Adjacent Basic Feasible Solutions | | x_1 | x_2 | S_{1} | S_2 | S_3 | S_4 | |-----|-------|-------|---------|-------|-------|-------| | I | 0 | 0 | 120 | 90 | 70 | 50 | | Ш | 0 | 50 | 20 | 40 | 70 | 0 | | III | 20 | 50 | 0 | 20 | 50 | 0 | | IV | 60 | 30 | 0 | 0 | 10 | 20 | | V | 70 | 20 | 10 | 0 | 0 | 30 | | VI | 70 | 0 | 50 | 20 | 0 | 50 | | | N | В | |---------|---------------------------|--| | l
II | (x_1, x_2) (x_1, S_4) | (S_1, S_2, S_3, S_4) | | II | (x_1, S_4) | (S_1, S_2, S_3, x_2)
(S_1, S_2, S_3, x_2) | | III | (S_1, S_4) (S_1, S_4) | (x_1, S_2, S_3, x_2)
(x_1, S_2, S_3, x_2) | | IV | (S_1, S_2) | (x_1, S_2, S_3, x_2)
(x_1, S_4, S_3, x_2) | | IV
V | (S_1, S_2) (S_3, S_2) | (x_1, S_4, S_3, x_2)
(x_1, S_4, S_1, x_2) | | V
VI | (S_3, S_2) (S_3, x_2) | (x_1, S_4, S_1, x_2)
(x_1, S_4, S_1, S_2) | | VI
I | (S_3, x_2) (x_1, x_2) | (x_1, S_4, S_1, S_2)
(S_3, S_4, S_1, S_2) | © 2020, Jayant Rajgopal # Adjacent Basic Feasible Solutions | | x_1 | x_2 | S_{I} | S_2 | S_3 | S_4 | |-----|-------|-------|---------|-------|-------|-------| | I | 0 | 0 | | | | | | II | 0 | | | | | 0 | | III | | | 0 | | | 0 | | IV | | | 0 | 0 | | | | V | | | | 0 | 0 | | | VI | | 0 | | | 0 | | =BASIC | | N | В | |-----|--------------|------------------------| | I | (x_1, x_2) | (S_1, S_2, S_3, S_4) | | II | (x_1, S_4) | (S_1, S_2, S_3, x_2) | | II | (x_1, S_4) | (S_1, S_2, S_3, x_2) | | III | (S_1, S_4) | (x_1, S_2, S_3, x_2) | | III | (S_1, S_4) | (x_1, S_2, S_3, x_2) | | IV | (S_1, S_2) | (x_1, S_4, S_3, x_2) | | IV | (S_1, S_2) | (x_1, S_4, S_3, x_2) | | V | (S_3, S_2) | (x_1, S_4, S_1, x_2) | | V | (S_3, S_2) | (x_1, S_4, S_1, x_2) | | VI | (S_3, x_2) | (x_1, S_4, S_1, S_2) | | VI | (S_3, x_2) | (x_1, S_4, S_1, S_2) | | I | (x_1, x_2) | (S_3, S_4, S_1, S_2) | # Algebraic Specification of the Simplex Method Moving to an adjacent BFS is the same as exchanging an element of *B* with an element of *N*, i.e., exchanging a basic variable for a nonbasic variable #### PHASE I **STEP 0 (INITIALIZATION):** Find an initial basic feasible solution (*BFS*), i.e., an extreme point of the feasible region. If one *cannot* be found the problem is *infeasible*: STOP. #### PHASE II **STEP 1 (STOPPING CRITERIA CHECK):** Is unboundedness detected? If so, there is no optimum solution: STOP. If not, is there an adjacent extreme point where the objective function is better than at the current one? That is, can the objective be improved by exchanging one of the currently basic variables for one of the currently nonbasic variables? If not, the current *BFS* is *optimal*. STOP. Proceed to Step 2 STEP 2 (ITERATIVE STEP): Move to the (better) adjacent extreme point identified above in Step 1 by exchanging a basic variable for a nonbasic one. Then return to Step 1. # The Initial Simplex Tableau Max Z= $$20x_1+10x_2$$ st $x_1+2x_2+S_1 = 120$ $x_1+x_2+S_2 = 90$ $x_1+x_2+S_3 = 70$ $x_2+S_4=50$ $x_1, x_2 \ge 0$ #### Maximize Z | Row | Z | x_1 | x_2 | S_1 | S ₂ | S ₃ | S_4 | RHS | Basic | |-----|---|----------|-------|-------|----------------|-----------------------|-------|-----|---------| | 0 | 1 | -20 | -10 | 0 | 0 | 