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ABSTRACT 

This chapter will provide an overview of Operations Research (O.R.) from the 

perspective of an industrial engineer.  The focus of the chapter is on the basic philosophy 

behind O.R. and the so-called “O.R. approach” to solving design and operational 

problems that industrial engineers commonly encounter.  In its most basic form, O.R. 

may be viewed as a scientific approach to solving problems; it abstracts the essential 

elements of the problem into a model, which is then analyzed to yield an optimal solution 

for implementation.  The mathematical details and the specific techniques used to build 

and analyze these models can be quite sophisticated and are addressed elsewhere in this 

handbook; the emphasis of this chapter is on the approach.  A brief review of the 

historical origins of O.R. is followed by a detailed description of its methodology.  The 

chapter concludes with some examples of successful real-world applications of O.R.   

                                                           
* Maynard's Industrial Engineering Handbook, 5th Edition, pp. 11.27-11.44. 



1.1  INTRODUCTION 

Although it is a distinct discipline in its own right, Operations Research (O.R.) has also 

become an integral part of the Industrial Engineering (I.E.) profession.  This is hardly a 

matter of surprise when one considers that they both share many of the same objectives, 

techniques and application areas.  O.R. as a formal subject is about fifty years old and its 

origins may be traced to the latter half of World War II.  Most of the O.R. techniques that 

are commonly used today were developed over (approximately) the first twenty years 

following its inception.  During the next thirty or so years the pace of development of 

fundamentally new O.R. methodologies has slowed somewhat.  However, there has been 

a rapid expansion in (1) the breadth of problem areas to which O.R. has been applied, and 

(2) in the magnitudes of the problems that can be addressed using O.R. methodologies.  

Today, operations research is a mature, well-developed field with a sophisticated array of 

techniques that are used routinely to solve problems in a wide range of application areas. 

This chapter will provide an overview of O.R. from the perspective of an 

Industrial Engineer.  A brief review of its historical origins is first provided.  This is 

followed by a detailed discussion of the basic philosophy behind O.R. and the so-called 

“O.R. approach.”  The chapter concludes with several examples of successful 

applications to typical problems that might be faced by an Industrial Engineer.  Broadly 

speaking, an O.R. project comprises three steps: (1) building a model, (2) solving it, and 

(3) implementing the results.  The emphasis of this chapter is on the first and third steps.  

The second step typically involves specific methodologies or techniques, which could be 

quite sophisticated and require significant mathematical development.  Several important 

methods are overviewed elsewhere in this handbook.  The reader who has an interest in 
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learning more about these topics is referred to one of the many excellent texts on O.R. 

that are available today and that are listed under "Further Reading" at the end of this 

chapter, e.g., Hillier and Lieberman (1995), Taha (1997) or Winston (1994). 

1.2 A HISTORICAL PERSPECTIVE 

While there is no clear date that marks the birth of O.R., it is generally accepted that the 

field originated in England during World War II.  The impetus for its origin was the 

development of radar defense systems for the Royal Air Force, and the first recorded use 

of the term Operations Research is attributed to a British Air Ministry official named A. 

P. Rowe who constituted teams to do “operational researches” on the communication 

system and the control room at a British radar station.  The studies had to do with 

improving the operational efficiency of systems (an objective which is still one of the 

cornerstones of modern O.R.).  This new approach of picking an “operational” system 

and conducting “research” on how to make it run more efficiently soon started to expand 

into other arenas of the war.  Perhaps the most famous of the groups involved in this 

effort was the one led by a physicist named P. M. S. Blackett which included 

physiologists, mathematicians, astrophysicists, and even a surveyor.  This multifunctional 

team focus of an operations research project group is one that has carried forward to this 

day.  Blackett’s biggest contribution was in convincing the authorities of the need for a 

scientific approach to manage complex operations, and indeed he is regarded in many 

circles as the original operations research analyst.   

 O.R. made its way to the United States a few years after it originated in England.  

Its first presence in the U.S. was through the U.S. Navy’s Mine Warfare Operations 

Research Group; this eventually expanded into the Antisubmarine Warfare Operations 
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Research Group that was led by Phillip Morse, which later became known simply as the 

Operations Research Group.  Like Blackett in Britain, Morse is widely regarded as the 

“father” of O.R. in the United States, and many of the distinguished scientists and 

mathematicians that he led went on after the end of the war to become the pioneers of 

O.R. in the United States. 

 In the years immediately following the end of World War II, O.R. grew rapidly as 

many scientists realized that the principles that they had applied to solve problems for the 

military were equally applicable to many problems in the civilian sector.  These ranged 

from short-term problems such as scheduling and inventory control to long-term 

problems such as strategic planning and resource allocation.  George Dantzig, who in 

1947 developed the simplex algorithm for Linear Programming (LP), provided the single 

most important impetus for this growth.   To this day, LP remains one of the most widely 

used of all O.R. techniques and despite the relatively recent development of interior point 

methods as an alternative approach, the simplex algorithm (with numerous computational 

refinements) continues to be widely used.  The second major impetus for the growth of 

O.R. was the rapid development of digital computers over the next three decades.  The 

simplex method was implemented on a computer for the first time in 1950, and by 1960 

such implementations could solve problems with about 1000 constraints.  Today, 

implementations on powerful workstations can routinely solve problems with hundreds 

of thousands of variables and constraints.  Moreover, the large volumes of data required 

for such problems can be stored and manipulated very efficiently. 

 Once the simplex method had been invented and used, the development of other 

methods followed at a rapid pace. The next twenty years witnessed the development of 
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most of the O.R. techniques that are in use today including nonlinear, integer and 

dynamic programming, computer simulation, PERT/CPM, queuing theory, inventory 

models, game theory, and sequencing and scheduling algorithms.  The scientists who 

developed these methods came from many fields, most notably mathematics, engineering 

and economics.  It is interesting that the theoretical bases for many of these techniques 

had been known for years, e.g., the EOQ formula used with many inventory models was 

developed in 1915 by Harris, and many of the queuing formulae were developed by 

Erlang in 1917.  However, the period from 1950 to 1970 was when these were formally 

unified into what is considered the standard toolkit for an operations research analyst and 

successfully applied to problems of industrial significance.  The following section 

describes the approach taken by operations research in order to solve problems and 

explores how all of these methodologies fit into the O.R. framework. 

