle 1s\overline{1s}2s \mid H \mid 2s\overline{1s}1s \rangle$$

It doesn't matter which of the six terms we retain on the left.

$$2E_{1s}^{(0)} + E_{2s}^{(0)} + J_{1s,1s} + 2J_{1s,2s} - K_{1s,2s}$$

$$E^{(0)} = -275.5 \text{ eV}, \quad E^{(1)} = 83.5 \text{ eV} \rightarrow E^{(0)} + E^{(1)} = -192.0 \text{ eV}$$

Exact energy = -203.5 eV

If we optimize the exponents E = -201.2 eV

He 1s2s excited states and Slater determinants

$$\frac{1}{\sqrt{2}} \begin{vmatrix} 1s2s \\ 1s2s \end{vmatrix} = \frac{1}{\sqrt{2}} \left(1s2s - 2s1s \right) \alpha \alpha$$

$$\chi_1 = \frac{1}{\sqrt{2}} \begin{vmatrix} 1s\overline{2s} \\ 1s\overline{2s} \end{vmatrix} = \frac{1}{\sqrt{2}} \left(1s\overline{2s} - \overline{2s}1s \right) = \frac{1}{\sqrt{2}} \left(1s2s\alpha\beta - 2s1s\beta\alpha \right)$$

$$\chi_2 = \frac{1}{\sqrt{2}} \begin{vmatrix} \overline{1s}2s \\ \overline{1s}2s \end{vmatrix} = \frac{1}{\sqrt{2}} \left(\overline{1s}2s - 2s\overline{1s} \right) = \frac{1}{\sqrt{2}} \left(1s2s\beta\alpha - 2s1s\alpha\beta \right)$$

Note that χ_1 and χ_2 do not correspond to the singlet and triplet wavefunctions that we considered previously.

Lets consider:
$$\sqrt{\frac{1}{\sqrt{2}}}(\chi_1 + \chi_2)$$

= $\sqrt{\frac{1}{2}}[1s2s\alpha\beta - 2s1s\beta\alpha + 1s2s\beta\alpha - 2s1s\alpha\beta]$
= $\sqrt{\frac{1}{2}}[1s2s(\alpha\beta + \beta\alpha) - 2s1s(\alpha\beta + \beta\alpha)]$
= $\sqrt{\frac{1}{2}}(1s2s - 2s1s)(\alpha\beta + \beta\alpha)$
which is the M_s=0 component of the triplet

$$\frac{1}{\sqrt{2}}(\chi_1 - \chi_2) = \frac{1}{2}(1s2s + 2s1s)(\alpha\beta - \beta\alpha)$$

is the wavefunction for the singlet.

If we use either χ_1 or χ_2 as the wavefunction in an electronic structure code, we would be describing a linear combination of the singlet and triplet states.

Now lets consider the next few elements of the periodic table.

Be atom:	$ 1s\overline{1s}2s\overline{2s} $	15
B atom:	$\left 1s\overline{1s}2s\overline{2s}2p \right $	² P
C atom:	$\left 1s\overline{1s}2s\overline{2s}2p^2 \right $?

The C atom presents the first real challenge

$$M_L \longrightarrow 0 \longrightarrow -1$$

There are 15 possible arrangements of the two p electrons

We can immediately see that there is a ${}^{1}D$ and a ${}^{3}P$ state. This accounts for $1 \times 5 + 3 \times 3 = 14$ combinations.

This means that there is also a ¹S state.

³D, ¹P, or ³S would violate the Pauli principle.

There are 3 arrangements with $M_L=0$, $M_s=0$ These give rise to $^1D, ^1S, ^3P$

There are 3 arrangements with $M_L=0$, $M_s=1$ and one with $M_L=0$, $M_s=-1$.

These are associated with 3P

 $(p_1p_0 + p_0p_1)(\alpha\beta - \beta\alpha)$ must be ¹D, etc.