0 | 0 | 0 | Z | | 1 | 0 | <u> </u> | 2 | 1 | 0 | 0 | 0 | 120 | S_{I} | | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 90 | S_2 | | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 70 | S_3 | | 4 | 0 | 0/ | 1 | 0 | 0 | 0 | 1 | 50 | S_4 | Substitution rates The system of equations represented above is said to be in **CANONICAL FORM**: - Each equation has an "isolated" variable that appears in <u>only</u> that equation and has a coefficient of +1 - The RHS for each constraint equation is a nonnegative constant We can rewrite the equations as below: $$Z = 0 + 20x_1 + 10x_2$$ $$S_1 = 120 - x_1 - 2x_2$$ $$S_2 = 90 - x_1 - x_2$$ $$S_3 = 70 - x_1$$ $$S_4 = 50 - x_2$$ S_1 , S_2 , S_3 and S_4 are **BASIC** variables x_1 and x_2 (the **NONBASIC** variables) are thus parameters here NOTE that if these parameters (nonbasic variables) are set to zero the system has essentially been "solved" for Z, S_1 , S_2 , S_3 and S_4 !! ## Moving to a Better BFS Letting the nonbasic variables equal 0, we obtain the Basic Feasible **Solution** $x_1 = x_2 = 0$; $S_1 = 120$, $S_2 = 90$, $S_3 = 70$ and $S_4 = 50$. Obviously, this **BFS** is not optimal: from $Z = 0 + 20x_1 + 10x_2$ it is clear that increasing either of x_1 or x_2 will increase Z. Let us (arbitrarily) select x_I for increase while maintaining the other basic variables (\dot{x}_2 in this case) at 0. Each unit increase in x_1 increases Z by 20 units. However as x_1 is increased, the values of the (current) basic variables S_1 , S_2 , S_3 and S_4 change: ONE unit increase in $x_1 \Rightarrow$ substitution rates! 1 unit **de**crease in S_1 (= 120 - x_1 - 2 x_2) 1 unit **de**crease in S_2 (= 90 - x_1 - x_2) 1 unit **de**crease in S_3 (= 70 - x_1) o unit change in S_4 (= 50 - x_2) **Question:** HOW MUCH MAY x_i INCREASE? **Answer:** A further increase in x_i is "blocked" when one of the basic variables reaches its lower bound (zero). To continue increasing x_1 would cause the non-negativity restriction on this basic variable to be violated! Here we thus have: $$S_I$$ reaches 0 when x_I reaches 120/1 = 120 (from S_I = 120 - x_1) • $$S_2$$ reaches 0 when x_1 reaches 90/1 = 90 (from $S_2 = 90 - x_1$) • $$S_3$$ reaches 0 when x_1 reaches 70/1 = 70 (from $S_3 = 70 - x_1$) • $$S_4$$ is unaffected by increases in x_1 (50/0= ∞) (from S_4 = 70) As we increase x_I the first "block" occurs at **Minimum** {120, 90, 70, ∞ } = 70, at which point S_3 goes to 0 # Iterating in the Simplex Method In summary we do the RATIOTEST of the form (current basic variable) ÷ (positive substitution rate) and pick the basic variable corresponding to the row that yields the MINIMUM RATIO Next, we would like to "re-solve" the system so that we obtain a canonical form with x_I being a basic variable and S_3 being nonbasic (and hence equal to zero). <u>PIVOT OPERATION</u>: A sequence of **elementary row operations** which reduce the tableau to canonical form. Consider the current tableau: <u>Pivot Column</u> | | Row | Z | x_1 | x_2 | S_{I} | S_2 | S_3 | S_4 | RHS | Basic | |-------|-----|---|-------|------------|---------|-------|-------|-------|-----|---------| | | 