1.3 WHAT IS OPERATIONS RESEARCH? 

A common misconception held by many is that O.R. is a collection of mathematical 

tools.  While it is true that it uses a variety of mathematical techniques, operations 

research has a much broader scope.  It is in fact a systematic approach to solving 

problems, which uses one or more analytical tools in the process of analysis.  Perhaps the 

single biggest problem with O.R. is its name; to a layperson, the term “operations 

research” does not conjure up any sort of meaningful image!  This is an unfortunate 

consequence of the fact that the name that A. P. Rowe is credited with first assigning to 

the field was somehow never altered to something that is more indicative of the things 

that O.R. actually does.  Sometimes O.R. is referred to as Management Science (M.S.) in 

order to better reflect its role as a scientific approach to solving management problems, 
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but it appears that this terminology is more popular with business professionals and 

people still quibble about the differences between O.R. and M.S.  Compounding this 

issue is the fact that there is no clear consensus on a formal definition for O.R.  For 

instance, C. W. Churchman who is considered one of the pioneers of O.R. defined it as 

the application of scientific methods, techniques and tools to problems involving the 

operations of a system so as to provide those in control of the system with optimum 

solutions to problems.  This is indeed a rather comprehensive definition, but there are 

many others who tend to go over to the other extreme and define operations research to 

be that which operations researchers do (a definition that seems to be most often 

attributed to E. Naddor)!  Regardless of the exact words used, it is probably safe to say 

that the moniker “operations research” is here to stay and it is therefore important to 

understand that in essence, O.R. may simply be viewed as a systematic and analytical 

approach to decision-making and problem-solving.  The key here is that O.R. uses a 

methodology that is objective and clearly articulated, and is built around the philosophy 

that such an approach is superior to one that is based purely on subjectivity and the 

opinion of “experts,” in that it will lead to better and more consistent decisions.  

However, O.R. does not preclude the use of human judgement or non-quantifiable 

reasoning; rather, the latter are viewed as being complementary to the analytical 

approach.  One should thus view O.R. not as an absolute decision making process, but as 

an aid to making good decisions.  O.R. plays an advisory role by presenting a manager or 

a decision-maker with a set of sound, scientifically derived alternatives.  However, the 

final decision is always left to the human being who has knowledge that cannot be 
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exactly quantified, and who can temper the results of the analysis to arrive at a sensible 

decision. 

1.4 THE OPERATIONS RESEARCH APPROACH 

Given that O.R. represents an integrated framework to help make decisions, it is 

important to have a clear understanding of this framework so that it can be applied to a 

generic problem.  To achieve this, the so-called O.R. approach is now detailed. This 

approach comprises the following seven sequential steps: (1) Orientation, (2) Problem 

Definition, (3) Data Collection, (4) Model Formulation, (5) Solution, (6) Model 

Validation and Output Analysis, and (7) Implementation and Monitoring.  Tying each of 

these steps together is a mechanism for continuous feedback; Figure 1 shows this 

schematically.   
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Figure 1:  The Operations Research Approach 
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While most of the academic emphasis has been on Steps 4, 5 and 6, the reader should 

bear in mind the fact that the other steps are equally important from a practical 

perspective.  Indeed, insufficient attention to these steps has been the reason why O.R. 

has sometimes been mistakenly looked upon as impractical or ineffective in the real 

world. 

Each of these steps is now discussed in further detail.  To illustrate how the steps 

might be applied, consider a typical scenario where a manufacturing company is planning 

production for the upcoming month.  The company makes use of numerous resources 

(such as labor, production machinery, raw materials, capital, data processing, storage 

space, and material handling equipment) to make a number of different products which 

compete for these resources.  The products have differing profit margins and require 

different amounts of each resource.  Many of the resources are limited in their 

availability.  Additionally, there are other complicating factors such as uncertainty in the 

demand for the products, random machine breakdowns, and union agreements that 

restrict how the labor force can be used.  Given this complex operating environment, the 

overall objective is to plan next month's production so that the company can realize the 

maximum profit possible while simultaneously ending up in a good position for the 

following month(s).  

As an illustration of how one might conduct an operations research study to 

address this situation, consider a highly simplified instance of a production planning 

problem where there are two main product lines (widgets and gizmos, say) and three 

major limiting resources (A, B and C, say) for which each of the products compete.  Each 

product requires varying amounts of each of the resources and the company incurs 
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different costs (labor, raw materials etc.) in making the products and realizes different 

revenues when they are sold.  The objective of the O.R. project is to allocate the 

resources to the two products in an optimal fashion.  

Orientation: The first step in the O.R. approach is referred to as problem orientation.  

The primary objective of this step is to constitute the team that will address the problem 

at hand and ensure that all its members have a clear picture of the relevant issues.  It is 

worth noting that a distinguishing characteristic of any O.R. study is that it is done by a 

multifunctional team. To digress slightly, it is also interesting that in recent years a great 

deal has been written and said about the benefits of project teams and that almost any 

industrial project today is conducted by multi-functional teams.  Even in engineering 

education, teamwork has become an essential ingredient of the material that is taught to 

students and almost all academic engineering programs require team projects of their 

students.  The team approach of O.R. is thus a very natural and desirable phenomenon.   

Typically, the team will have a leader and be constituted of members from 

various functional areas or departments that will be affected by or have an effect upon the 

problem at hand.  In the orientation phase, the team typically meets several times to 

discuss all of the issues involved and to arrive at a focus on the critical ones.  This phase 

also involves a study of documents and literature relevant to the problem in order to 

determine if others have encountered the same (or similar) problem in the past, and if so, 

to determine and evaluate what was done to address the problem.  This is a point that 

often tends to be ignored, but in order to get a timely solution it is critical that one does 

not reinvent the wheel.  In many O.R. studies, one actually adapts a solution procedure 

that has already been tried and tested, as opposed to developing a completely new one.  
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The aim of the orientation phase is to obtain a clear understanding of the problem and its 

relationship to different operational aspects of the system, and to arrive at a consensus on 

what should be the primary focus of the project.  In addition, the team should also have 

an appreciation for what (if anything) has been done elsewhere to solve the same (or 

similar) problem. 

In our hypothetical production planning example, the project team might 

comprise members from engineering (to provide information about the process and 

technology used for production), production planning (to provide information on 

machining times, labor, inventory and other resources), sales and marketing (to provide 

input on demand for the products), accounting (to provide information on costs and 

revenues), and information systems (to provide computerized data).  Of course, industrial 

engineers work in all of these areas.  In addition, the team might also have shopfloor 

personnel such as a foreman or a shift supervisor and would probably be led by a mid-

level manager who has relationships with several of the functional areas listed above.  At 

the end of the orientation phase, the team might decide that its specific objective is to 

maximize profits from its two products over the next month.  It may also specify 

additional things that are desirable, such as some minimum inventory levels for the two 

products at the beginning of the next month, stable workforce levels, or some desired 

level of machine utilization.   

Problem Definition: This is the second, and in a significant number of cases, the most 

difficult step of the O.R. process.  The objective here is to further refine the deliberations 

from the orientation phase to the point where there is a clear definition of the problem in 

terms of its scope and the results desired.   This phase should not be confused with the 
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previous one since it is much more focused and goal oriented; however, a clear 

orientation aids immeasurably in obtaining this focus.  Most practicing industrial 

engineers can relate to this distinction and the difficulty in moving from general goals 

such “increasing productivity” or “reducing quality problems” to more specific, well-

defined objectives that will aid in meeting these goals. 

