I.E. 2001 OPERATIONS RESEARCH

(Solutions to Assignment 10)

Question 1:

Length of MST = 23+15+22+17+11+12+9+19+8+29+7 = 172

Question 2:

Iteration 1

P={1}, T={2,3,4,5,6,7},
$$\Omega$$
={2,3,4}

 $D_2=Min\{0+L_{12}\}=4$

 $D_3=Min\{0+L_{13}\}=7$

 $D_4=Min\{0+L_{14}\}=10$

Thus $D^*=4$ corresponding to D_2

Closest Node is {2}

<u>Iteration 2</u>

P={1,2}, T={3,4,5,6,7},
$$\Omega$$
={3,4,5}

$$\begin{array}{l} D_3 = Min\{0 + L_{13}, \ \textbf{4} + \textbf{L_{23}}\} = \textbf{6} \\ D_4 = Min\{0 + L_{14}\} = 10 \\ D_5 = Min\{4 + L_{25}\} = 19 \end{array}$$

Thus $D^*=3$ corresponding to D_3

2nd Closest Node is {3}

Iteration 3

P={1,2,3}, T={4,5,6,7},
$$\Omega$$
={4,5,6}

$$D_4=Min\{0+L_{14}, 6+L_{34}\}=10$$

 $D_5=Min\{4+L_{25}, 6+L_{35}\}=19$
 $D_6=Min\{6+L_{36}\}=17$

Thus D*=10 corresponding to D₄

3rd Closest Node is {4}

<u>Iteration 4</u>

$$P={1,2,3,4}, T={5,6,7}, \Omega={5,6}$$

$$\begin{array}{l} D_5 = Min\{4 + L_{25}, \ 6 + L_{35}\} = 19 \\ D_6 = Min\{ \begin{array}{l} 6 + L_{36}, \ 10 + L_{46} \\ \end{array} \} = \begin{array}{l} 17 \end{array}$$

Thus D*=17 corresponding to D₆

4th Closest Node is {6}

<u>Iteration 5</u>

P={1,2,3,4,6}, T={5,7}, Ω ={5,7}

 $D_5=Min\{4+L_{25}, 6+L_{35}, 17+L_{65}\}=18$

 $D_7 = Min\{17 + L_{67}\} = 25$

Thus $D^*=18$ corresponding to D_5 and the 5th Closest Node is $\{5\}$

 $\mathbf{P} \!\!=\!\! \{\mathbf{1,2,3,4,5,6}\},\, \mathbf{T} \!\!=\!\! \{7\},\, \Omega \!\!=\!\! \{7\}$

 $D_7 = Min\{17 + L_{67}, 18 + L_{57}\} = 25$

Thus $D^*=25$ corresponding to D_7 and the 6th Closest Node is $\{7\}$

The final shortest path network is as shown below:

Question 3. (p. 472, No. 2)

The network is drawn below with the current flow:

Ford-Fulkerson algorithm (one possible sequence of steps...):

Label the sink via the chain (NY-M)-(M-De)-(De-LA) and add a flow of Min (400-100, 200-0, 400-250) = 150 along each arc on the chain (since they're all forward arcs). This yields the optimal flow of 750 units shown below.

Another way might be as follows:

Label the sink via the chain (NY-M)-(M-Da)-(C-Da)-(C-De)-(De-LA) and compute Min (400-100, 150-100, 250-0, 300-250, 400-250) = 50 so that we add 50 along all of the above arcs except the reverse arc (C-Da) where we subtract 50 units (this being a reverse arc).

This gives the flow below:

Now label the sink via the chain (NY-M)-(M-De)-(De-LA) and add a flow of Min (400-150, 200-0, 400-300) = 100 along each arc on the chain (all are forward arcs). This yields the same optimal flow of 750 units as before:

To verify this consider the labeling procedure that gets as far as NY-M, M-Da, C-Da, C-De before we can go no further. So $V_2=\{NY, M, Da, De, C\}$, $V_1=\{LA\}$ and the cut set is $\{Da-LA\}$. This cut set has capacity 400+350=750. So this must be the optimal flow.

Question 4 Ford-Fulkerson algorithm (two possible sequence of steps...):

1. In the original graph label the sink via the chain (1-3) - (3-4) - (4-6) - (6-7) - (7-8)

Add flow of $Min\{8-5,5-0,1-0,2-0,9-5\}=1$ along each arc on the chain as they are all forward arcs. This yields:

Now label the sink via the chain (1-3) - (3-4) - (2-4) - (2-5) - (5-8). Min $\{8-6,5-1,1-0,10-2,4-3\}=1$. So subtract a flow of 1 from arc (2-4) which is a backward arc and add a flow of 1 along all other arcs on the chain. This yields the optimal flow below:

Alternatively,

2. In the original graph, label the sink via the chain (1-3) - (3-4) - (4-6) - (6-5) - (5-8)

Add flow of $Min\{8-5,5-0,1-0,2-0,4-3\}=1$ along each arc on the chain since they are all forward arcs. This yields:

Now label the sink via the chain (1-3)-(3-4)-(2-4)-(2-5)-(6-5)-(6-7)-(7-8); Min $\{8-6,5-1,1-0,10-2,1-0,2-0,9-5\}=1$ subtract a flow of 1 from arcs (2-4) and (6-5) which are backward arcs and add a flow of 1 along all other arcs on the chain.

This yields the optimal (maximum) flow shown below (same as in 1.):