0 | 1 | -20 | -10 | 0 | 0 | 0 | 0 | 0 | Z | | | 1 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 120 | S_{I} | | Pivot | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 90 | S_2 | | Row | > 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 70 | S_3 | | | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 50 | S_4 | | , | | | P | ivot Eleme | ent | | | | | | We will pivot on the element in - The column corresponding to the variable entering the basis, - The row corresponding to the variable leaving the basis. # Iterating in the Simplex Method The pivot column must end up with a ${\bf 1}$ in the pivot element's spot and zeros elsewhere; so we - Add 20*(Row 3) to Row o - Add -1*(Row 3) to Row 1 - Add -1*(Row 3) to Row 2 #### The resulting tableau is | Row | Z | x_1 | x_2 | S_{I} | S_2 | S_3 | S_4 | RHS | Basic | |-----|---|-------|-------|---------|-------|-------|-------|------|---------| | 0 | 1 | 0 | -10 | 0 | 0 | 20 | 0 | 1400 | Z | | 1 | 0 | 0 | 2 | 1 | 0 | -1 | 0 | 50 | S_{I} | | 2 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 20 | S_2 | | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 70 | x_1 | | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 50 | S_4 | which represent the **BFS** $S_3=x_2=0$; $S_1=50$, $S_2=20$, $x_1=70$ and $S_4=50$ with Z=1400. #### ARE WE DONE? Again, rewriting Z in terms of the basic variables: $$Z - 10x_2 + 20S_3 = 1400 \implies Z = 1400 + 10x_2 - 20S_3$$ Z can be increased from its current value (1400) by increasing x_2 Consider the column of substitution rates for x_2 . A unit increase in x_2 will force us to (in order to maintain feasibility) **decrease** S_1 by 2 units (from $S_1 = 50 - 2x_2$) **de**crease S_2 by 1 unit (from $S_2 = 20 - x_2$) **de**crease S_4 by 1 unit (from $S_4 = 50 - x_2$) Conducting the minimum ratio test, the maximum increase possible in x_2 is given by minimum of $\{50/2, 20/1, \infty, 50/1\} = 20$ at which point x_2 goes to zero # Iterating in the Simplex Method At this point S_2 goes to zero and leaves the basis. Thus the new basis will have x_2 replacing S_2 in the basis. Now pivot again: #### CURRENT TABLEAU | | | | | <u> </u> | | | | | | | |---|----------|---|-------|----------|-------|-------|-------|-------|------|---------| | | Row | Z | x_1 | x_2 | S_1 | S_2 | S_3 | S_4 | RHS | Basic | | | 0 | 1 | 0 | -10 | 0 | 0 | 20 | 0 | 1400 | Z | | | 1 | 0 | 0 | 2 | 1 | 0 | -1 | 0 | 50 | S_{I} | | _ | 2 | 0 | 0 | | 0 | 1 | -1 | 0 | 20 | S_2 | | | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 70 | x_1 | | | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 50 | S_4 | - Row o ← Row o +(10)*Row 2 - Row 1 ← Row 1 +(-2)*Row 2 - Row 4 ← Row 4 +(-1)*Row 2 #### **OPTIMAL!