 A clear definition of the problem has three broad components to it.  The first is 

the statement of an unambiguous objective.  Along with a specification of the objective it 

is also important to define its scope, i.e., to establish limits for the analysis to follow.  

While a complete system level solution is always desirable, this may often be unrealistic 

when the system is very large or complex and in many cases one must then focus on a 

portion of the system that can be effectively isolated and analyzed.  In such instances it is 

important to keep in mind that the scope of the solutions derived will also be bounded.  

Some examples of appropriate objectives might be (1) “to maximize profits over the next 

quarter from the sales of our products,” (2) “to minimize the average downtime at 

workcenter X,” (3) “to minimize total production costs at Plant Y,” or (4) “to minimize 

the average number of late shipments per month to customers.”    

The second component of problem definition is a specification of factors that will 

affect the objective.  These must further be classified into alternative courses of action 

that are under the control of the decision maker and uncontrollable factors over which he 

or she has no control.  For example, in a production environment, the planned production 

rates can be controlled but the actual market demand may be unpredictable (although it 

may be possible to scientifically forecast these with reasonable accuracy).  The idea here 

is to form a comprehensive list of all the alternative actions that can be taken by the 
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decision maker and that will then have an effect on the stated objective.  Eventually, the 

O.R. approach will search for the particular course of action that optimizes the objective. 

The third and final component of problem definition is a specification of the 

constraints on the courses of action, i.e., of setting boundaries for the specific actions that 

the decision-maker may take.   As an example, in a production environment, the 

availability of resources may set limits on what levels of production can be achieved.  

This is one activity where the multifunctional team focus of O.R. is extremely useful 

since constraints generated by one functional area are often not obvious to people in 

others.  In general, it is a good idea to start with a long list of all possible constraints and 

then narrow this down to the ones that clearly have an effect on the courses of action that 

can be selected.  The aim is to be comprehensive yet parsimonious when specifying 

constraints.  

 Continuing with our hypothetical illustration, the objective might be to maximize 

profits from the sales of the two products. The alternative courses of action would be the 

quantities of each product to produce next month, and the alternatives might be 

constrained by the fact that the amounts of each of the three resources required to meet 

the planned production must not exceed the expected availability of these resources.  An 

assumption that might be made here is that all of the units produced can be sold.  Note 

that at this point the entire problem is stated in words; later on the O.R. approach will 

translate this into an analytical model. 

Data Collection: In the third phase of the O.R. process data is collected with the 

objective of translating the problem defined in the second phase into a model that can 

then be objectively analyzed.  Data typically comes from two sources – observation and 
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standards.  The first corresponds to the case where data is actually collected by observing 

the system in operation and typically, this data tends to derive from the technology of the 

system.  For instance, operation times might be obtained by time studies or work methods 

analysis, resource usage or scrap rates might be obtained by making sample 

measurements over some suitable interval of time, and data on demands and availability 

might come from sales records, purchase orders and inventory databases.  Other data are 

obtained by using standards; a lot of cost related information tends to fall into this 

category.  For instance, most companies have standard values for cost items such as 

hourly wage rates, inventory holding charges, selling prices, etc.; these standards must 

then be consolidated appropriately to compute costs of various activities.  On occasion, 

data may also be solicited expressly for the problem at hand through the use of surveys, 

questionnaires or other psychometric instruments. 

 One of the major driving forces behind the growth of O.R. has been the rapid 

growth in computer technology and the concurrent growth in information systems and 

automated data storage and retrieval.  This has been a great boon, in that O.R. analysts 

now have ready access to data that was previously very hard to obtain.  Simultaneously, 

this has also made things difficult because many companies find themselves in the 

situation of being data-rich but information-poor.   In other words, even though the data 

is all present “somewhere” and in “some form,” extracting useful information from these 

sources is often very difficult.  This is one of the reasons why information systems 

specialists are invaluable to teams involved in any nontrivial O.R. project.  Data 

collection can have an important effect on the previous step of problem definition as well 

as on the following step of model formulation.  
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 To relate data collection to our hypothetical production example, based upon 

variable costs of production and the selling price of each of the products, it might be 

determined that the profit from selling one gizmo is $10 and one widget is $9.  It might 

be determined based on time and work measurements that each gizmo and each widget 

respectively requires 7/10 unit and 1 unit of resource 1, 1 unit and 2/3 unit of resource 2 

and 1/10 unit and 1/4 unit of resource 3.  Finally, based upon prior commitments  and 

historical data on resource availability, it might be determined that in the next month 

there will be 630 units of resource 1, 708 units of resource 2 and 135 units of resource 3 

available for use in producing the two products.   

It should be emphasized that this is only a highly simplified illustrative example 

and the numbers here as well as the suggested data collection methods are also vastly 

simplified.  In practice, these types of numbers can often be very difficult to obtain 

exactly, and the final values are typically based on extensive analyses of the system and 

represent compromises that are agreeable to everyone on the project team.  As an 

example, a marketing manager might cite historical production data or data from similar 

environments and tend to estimate resource availability in very optimistic terms.  On the 

other hand, a production planner might cite scrap rates or machine downtimes and come 

up with a much more conservative estimate of the same.  The final estimate would 

probably represent a compromise between the two that is acceptable to most team 

members. 

Model Formulation:  This is the fourth phase of the O.R. process.  It is also a phase that 

deserves a lot of attention since modeling is a defining characteristic of all operations 

research projects. The term “model” is misunderstood by many, and is therefore 

 14



explained in some detail here.  A model may be defined formally as a selective 

abstraction of reality.  This definition implies that modeling is the process of capturing 

selected characteristics of a system or a process and then combining these into an abstract 

representation of the original.  The main idea here is that it is usually far easier to analyze 

a simplified model than it is to analyze the original system, and as long as the model is a 

reasonably accurate representation, conclusions drawn from such an analysis may be 

validly extrapolated back to the original system. 

 There is no single “correct” way to build a model and as often noted, model-

building is more an art than a science.  The key point to be kept in mind is that most often 

there is a natural trade-off between the accuracy of a model and its tractability.  At the 

one extreme, it may be possible to build a very comprehensive, detailed and exact model 

of the system at hand; this has the obviously desirable feature of being a highly realistic 

representation of the original system.  While the very process of constructing such a 

detailed model can often aid immeasurably in better understanding the system, the model 

may well be useless from an analytical perspective since its construction may be 

extremely time-consuming and its complexity precludes any meaningful analysis.  At the 

other extreme, one could build a less comprehensive model with a lot of simplifying 

assumptions so that it can be analyzed easily.  However, the danger here is that the model 

may be so lacking in accuracy that extrapolating results from the analysis back to the 

original system could cause serious errors.  Clearly, one must draw a line somewhere in 

the middle where the model is a sufficiently accurate representation of the original 

system, yet remains tractable.  Knowing where to draw such a line is precisely what 

determines a good modeler, and this is something that can only come with experience.  In 
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the formal definition of a model that was given above, the key word is “selective.”  

