
THEOREM: For a feasible linear program in its standard

form, the optimum value of the objective over its

nonempty feasible region is (a) either unbounded or (b) is

achievable at least at one extreme point of the feasible

region.

We will see what is meant by “standard form” very shortly…

More generally, the above theorem and the graphs we saw tell us
that every LP is in exactly one of the following states:

1. Feasible with a unique optimum solution - clause (b) of
the fundamental theorem

2. Feasible with infinitely many optima - clause (b) of the
fundamental theorem

3. Feasible, with no optimum solution because the objective
is unbounded - clause (a) of the fundamental theorem

4. Infeasible, and therefore, with no optimum solution
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Assume for now that we have a feasible LP and that
the objective is bounded (i.e., we are in States 1 or 2).
Then the following are true:

A. The LP has at least one optimal corner point (or
extreme point)

1. If in State 1, exactly one extreme point is optimal

2. If in State 2, at least two adjacent (neighboring)
extreme points are optimal

B. The number of extreme points is finite

C. If the objective function at some extreme point is as
good as, or better than it is at all of its adjacent
extreme points, then this extreme point is optimal for
the LP

This suggests a simple algorithmic approach to
finding the optimum of a feasible and bounded
LP…

 2020, Jayant Rajgopal 



STEP 0 (Initialization): Find an initial extreme point and 
make it the current candidate (if one cannot be found the LP 
is in state 4, i.e. it is infeasible – so STOP).

STEP 1 (Stopping Criterion Check): Is the objective at the 
current extreme point at least as good or better than it is at 
all of its adjacent (neighboring) extreme points?  If so this 
must be the optimal extreme point (via C) – so STOP.  If not, 
go to Step 2.

STEP 2 (Iterative Step): One (or more accurately, at least 
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one…) of the adjacent extreme points is better – so make it 
the current candidate. Then return to Step 1.

QUESTIONS:
1) How to find an initial extreme point?
2) What is the algebraic characterization of an “extreme 

point?”
3) What is the algebraic characterization of adjacent extreme 

points, i.e., how to move from an extreme point to one of 
its neighbors (in Step 2)?



Standard Form of a Linear Program 
 
Three conditions must be met: 

1) All constraints must be stated as equalities of the form 
gk(x)=bk, where gk(x) is a linear function of x. 

2) The RHS for each constraint must be nonnegative, i.e., all 
bk≥0 

3) All variables must be nonnegative, i.e., xi≥0 for all i. 

Thus the LP (with m constraints and n variables) looks like 

Min (or Max) c1x1 + c2x2 + … + cnxn 
st a11x1 + a12x2 +… + a1nxn = b1 

a21x1 + a22x2 +… + a2nxn = b2 

: 

am1x1 +am2x2 +… + amnxn = bm 
x1, x2, …, xn ≥ 0. 

where b1, b2, …, bn ≥ 0. 
 
More compactly, let c=[c1  c2  ... cn]  and 
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Then the LP may be restated as  
Min (or Max) cx,  
st Ax=b, x≥0, where b≥0. 

 
This final system of constraint equations of the LP in 
standard form is called the AUGMENTED SYSTEM. 
 
Consider such an augmented system of n variables in m 
equations, where m≤n.  Note that the augmented system 
does not include the nonnegativity conditions! 
 
Also note that this system has three possible states: (1) no 
solution, (2) exactly one solution, or (3) infinitely many 
solutions.   
 
Feasible solution: Any solution to the augmented system 
that also satisfies nonnegativity is called a feasible solution 
 
E.g.  Consider the following constraints and the 
corresponding augmented system: 

x1 + 2x2 ≤ 120   x1 + 2x2 + S1   = 120 
x1 +   x2 ≤  90   x1 +  x2  + S2  = 90 
x1        ≤  70   x1       + S3  = 70 

 x2 ≤  50    x2   + S4 = 50 
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Note that n=6 and m=4. 

1) An (infeasible) solution is [x1=70, x2=50, S1=-50, S2=-30, 
S3=0, S4=0] 

2) A feasible solution is [x1=20, x2=20, S1=60, S2=50, S3=50, 
S4=30] 

Basic Solution: Suppose we fix (n-m) out of the n variables 
at zero, and try to solve the system of m equations in the 
remaining m variables.  If a solution to this exists, then it is 
called a basic solution. Solution (1) on the previous page is 
an example of a basic solution. 

Basic Feasible Solution: A basic solution that also satisfies 
nonnegativity is called a basic feasible solution (BFS).  An 
example of a BFS is [x1=20, x2=50, S1=0, S2=20, S3=50, 
S4=0]. Note that (1) is not a BFS even though it is a basic 
solution!   
 
 
 
 
 
 
 
 
If it is also feasible (≥0)    Original LP is infeasible  
then the original LP has     Feasible Infeasible 
exactly one feasible solution 
- it is also optimal! 
 
 
 
 
 

Augmented System 

One Solution No Solution Infinitely many solutions 

Basic Nonbasic Basic Nonbasic Basic Nonbasic Basic Nonbasic 
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In a basic solution, the (n-m) variables that are chosen to be fixed 
at zero are called the nonbasic variables and the remaining m 
variables are called basic variables.  
Note that we can choose (n-m) out of the n variables in 
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different ways.  Thus we can get a 

maximum of this many different basic solutions (some of which 
will also be basic feasible solutions) – in practice all of these may 
not exist since in some cases, the resulting m x m system may not 
have a solution! 
 

In our example, n=6 and m=4 so that 15
!4)!46(

!6
=

−
=⎟

⎠

⎞
⎜
⎝

⎛
−mn
n

 

The 15 combinations of nonbasic variables are: 
 
1) x1, x2 
2) x1, S1 6) x2, S1 
3) x1, S2 7) x2, S2 10) S1, S2   
4) x1, S3 8) x2, S3 11) S1, S3 13) S2, S2 
5) x1, S4 9) x2, S4 12) S1, S4 14) S2, S4 15) S3, S4 
 
Try to locate each of these on the graphical representation!  

 

FACT: Each BFS corresponds to an extreme point of 
the feasible region. 
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                     X2        Max 20X1+10X2 
      S3=0, X1=70  st 
            X1+2X2 ≤ 120   (Constr. 1, S1) 
             X1+X2  ≤ 90      (Constr. 2, S2) 
                     90            X1            ≤ 70    (Constr. 3, S3) 
   S2=0, X1+X2=90                X2 ≤ 50      (Constr. 4, S4) 
              X1, X2 ≥ 0 
 
 
 
 
 
 
       S1=S4=0  S2=S4=0           S3=S4=0   S4=0, X2=50 
                     50 
                              II        III 
 
 
 
                         S1=S2=0   X1

*=70 
                                IV             S1=S3=0  X2

*=20 
     Feasible  Region     Opt. Val. =1600 
                               V     S2=S3=0 
 
              S1=0, X1+2X2=120 
       10  
   I        VI 
                 X1 

         10        20    30 40        50        60       70        80        90      100      110     120 
       
 
 
 

1.       ,     : BASIC SOLUTIONS (13 of them).  Note that there should be (
4
6 )=15 of 

these, but only 13 exist because X1=70 is parallel to the X2-axis and X2=50 is 
parallel to the X1-axis.   

2.      :  BASIC FEASIBLE SOLUTION:  (6 of the above 13, numbered I, II, 
III, IV, V, VI) 

3.        : Contour of the objective function corresponding to  a value of 1600 

4.            : Set of all Feasible solutions to the LP  
 
 
 
 
 
 
 
 
 
 

© 2020, Jayant Rajgopal 