** #### New Tableau | Row | Z | x_1 | x_2 | S_{I} | S_2 | S_3 | S_4 | RHS | Basic | |-----|---|-------|-------|---------|-------|-------|-------|------|---------| | 0 | 1 | 0 | 0 | 0 | 10 | 10 | 0 | 1600 | Z | | 1 | 0 | 0 | 0 | 1 | -2 | 1 | 0 | 10 | S_1 | | 2 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 20 | x_2 | | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 70 | x_{I} | | 4 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 30 | S_4 | # The Simplex Method Another Example... Maximize $$z = 40x_1 + 60x_2 + 50x_3$$ st $10x_1 + 4x_2 + 2x_3 \le 950$, i.e., $10x_1 + 4x_2 + 2x_3 + S_1 = 950$ $2x_1 + 2x_2 \le 410$ $2x_1 + 2x_2 + S_2 = 410$ $x_1 + 2x_3 \le 610$ $x_1 + 2x_3 + S_3 = 610$ $x_1, x_2, x_3 \ge 0$. #### Iteration 0 CURRENT TABLEAU Row Basic | Z | S_2 S_3 **RHS** x_2 x_3 1 -40 -60 0 \mathbf{Z} -50 0 0 0 0 S_1 0 10 4 2 0 950 1 0 950/4=237.52 S_2 0 2 0 0 1 0 410 410/2=205 2 1 610 S_3 ∞ Row $0 \leftarrow \text{Row } 0 + (30) * \text{Row } 2$; Row $1 \leftarrow \text{Row } 1 + (-2) * \text{Row } 2$; Row $2 \leftarrow (1/2) * \text{Row } 2$ Iteration 1 | | Row | Basic | Z | x_1 | x_2 | x_3 | S_{I} | S_2 | S_3 | RHS | | |---------------|-----|---------|---|-------|-------|-------|---------|-------|-------|--------|-----------| | | 0 | Z | 1 | 20 | 0 | -50 | 0 | 30 | 0 | 12,300 | | | \rightarrow | 1 | S_{I} | 0 | 6 | 0 | 2 | 1 | -2 | 0 | 130 | 130/2=65 | | | 2 | x_2 | 0 | 1 | 1 | 0 | 0 | 1/2 | 0 | 205 | ∞ | | | 3 | S_3 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 610 | 610/2=305 | L Row $o \leftarrow \text{Row } o + 25*(\text{Row 1});$ Row $3 \leftarrow \text{Row } 3 + (-1)*(\text{Row 1});$ Row $1 \leftarrow (1/2)*(\text{Row 1})$ $\bigcirc_{2020, \text{ Jayant Rajgopal}}$ # The Simplex Method Another Example... #### Iteration 2 | | Row | Basic | Z | x_1 | x_2 | x_3 | S_1 | S_2 | S_3 | RHS | | |-------------|-----|-------|---|-------|-------|-------|-------|-------|-------|--------|-------------| | | 0 | Z | 1 | 170 | 0 | 0 | 25 | -20 | 0 | 15,550 | | | | 1 | x_3 | 0 | 3 | 0 | 1 | 1/2 | -1 | 0 | 65 | ∞ | | | 2 | x_2 | 0 | 1 | 1 | 0 | 0 | 1/2 | 0 | 205 | 205/0.5=410 | | > | 3 | S_3 | 0 | -5 | 0 | 0 | -1 | 2 | 1 | 480 | 480/2=240 | Row 0 $$\leftarrow$$ Row 0 +(10)*Row 3; Row 1 \leftarrow Row 1 +(1/2)*Row 3; Row 2 \leftarrow Row 2+(-1/4)*Row 3; Row 3 \leftarrow (1/2)*Row 3 #### Iteration 3 | Row | Basic | Z | x_1 | x_2 | x_3 | S_{I} | S_2 | S_3 | RHS | |-----|-------|---|-------|-------|-------|---------|-------|-------|--------| | 0 | Z | 1 | 120 | 0 | 0 | 15 | 0 | 10 | 20,350 | | 1 | x_3 | 0 | 1/2 | 0 | 1 | 0 | 0 | 1/2 | 305 | | 2 | x_2 | 0 | 9/4 | 1 | 0 | 1/4 | 0 | -1/4 | 85 | | 3 | S_2 | 0 | -5/2 | 0 | 0 | -1/2 | 1 | 1/2 | 240 | OPTIMAL! All nonbasic variables have coefficients in Eq. o that are nonnegative. Therefore no neighboring (adjacent) extreme point could be any better. ### Some Observations... | Row | Basic | Z | X ₁ | X ₂ | X ₃ | S ₁ | S ₂ | S ₃ | RHS | | |-----|-----------------------|---|-----------------------|-----------------------|-----------------------|----------------|----------------|----------------|--------|-------------| | 0 | Z | 1 | 170 | 0 | 0 | 25 | -20 | 0 | 15,550 | | | 1 | X ₃ | 0 | 3 | 0 | 1 | 1/2 | -1 | 0 | 65 | ∞ | | 2 | <i>X</i> ₂ | 0 | 1 | 1 | 0 | 0 | 1/2 | 0 | 205 | 205/0.5=410 | | 3 | S_3 | 0 | -5 | 0 | 0 | -1 | 2 | 1 | 480 | 480/2=240 | #### Reduced Costs - For basic variables: <u>always</u> equal to 0. - For nonbasic variables: could be any value. It is - the increase (if negative) or decrease (if positive) in Z for a 1 unit increase in that nonbasic variable while all other nonbasic variables remain zero. At the optimum: no negative (positive) reduced costs if maximizing (minimizing) #### Objective Values (Z) Could be any sign depending on the objective coefficients #### Substitution Rates (for nonbasic variables) Could be any sign: For a 1 unit increase in a nonbasic variable the rate in a row under the column for that nonbasic variable represents the decrease (if positive) or the increase (if negative) required in the value of the basic variable corresponding to that row, so as to maintain feasibility. #### RHS Values Cannot be negative #### **Minimum Ratio** Maximum allowable increase in the nonbasic variable chosen to enter, before a basic variable decreases to a value of 0 (and hence becomes nonbasic). ## **Alternative Optima** Consider Max $Z = 2x_1 + 4x_2$ st $x_1 + 2x_2 \le 5$; $x_1 + x_2 \le 4$; $x_1, x_2 \ge 0$ | Row | Basic | Z | X ₁ | X ₂ | S ₁ | S_2 | RHS | |-----|----------------|---|----------------|-----------------------|----------------|-------|-----| | 0 | Z | 1 | -2 | -4 | 0 | 0 | 0 | | 1 | S ₁ | 0 | 1 | 2 | 1 | 0 | 5 | | 2 | S_2 | 0 | 1 | 1 | 0 | 1 | 4 | Entering X₂ and removing S₁ yields | Row | Basic | Z | X ₁ | X ₂ | S ₁ | S_2 | RHS | |-----|-----------------------|---|-----------------------|-----------------------|----------------|-------|-----| | 0 | Z | 1 | 0 | 0 | 2 | 0 | 10 | | 1 | X ₂ | 0 | 0.5 | 1 | 0.5 | 0 | 2.5 | | 2 | S_2 | 0 | 0.5 | 0 | -0.5 | 1 | 1.5 | OPTIMAL! But... we can still enter the NBV x_1 into the basis if we wish | Row | Basic | Z | X ₁ | x ₂ | S ₁ | S ₂ | RHS | |-----|-----------------------|---|----------------|-----------------------|----------------|----------------|-----| | 0 | Z | 1 | 0 | 0 | 2 | 0 | 10 | | 1 | X ₂ | 0 | 0 | 1 | 1 | -1 | 1 | | 2 | x ₁ | 0 | 1 | 0 | -1 | 2 | 3 | If a tableau indicates optimality (all reduced cost ≥ 0 for Max or ≤ 0 for a Min), but a nonbasic variable has a zero reduced cost and can enter the basis, then we have alternative optima. ©2020, Jayant Rajgopal ## Unbounded Objective Suppose we have chosen an entering variable, i.e., a nonbasic variable with negative reduced cost (maximization) or a positive reduced cost (minimization). However, no leaving variable can be found because all of the substitution rates in the pivot column are either zero or less than zero. It is impossible to conduct the ratio test! Consider Min $$Z = 2x_1 - 6x_2$$ st $-x_1 + x_2 \le 1$; $x_1 - 2x_2 \le 2$; $x_1, x_2 \ge 0$ | Row | Basic | Z | x ₁ | x ₂ | S ₁ | S ₂ | RHS | |-----|----------------|---|-----------------------|-----------------------|----------------|----------------|-----| | 0 | Z | 1 | -2 | 6 | 0 | 0 | 0 | | 1 | S ₁ | 0 | -1 | 1 | 1 | 0 | 1 | | 2 | S_2 | 0 | 1 | -2 | 0 | 1 | 2 | Entering x_1 and removing S_1 yields | Row | Basic | Z | X ₁ | x ₂ | S ₁ | S ₂ | RHS | |-----|-----------------------|---|----------------|-----------------------|----------------|----------------|-----| | 0 | Z | 1 | 4 | 0 | -6 | 0 | -6 | | 1 | X ₂ | 0 | -1 | 1 | 1 | 0 | 1 | | 2 | S ₂ | 0 | -1 | 0 | 2 | 