Having a clear problem definition allows one to better determine the crucial aspects of a 

system that must be selected for representation by the model, and the ultimate intent is to 

arrive at a model that captures all the key elements of the system while remaining simple 

enough to analyze.  

 Models may be broadly classified into four categories: 

Physical Models:  These are actual, scaled down versions of the original. Examples 

include a globe, a scale-model car or a model of a flow line made with elements from a 

toy construction set.  In general, such models are not very common in operations 

research, mainly because getting accurate representations of complex systems through 

physical models is often impossible.  

Analogic Models:  These are models that are a step down from the first category in that 

they are physical models as well, but use a physical analog to describe the system, as 

opposed to an exact scaled-down version.  Perhaps the most famous example of an 

analogic model was the ANTIAC model (the acronym stood for anti-automatic-

computation) which demonstrated that one could conduct a valid operations research 

analysis without even resorting to the use of a computer.  In this problem the objective 

was to find the best way to distribute supplies at a military depot to various demand 

points.  Such a problem can be solved efficiently by using techniques from network flow 

analysis.  However the actual procedure that was used took a different approach.  An 

anthill on a raised platform was chosen as an analog for the depot and little mounds of 

sugar on their own platforms were chosen to represent each demand point.  The network 

of roads connecting the various nodes was constructed using bits of string with the length 
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of each being proportional to the actual distance and the width to the capacity along that 

link.  An army of ants was then released at the anthill and the paths that they chose to get 

to the mounds of sugar were then observed.  After the model attained a steady state, it 

was found that the ants by virtue of their own tendencies had found the most efficient 

paths to their destinations!  One could even conduct some postoptimality analysis.  For 

instance, various transportation capacities along each link could be analyzed by 

proportionately varying the width of the link, and a scenario where certain roads were 

unusable could be analyzed by simply removing the corresponding links to see what the 

ants would then do.  This illustrates an analogic model.  More importantly, it also 

illustrates that while O.R. is typically identified with mathematical analysis, the use of an 

innovative model and problem-solving procedure such as the one just described is an 

entirely legitimate way to conduct an O.R. study. 

Computer Simulation Models:  With the growth in computational power these models 

have become extremely popular over the last ten to fifteen years.  A simulation model is 

one where the system is abstracted into a computer program.  While the specific 

computer language used is not a defining characteristic, a number of languages and 

software systems have been developed solely for the purpose of building computer 

simulation models; a survey of the most popular systems may be found in OR/MS Today 

(October 1997, pp. 38-46).  Typically, such software has syntax as well as built-in 

constructs that allow for easy model development.  Very often they also have provisions 

for graphics and animation that can help one visualize the system being simulated.  

Simulation models are analyzed by running the software over some length of time that 

represents a suitable period when the original system is operating under steady state.  The 
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inputs to such models are the decision variables that are under the control of the decision-

maker.  These are treated as parameters and the simulation is run for various 

combinations of values for these parameters.  At the end of a run statistics are gathered 

on various measures of performance and these are then analyzed using standard 

techniques.  The decision-maker then selects the combination of values for the decision 

variables that yields the most desirable performance. 

 Simulation models are extremely powerful and have one highly desirable feature: 

they can be used to model very complex systems without the need to make too many 

simplifying assumptions and without the need to sacrifice detail.  On the other hand, one 

has to be very careful with simulation models because it is also easy to misuse 

simulation.  First, before using the model it must be properly validated.  While validation 

is  necessary with any model, it is especially important with simulation.  Second, the 

analyst must be familiar with how to use a simulation model correctly, including things 

such as replication, run length, warmup etc; a detailed explanation of these concepts is 

beyond the scope of this chapter but the interested reader should refer to a good text on 

simulation.  Third, the analyst must be familiar with various statistical techniques in 

order to analyze simulation output in a meaningful fashion.  Fourth, constructing a 

complex simulation model on a computer can often be a challenging and relatively time 

consuming task, although simulation software has developed to the point where this is 

becoming easier by the day.  The reason these issues are emphasized here is that a 

modern simulation model can be very flashy and attractive, but its real value lies in its 

ability to yield insights into very complex problems.  However, in order to obtain such 

insights a considerable level of technical skill is required. 
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 A final point to keep in mind with simulation is that it does not provide one with 

an indication of the optimal strategy.  In some sense it is a trial and error process since 

one experiments with various strategies that seem to make sense and looks at the 

objective results that the simulation model provides in order to evaluate the merits of 

each strategy.  If the number of decision variables is very large, then one must 

necessarily limit oneself to some subset of these to analyze, and it is possible that the 

final strategy selected may not be the optimal one.  However, from a practitioner’s 

perspective, the objective often is to find a good strategy and not necessarily the best one, 

and simulation models are very useful in providing a decision-maker with good solutions. 

Mathematical Models:  This is the final category of models, and the one that traditionally 

has been most commonly identified with O.R.  In this type of model one captures the 

characteristics of a system or process through a set of mathematical relationships.  

Mathematical models can be deterministic or probabilistic. In the former type, all 

parameters used to describe the model are assumed to be known (or estimated with a high 

degree of certainty).  With probabilistic models, the exact values for some of the 

parameters may be unknown but it is assumed that they are capable of being 

characterized in some systematic fashion (e.g., through the use of a probability 

distribution).  As an illustration, the Critical Path Method (CPM) and the Program 

Evaluation and Review Technique (PERT) are two very similar O.R. techniques used in 

the area of project planning. However, CPM is based on a deterministic mathematical 

model that assumes that the duration of each project activity is a known constant, while 

PERT is based on a probabilistic model that assumes that each activity duration is 

random but follows some specific probability distribution (typically, the Beta 
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distribution).  Very broadly speaking, deterministic models tend to be somewhat easier to 

analyze than probabilistic ones;  however, this is not universally true.   

 Most mathematical models tend to be characterized by three main elements: 

decision variables, constraints and objective function(s).    Decision variables are used to 

model specific actions that are under the control of the decision-maker.  An analysis of 

the model will seek specific values for these variables that are desirable from one or more 

perspectives.  Very often – especially in large models – it is also common to define 

additional “convenience” variables for the purpose of simplifying the model or for 

making it clearer.  Strictly speaking, such variables are not under the control of the 

decision-maker, but they are also referred to as decision variables. Constraints are used 

to set limits on the range of values that each decision variable can take on, and each 

constraint is typically a translation of some specific restriction (e.g., the availability of 

some resource) or requirement (e.g., the need to meet contracted demand).   Clearly, 

constraints dictate the values that can be feasibly assigned to the decision variables, i.e., 

the specific decisions on the system or process that can be taken.  The third and final 

component of a mathematical model is the objective function.  This is a mathematical 

statement of some measure of performance (such as cost, profit, time, revenue, 

utilization, etc.) and is expressed as a function of the decision variables for the model.  It 

is usually desired either to maximize or to minimize the value of the objective function, 

depending on what it represents.  Very often, one may simultaneously have more than 

one objective function to optimize (e.g., maximize profits and minimize changes in 

workforce levels, say).  In such cases there are two options.  First, one could focus on a 

single objective and relegate the others to a secondary status by moving them to the set of 
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constraints and specifying some minimum or maximum desirable value for them.   This 

tends to be the simpler option and the one most commonly adopted.  The other option is 

to use a technique designed specifically for multiple objectives (such as goal 

programming). 

 In using a mathematical model the idea is to first capture all the crucial aspects of 

the system using the three elements just described, and to then optimize the objective 

function by choosing (from among all values for the decision variables that do not violate 

any of the constraints specified) the specific values that also yield the most desirable 

(maximum or minimum) value for the objective function.  This process is often called 

mathematical programming.  Although many mathematical models tend to follow this 

form, it is certainly not a requirement; for example, a model may be constructed to 

simply define relationships between several variables and the decision-maker may use 

these to study how one or more variables are affected by changes in the values of others. 

Decision trees, Markov chains and many queuing models could fall into this category. 

 Before concluding this section on model formulation, we return to our 

hypothetical example and translate the statements made in the problem definition stage 

into a mathematical model by using the information collected in the data collection 

phase.  To do this we define two decision variables G and W to represent respectively the 

number of gizmos and widgets to be made and sold next month.  Then the objective is to 

maximize total profits given by 10G+9W.  There is a constraint corresponding to each of 

the three limited resources, which should ensure that the production of G gizmos and W 

widgets does not use up more of the corresponding resource than is available for use.  

Thus for resource 1, this would be translated into the following mathematical statement 
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0.7G+1.0W≤630, where the left-hand-side of the inequality represents the resource usage 

and the right-hand-side the resource availability.  Additionally, we must also ensure that 

each G and W value considered is a nonnegative integer, since any other value is 

meaningless in terms of our definition of G and W.  The completely mathematical model 

is: 

Maximize {Profit = 10G+9W}, subject to 
• 0.7G+1.0W ≤ 630  
• 1.0G+(2/3)W ≤ 708 
• 0.1G+0.25W ≤ 135 
• G, W ≥ 0 and integers. 

This mathematical program tries to maximize the profit as a function of the production 

quantities (G and W), while ensuring that these quantities are such that the corresponding 

production is feasible with the resources available. 

Solution:  The fifth phase of the O.R. process is the solution of the problem represented 

by the model.  This is the area on which a huge amount of research and development in 

O.R. has been focused, and there is a plethora of methods for analyzing a wide range of 

models.  It is impossible to get into details of these various techniques in a single 

introductory chapter such as this; however, an overview of  some of the more important 

methods can be found elsewhere in this handbook. Generally speaking, some formal 

training in operations research is necessary in order to appreciate how many of these 

methods work and the interested reader is urged to peruse an introductory text on O.R.; 

the section on "Further Reading" at the end of the chapter lists some good books.  It is 

also worth mentioning that in recent years a number of software systems have emerged 

which (at least in theory) are "black boxes" for solving various models.  However, some 

formal education in O.R. methods is still required (or at least strongly recommended) 
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before using such systems. From the perspective of the practitioner, the most important 

thing is to be able to recognize which of the many available techniques is appropriate for 

the model constructed.  Usually, this is not a hard task for someone with some 

rudimentary training in operations research.  The techniques themselves fall into several 

categories.   

At the lowest level one might be able to use simple graphical techniques or even 

trial and error.  However, despite the fact that the development of spreadsheets has made 

this much easier to do, it is usually an infeasible approach for most nontrivial problems.  

Most O.R. techniques are analytical in nature, and fall into one of four broad categories.  

First, there are simulation techniques, which obviously are used to analyze simulation 

models.  A significant part of these are the actual computer programs that run the model 

and the methods used to do so correctly.  However, the more interesting and challenging 

part involves the techniques used to analyze the large volumes of output from the 

programs; typically, these encompass a number of statistical techniques.  The interested 

reader should refer to a good book on simulation to see how these two parts fit together.  

The second category comprises techniques of mathematical analysis used to address a 

model that does not necessarily have a clear objective function or constraints but is 

nevertheless a mathematical representation of the system in question.  Examples include 

common statistical techniques such as regression analysis, statistical inference and 

analysis of variance, as well as others such as queuing, Markov chains and decision 

analysis.   The third category consists of optimum-seeking techniques, which are 

typically used to solve the mathematical programs described in the previous section in 

order to find the optimum (i.e., best) values for the decision variables.  Specific 
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techniques include linear, nonlinear, dynamic, integer, goal and stochastic programming, 

as well as various network-based methods.  A detailed exposition of these is beyond the 

scope of this chapter, but there are a number of excellent texts in mathematical 

programming that describe many of these methods and the interested reader should refer 

to one of these.  The final category of techniques is often referred to as heuristics.  The 

distinguishing feature of a heuristic technique is that it is one that does not guarantee that 

the best solution will be found, but at the same time is not as complex as an optimum-

seeking technique.  Although heuristics could be simple, common-sense, rule-of-thumb 

type techniques, they are typically methods that exploit specific problem features to 

obtain good results.   A relatively recent development in this area are so-called meta-

heuristics (such as genetic algorithms, tabu search, evolutionary programming and 

simulated annealing) which are general purpose methods that can be applied to a number 

of different problems.  These methods in particular are increasing in popularity because 

of their relative simplicity and the fact that increases in computing power have greatly 

increased their effectiveness.  

In applying a specific technique something that is important to keep in mind from 

a practitioner's perspective is that it is often sufficient to obtain a good solution even if it 

is not guaranteed to be the best solution.  If neither resource-availability nor time were an 

issue, one would of course look for the optimum solution.  However, this is rarely the 

case in practice, and timeliness is of the essence in many instances.  In this context, it is 

often more important to quickly obtain a solution that is satisfactory as opposed to 

expending a lot of effort to determine the optimum one, especially when the marginal 

gain from doing so is small.  The economist Herbert Simon uses the term "satisficing" to 
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describe this concept - one searches for the optimum but stops along the way when an 

acceptably good solution has been found.   

At this point, some words about computational aspects are in order.   When 

applied to a nontrivial, real-world problem almost all of the techniques discussed in this 

section require the use of a computer.  Indeed, the single biggest impetus for the 

increased use of O.R. methods has been the rapid increase in computational power.  

Although there are still large scale problems whose solution requires the use of 

mainframe computers or powerful workstations, many big problems today are capable of 

being solved on desktop microcomputer systems.  There are many computer packages 

(and their number is growing by the day) that have become popular because of their ease 

of use and that are typically available in various versions or sizes and interface 

seamlessly with other software systems; depending on their specific needs end-users can 

select an appropriate configuration.  Many of the software vendors also offer training and 

consulting services to help users with getting the most out of the systems.  Some specific 

techniques for which commercial software implementations are available today include 

optimization/ mathematical programming (including linear, nonlinear, integer, dynamic 

and goal programming), network flows, simulation, statistical analysis, queuing, 

forecasting, neural networks, decision analysis, and PERT/CPM.  Also available today 

are commercial software systems that incorporate various O.R. techniques to address 

specific application areas including transportation and logistics, production planning, 

inventory control, scheduling, location analysis, forecasting, and supply chain 

management.  Some examples of popular O.R. software systems include CPLEX, 

LINDO, OSL, MPL, SAS, and SIMAN, to name just a few.  While it would clearly be 
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impossible to describe herein the features of all available software, magazine such as 

OR/MS Today and IE Solutions regularly publish separate surveys of various categories 

of software systems and packages.  These publications also provide pointers to different 

types of software available; as an example, the December 1997 issue of OR/MS Today 

(pages 61-75) provides a complete resource directory for software and consultants.  

Updates to such directories are provided periodically.  The main point here is that the 

ability to solve complex models/problems is far less of an issue today than it was a 

decade or two ago, and there are plenty of readily available resources to address this 

issue. 

We conclude this section by examining the solution to the model constructed 

earlier for our hypothetical production problem.  Using linear programming to solve this 

model yields the optimal solution of G=540 and W=252, i.e., the production plan that 

maximizes profits for the given data calls for the production of 540 gizmos and 252 

widgets.  The reader may easily verify that this results in a profit of $7668 and fully uses 

up all of the first two resources while leaving 18 units of the last resource unused.  Note 

that this solution is certainly not obvious by just looking at the mathematical model - in 

fact, if one were "greedy" and tried to make as many gizmos as possible (since they yield 

higher profits per unit than the widgets), this would yield G=708 and W=0 (at which 

point all of the second resource is used up). However, the resulting profit of $7080 is 

about 8% less than the one obtained via the optimal plan.  The reason of course, is that 

this plan does not make the most effective use of the available resources and fails to take 

into account the interaction between profits and resource utilization.  While the actual 
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difference is small for this hypothetical example, the benefits of using a good O.R. 

technique can result in very significant improvements for large real-world problems. 

Validation and Analysis: Once a solution has been obtained two things need to be done 

before one even considers developing a final policy or course of action for 

implementation.  The first is to verify that the solution itself makes sense.  Oftentimes, 

this is not the case and the most common reason is that the model used was not accurate 

or did not capture some major issue.  The process of ensuring that the model is an 

accurate representation of the system is called validation and this is something that 

(whenever possible) should be done before actual solution.  However, it is sometimes 

necessary to solve the model to discover inaccuracies in it.  A typical error that might be 

discovered at this stage is that some important constraint was ignored in the model 

formulation - this will lead to a solution that is clearly recognized as being infeasible and 

the analyst must then go back and modify the model and re-solve it.  This cycle continues 

until one is sure that the results are sensible and come from a valid system representation. 

 The second part of this step in the O.R. process is referred to as postoptimality 

analysis, or in layperson's terms, a "what-if" analysis.  Recall that the model that forms 

the basis for the solution obtained is (a) a selective abstraction of the original system, and 

(b) constructed using data that in many cases is not 100% accurate.  Since the validity of 

the solution obtained is bounded by the model's accuracy, a natural question that is of 

interest to an analyst is: "How robust is the solution with respect to deviations in the 

assumptions inherent in the model and in the values of the parameters used to construct 

it?"  To illustrate this with our hypothetical production problem, examples of some 

questions that an analyst might wish to ask are, (a) "Will the optimum production plan 
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change if the profits associated with widgets were overestimated by 5%, and if so how?" 

or (b) "If some additional amount of Resource 2 could be purchased at a premium, would 

it be worth buying and if so, how much?" or (c) "If machine unreliability were to reduce 

the availability of Resource 3 by 8%, what effect would this have on the optimal policy?"  

Such questions are especially of interest to managers and decision-makers who live in an 

uncertain world, and one of the most important aspects of a good O.R. project is the 

ability to provide not just a recommended course of action, but also details on its range of 

applicability and its sensitivity to model parameters. 

 Before ending this section it is worth emphasizing that similar to a traditional 

Industrial Engineering project, the end result of an O.R. project is not a definitive 

solution to a problem.  Rather, it is an objective answer to the questions posed by the 

problem and one that puts the decision-maker in the correct "ball-park."  As such it is 

critical to temper the analytical solution obtained with common sense and subjective 

reasoning before finalizing a plan for implementation.   From a practitioner's standpoint a 

sound, sensible and workable plan is far more desirable than incremental improvements 

in the quality of the solution obtained.  This is the emphasis of this penultimate phase of 

the O.R. process. 

Implementation and Monitoring:  The last step in the O.R. process is to implement the 

final recommendation and establish control over it.  Implementation entails the 

constitution of a team whose leadership will consist of some of the members on the 

original O.R. team.  This team is typically responsible for the development of operating 

procedures or manuals and a time-table for putting the plan into effect.  Once 

implementation is complete, responsibility for monitoring the system is usually turned 
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over to an operating team.  From an O.R. perspective, the primary responsibility of the 

latter is to recognize that the implemented results are valid only as long as the operating 

environment is unchanged and the assumptions made by the study remain valid.  Thus 

when there are radical departures from the bases used to develop the plan, one must 

reconsider one's strategy.  As a simple example with our production problem, if a sudden 

strike by the workforce causes a drastic reduction in the availability of labor (Resource 1, 

say), one must reconsider the plan completely to derive an alternative course of action.  

As a final word on implementation, it should be emphasized that a major responsibility of 

the operations research analyst is to convey the results of the project to management in an 

effective fashion.  This is something that is unfortunately not emphasized sufficiently, 

and there are many instances of a successful study not being implemented because the 

details and the benefits are not conveyed effectively to management.  While this is of 

course true of any project in general, it is especially significant with O.R. because of its 

mathematical content and its potential to not be fully understood by a manager without a 

strong quantitative background. 

1.5  O.R. IN THE REAL WORLD 

 In this section some examples of successful real-world applications of operations 

research are provided.  These should give the reader an appreciation for the diverse kinds 

of  problems that O.R. can address, as well as for the magnitude of the savings that are 

possible.  Without any doubt, the best source for case studies and details of successful 

applications is the journal Interfaces, which is a publication of the Institute for 

Operations Research and the Management Sciences (INFORMS).  This journal is 

oriented toward the practitioner and much of the exposition is in laypersons' terms; at 
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some point, every practicing industrial engineer should refer to this journal to appreciate 

the contributions that O.R. can make.  All of the applications that follow have been 

extracted from recent issues of Interfaces. 

Before describing these applications, a few words are in order about the standing 

of operations research in the real world.  An unfortunate reality is that O.R. has received 

more than its fair share of negative publicity.  It has sometimes been looked upon as an 

esoteric science with little relevance to the real-world, and some critics have even 

referred to it as a collection of techniques in search of a problem to solve!  Clearly, this 

criticism is untrue and there is plenty of documented evidence that when applied properly 

and with a problem-driven focus, O.R. can result in benefits that can be quite spectacular; 

the examples that follow in this section clearly attest to this fact.   

On the other hand, there is also evidence to suggest that (unfortunately) the 

criticisms leveled against O.R. are not completely unfounded.  This is because O.R. is 

often not applied as it should be - people have often taken the myopic view that O.R. is a 

specific method as opposed to a complete and systematic process.  In particular, there has 

been an inordinate amount of emphasis on the modeling and solution steps, possibly 

because these clearly offer the most intellectual challenge.  However, it is critical to 

maintain a problem-driven focus - the ultimate aim of an O.R. study is to implement a 

solution to the problem being analyzed.   Building complex models that are ultimately 

intractable, or developing highly efficient solution procedures to models that have little 

relevance to the real world may be fine as intellectual exercises, but run contrary to the 

practical nature of operations research!  Unfortunately, this fact has sometimes been 

forgotten.  Another valid criticism is the fact that many analysts are notoriously poor at 
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communicating the results of an O.R. project in terms that can be understood and 

appreciated by practitioners who may not necessarily have a great deal of mathematical 

sophistication or formal training in O.R.   The bottom line is that an O.R. project can be 

successful only if sufficient attention is paid to each of the seven steps of the process and 

the results are communicated to the end-users in an understandable form. 

Some examples of successful O.R. projects are now presented. 

Production Planning at Harris Corporation - Semiconductor Section: For our first 

application [1], we look at an area that is readily appreciated by every industrial engineer 

- production planning and due date quotation.  The semiconductor section of Harris 

Corporation was for a number of years a fairly small business catering to a niche market 

in the aerospace and defense industries where the competition was minimal.  However, in 

1988 a strategic decision was made to acquire General Electric's semiconductor product 

lines and manufacturing facilities.  This immediately increased the size of Harris 

Semiconductor's operations and product lines by roughly three times, and more 

importantly, catapulted Harris into commercial market areas such as automobiles and 

telecommunications where the competition was stiff.  Given the new diversity of product 

lines and the tremendous increase in the complexity of production planning, Harris was 

having a hard time meeting delivery schedules and in staying competitive from a 

financial perspective; clearly, a better system was required.   

In the orientation phase it was determined that the MRP type systems used by a 

number of its competitors would not be a satisfactory answer and a decision was made to 

develop a planning system that would meet Harris' unique needs - the final result was 

IMPReSS, an automated production planning and delivery quotation system for the entire 
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production network.  The system is an impressive combination of heuristics as well as 

optimization-based techniques.  It works by breaking up the overall problem into smaller, 

more manageable problems by using a heuristic decomposition approach.  Mathematical 

models within the problem are solved using linear programming along with concepts 

from material requirements planning.   The entire system interfaces with sophisticated 

databases allowing for forecasting, quotation and order entry, materials and dynamic 

information on capacities.  Harris estimates that this system has increased on-time 

deliveries from 75% to 95% with no increase in inventories, helped it move from $75 

million in losses to $40 million in profits annually, and allowed it to plan its capital 

investments more efficiently. 

Gasoline Blending at Texaco:  For another application to production planning, but this 

time in a continuous as opposed to discrete production environment, we look at a system 

in use at Texaco [2]. One of the major applications of O.R. is in the area of gasoline 

blending at petroleum refineries, and virtually all major oil companies use sophisticated 

optimization models in this area.  At Texaco the system is called StarBlend and runs on 

networked microcomputers.  As some background, the distillation of crude petroleum 

produces a number of different products at different distillation temperatures.  Each of 

these may be further refined through cracking (where complex hydrocarbons are broken 

into simpler ones) and recombination.  These various output streams are then blended 

together to form end-products such as different grades of gasoline (leaded, unleaded, 

super-unleaded etc.), jet fuel, diesel and heating oil.  The planning problem is very 

complex, since different grades of crude yield different concentrations of output streams 

and incur different costs, and since different end-products fetch different revenues and 
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use different amounts of refinery resources.  Considering just one product - gasoline - 

there are various properties that constrain the blends produced.  These include the octane 

number, lead and sulfur content, volatilities and Reid vapor pressure, to name a few.  In 

addition, regulatory constraints impose certain restrictions as well.   

As an initial response to this complex problem, in the early to mid 1980's Texaco 

developed a system called OMEGA.  At the heart of this was a nonlinear optimization 

model which supported an interactive decision support system for optimally blending 

gasoline; this system alone was estimated to have saved Texaco about $30 million 

annually.  StarBlend is an extension of OMEGA to a multi-period planning environment 

where optimal decisions could be made over a longer planning horizon as opposed to a 

single period.  In addition to blend quality constraints, the optimization model also 

incorporates inventory and material balance constraints for each period in the planning 

horizon.  The optimizer uses an algebraic modeling language called GAMS and a 

nonlinear solver called MINOS, along with a relational database system for managing 

data.  The whole system resides within a user-friendly interface and in addition to 

immediate blend planning it can also be used to analyze various "what-if" scenarios for 

the future and for long-term planning. 

FMS Scheduling at Caterpillar: For our third application we look at the use of a 

simulation model. This model was applied to derive schedules for a Flexible 

Manufacturing System (FMS) at Caterpillar, Inc. [3].  The interested reader may refer to 

any text on computer integrated manufacturing for details about FMSs; typically, they are 

systems of general purpose CNC machines linked together by an automated material 

handling system and completely controlled by computers.  The FMS in question at 
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Caterpillar had seven CNC milling machines, a fixturing station and a tool station, with 

material and tool handling being performed by four automated guided vehicles (AGVs) 

traveling along a one-way guided wire path. FMSs can provide tremendous increases in 

capacity and productivity because of the high levels of automation inherent in them and 

their potential to manufacture a wide variety of parts.  On the other hand, this comes with 

a price; these systems are also very complex and the process of planning and scheduling 

production on an FMS and then controlling its operation can be a very difficult one. The 

efficiency of the scheduling procedure used can have a profound effect on the magnitude 

of the benefits realized. 

 At Caterpillar, a preliminary analysis showed that the FMS was being 

underutilized and the objective of the project was to define a good production schedule 

that would improve utilization and free up more time to produce additional parts.  In the 

orientation phase it was determined that the environment was much too complex to 

represent it accurately through a mathematical model, and therefore simulation was 

selected as an alternative modeling approach. It was also determined that minimizing the 

makespan (which is the time required to produce all daily requirements) would be the 

best objective since this would also maximize as well as balance machine utilization.  A 

detailed simulation model was then constructed using a specialized language called 

SLAM.  In addition to the process plans required to specify the actual machining of the 

various part types, this model also accounted for a number of factors such as material 

handling, tool handling and fixturing.  Several alternatives were then simulated to 

observe how the system would perform and  it was determined that a fairly simple set of 

heuristic scheduling rules could yield near optimal schedules for which the machine 
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utilizations were almost 85%.  However, what was more interesting was that this study 

also showed that the stability of the schedule was strongly dependent on the efficiency 

with which the cutting tools used by the machines could be managed.  In fact, as tool 

quality starts to deteriorate the system starts to get more and more unstable and the 

schedule starts to fall behind due dates.  In order to avoid this problem, the company had 

to suspend production over the weekends and replace worn-out tools or occasionally use 

overtime to get back on schedule.  The key point to note from this application is that a 

simulation model could be used to analyze a highly complex system for a number of 

what-if scenarios and to gain a better understanding of the dynamics of the system. 

Fleet Assignment at Delta Airlines:   One of the most challenging as well as rewarding 

application areas of O.R. has been the airline industry.  We briefly describe here one such 

application at Delta Airlines [4].  The problem solved is often referred to as the fleet 

assignment problem.  Delta flies over 2500 domestic flight legs each day and uses about 

450 aircraft from 10 different fleets, and the objective was to assign aircraft to flight legs 

in such a way that revenues from seats are maximized.  The tradeoff is quite simple - if a 

plane is too small then the airline loses potential revenue from passengers who cannot be 

accommodated on board, and if it is too large then the unoccupied seats represent lost 

revenue (in addition to the fact that larger aircraft are also more expensive to operate).  

Thus the objective is to ensure that an aircraft of the "correct" size be available when 

required and where required.  Unfortunately, ensuring that this can happen is 

tremendously complicated since there are a number of logistical issues that constrain the 

availability of aircraft at different times and locations.   
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The problem is modeled by a very large mixed-integer linear program - a typical 

formulation could result in about 60,000 variables and 40,000 constraints.  The planning 

horizon for each problem is one day since the assumption is made that the same schedule 

is repeated each day (exceptions such as weekend schedules are handled separately).  The 

primary objective of the problem is to minimize the sum of operating costs (including 

such things as crew cost, fuel cost and landing fees) and costs from lost passenger 

revenues.  The bulk of the constraints are structural in nature and result from modeling 

the conservation of flow of aircraft from the different fleets to different locations around 

the system at different scheduled arrival and departure times.  In addition there are 

constraints governing the assignment of specific fleets to specific legs in the flight 

schedule.  There are also constraints relating to the availability of aircraft in the different 

fleets, regulations governing crew assignments, scheduled maintenance requirements, and 

airport restrictions.   As the reader can imagine, the task of gathering and maintaining the 

information required to mathematically specify all of these is in itself a tremendous task.  

While building such a model is difficult but not impossible, the ability to solve it to 

optimality was impossible until the very recent past.  However, computational O.R. has 

developed to the point that it is now feasible to solve such complex models; the system at 

Delta is called Coldstart and uses highly sophisticated implementations of linear and 

integer programming solvers.  The financial benefits from this project were tremendous; 

for example, according to Delta the savings during the period from June 1 to August 31, 

1993 were estimated at about $220,000 per day over the old schedule. 

KeyCorp Service Excellence Management System:  For our final application we turn to 

the service sector and an industry that employs many industrial engineers - banking.  This 
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application [5] demonstrates how operations research was used to enhance productivity 

and quality of service at KeyCorp, a bank holding company headquartered in Cleveland, 

Ohio.  Faced with increasing competition from nontraditional sources and rapid 

consolidation within the banking industry, KeyCorp's aim was to provide a suite of 

world-class financial products and services as opposed to being a traditional bank.  The 

key element in being able to do this effectively is high-quality customer service and a 

natural trade-off faced by a manager was in terms of staffing and service - better service 

in the form of shorter waiting times required additional staffing which came at a higher 

cost.  The objective of the project was to provide managers with a complete decision 

support system which was dubbed SEMS (Service Excellence Management System). 

 The first step was the development of a computerized system to capture data on 

performance.  The system captured the beginning and ending time of all components of a 

teller transaction including host response time, network response time, teller controlled 

time, customer controlled time and branch hardware time.  The data gathered could then 

be analyzed to identify areas for improvement.  Queuing theory was used to determine 

staffing needs for a prespecified level of service.  This analysis yielded a required 

increase in staffing that was infeasible from a cost standpoint, and therefore an estimate 

was made of the reductions in processing times that would be required to meet the service 

objective with the maximum staffing levels that were feasible.  Using the performance 

capture system, KeyCorp was then able to identify strategies for reducing various 

components of the service times.  Some of these involved upgrades in technology while 

others focused on procedural enhancements, and the result was a 27% reduction in 

transaction processing time.  Once the operating environment was stabilized, KeyCorp 
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introduced the two major components of SEMS to help branch managers improve 

productivity.  The first, a Teller Productivity system, provided the manager with 

summary statistics and reports to help with staffing, scheduling and identifying tellers 

who required further training.  The second, a Customer Wait Time system, provided 

information on customer waiting times by branch, by time of day and by half-hour 

intervals at each branch.  This system used concepts from statistics and queuing theory to 

develop algorithms for generating the required information.  Using SEMS, a branch 

manager could thus autonomously decide on strategies for further improving service.  

The system was gradually rolled out to all of KeyCorp's branches and the results were 

very impressive.  For example, on average, customer processing times were reduced by 

53% and customer wait times dropped significantly with only four percent of customers 

waiting more than five minutes. The resulting savings over a five year period were 

estimated at $98 million. 

Summary 

This chapter provides an overview of operations research, its origins, its approach to 

solving problems, and some examples of successful applications.  From the standpoint of 

an industrial engineer, O.R. is a tool that can do a great deal to improve productivity.  It 

should be emphasized that O.R. is neither esoteric nor impractical, and the interested I.E. 

is urged to study this topic further for its techniques as well as its applications; the 

potential rewards can be enormous.  
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