1 | 4 | Note that x_1 can enter but no ratio test is possible – that means x_1 can be raised indefinitely (and Z improved by 4 units per unit of increase in x_1) without ever endangering feasibility! The objective for the problem is thus unbounded. ## **Breaking Ties** - Tie for the entering variable, i.e., there is a tie for the variable that has the "most negative" (for maximization) or "most positive" (for minimization) reduced cost (value in Eq. o) - Tie for the leaving variable, i.e., two or more rows tie for the value of the minimum ratio In either case, break ties arbitrarily! However, when the tie is for the leaving variable – the variable in the row that is NOT chosen will be basic at the next iteration but with a value of 0! Why? As the entering (nonbasic) variable is raised in value, when it hits the value of the minimum ratio, two or more variables that are currently basic **simultaneously** reach zero when their values are adjusted to maintain feasibility. However, to go to an adjacent BFS we can only replace **one** of them in the basis – so the other ones remain in the basis but at a value of zero. E.g. | | | | | K | | | | |-----|----------------|---|-----------------------|-----------------------|----------------|-------|-----| | Row | Basic | Z | X ₁ | X ₂ | S ₁ | S_2 | RHS | | 0 | Z | 1 | -1 | -2 | 0 | 0 | 0 | | 1 | S ₁ | 0 | 2 | 1 | 1 | 0 | 20 | | 2 | S ₂ | 0 | 1 | 2 | 0 | 1 | 40 | 20/1=20 40/2=20 # Tie for leaving variable If we pick x_2 to enter there is a tie for the leaving variable. Suppose we break this arbitrarily and pick S_1 to leave. The next tableau will be obtained by performing the ero's Row $$o \leftarrow Row o + 2*Row 1$$, Row 2 $$\leftarrow$$ Row 2 - 2*Row 1 | Row | Basic | Z | X ₁ | X ₂ | S ₁ | S ₂ | RHS | |-----|-----------------------|---|-----------------------|-----------------------|----------------|----------------|-----| | 0 | Z | 1 | 3 | 0 | 2 | 0 | 40 | | 1 | x ₂ | 0 | 2 | 1 | 1 | 0 | 20 | | 2 | S_2 | 0 | -3 | 0 | -2 | 1 | 0 | Notice that the basic variable that was NOT picked, i.e., S_2 , is equal to 0 (but we still did improve by 20*2 = 40 units). Conversely, suppose we break the tie by picking S₂ to leave. Then the next tableau will be (after Row o $$\leftarrow$$ Row o + Row 3, Row 2 \leftarrow Row 2 $-$ 0.5*Row 3, Row 3 \leftarrow 0.5*Row 3) | Row | Basic | Z | X ₁ | \mathbf{X}_2 | S_1 | S_2 | RHS | |-----|-----------------------|---|----------------|----------------|-------|-------|-----| | 0 | Z | 1 | 0 | 0 | 0 | 1 | 40 | | 1 | S ₁ | 0 | 1.5 | 0 | 1 | -0.5 | 0 | | 2 | X ₂ | 0 | 0.5 | 1 | 0 | 0.5 | 20 | Again, notice that the basic variable that was NOT picked, i.e., S_1 is equal to 0 (but we again improved by 20*2 = 40 units). These two are examples of **degenerate** basic feasible solutions ### Consider the following LP: Max $$Z = 2X_1 + 3X_2$$ st $X_1 + X_2 \le 3$ $X_1 + 2X_2 \le 4$ $4X_1 + 3X_2 \le 12$ $X_1 \times X_2 \ge 0$ #### Iteration o | Row | Z | X_1 | X_2 | S_1 | S_2 | S_3 | RHS | Basic | |-----|---|-------|-------|-------|-------|-------|-----|-------| | 0 | 1 | -2 | -3 | 0 | 0 | 0 | 0 | Z | | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 3 | S_1 | | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 4 | S_2 | | 3 | 0 | 4 | 3 | 0 | 0 | 1 | 12 | S_3 | #### Iteration 1 | Row | Z | X_1 | X_2 | S ₁ | S_2 | S ₃ | RHS | Basic | |-----|---|-------|-------|----------------|-------|----------------|-----|----------------| | 0 | 1 | -0.5 | 0 | 0 | 1.5 | 0 | 6 | Z | | 1 | 0 | 0.5 | 0 | 1 | -0.5 | 0 | 1 | S ₁ | | 2 | 0 | 0.5 | 1 | 0 | 0.5 | 0 | 2 | X_2 | | 3 | 0 | 2.5 | 0 | 0 | -1.5 | 1 | 6 | S_3 | $$1/0.5 = 2$$ $$2/0.5 = 4$$ $$6/2.5 = 2.4$$ #### Iteration 2 | Row | Z | X_1 | <i>X</i> ₂ | S ₁ | S ₂ | S ₃ | RHS | Basic | |-----|---|-------|-----------------------|----------------|----------------|----------------|-----|-------| | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 7 | Z | | 1 | 0 | 1 | 0 | 2 | -1 | 0 | 2 | X_1 | | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 1 | X_2 | | 3 | 0 | 0 | 0 | -5 | 1 | 1 | 1 | S_3 | OPTIMAL SOLUTION: All reduced costs are nonnegative and so no further increase is possible in the objective (Z). Suppose instead that we had started by bringing X₁ into the basis at the first iteration (rather than X_2): Iteration o | Row | Z | X ₁ | <i>X</i> ₂ | S ₁ | S_2 | S_3 | RHS | Basic | | |-----|---|----------------|-----------------------|----------------|-------|-------|-----|----------------|---------| | 0 | 1 | -2 | -3 | 0 | 0 | 0 | 0 | Z | | | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 3 | S_1 | 3/1 =3 | | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 4 | S_2 | 4/1 =4 | | 3 | 0 | 4 | 3 | 0 | 0 | 1 | 12 | S ₃ | 12/4 =3 | $$3/1 = 3$$ $$4/1 = 4$$ $$12/4 = 3$$ Iteration 1 | | | | K | | | | | | | |-----|---|-----------------------|-------|----------------|----------------|-------|-----|----------------|----------| | Row | Z | <i>X</i> ₁ | X_2 | S ₁ | S ₂ | S_3 | RHS | Basic | | | 0 | 1 | 0 | -1 | 2 | 0 | 0 | 6 | Z | | | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 3 | X_1 | 3/1 =3 | | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 1 | S_2 | 1/1 =1 | | 3 | 0 | 0 | -1 | -4 | 0 | 1 | 0 | S ₃ | ∞ | #### Iteration 2 | Row | Z | <i>X</i> ₁ | <i>X</i> ₂ | S ₁ | S ₂ | S ₃ | RHS | Basic | |-----|---|-----------------------|-----------------------|----------------|----------------|----------------|-----|----------------| | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 7 | Z | | 1 | 0 | 1 | 0 | 2 | -1 | 0 | 2 | X ₁ | | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 1 | X_2 | | 3 | 0 | 0 | 0 | -5 | 1 | 1 | 1 | S_3 | Same optimal solution as before, but different route... Recall that at Iteration 1 we had a tie for the leaving variable between S_1 and S_3 , and we picked S_1 to leave. Consider what happens if we had broken the tie in favor of S_3 . #### Iteration o | | | K | | | | | | | | |-----|---|----|----|----------------|-------|-------|-----|-------|---------| | Row | Z | | | S ₁ | S_2 | S_3 | RHS | Basic | | | 0 | 1 | -2 | -3 | 0 | 0 | 0 | 0 | Z | | | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 3 | S_1 | 3/1 =3 | | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 4 | S_2 | 4/1 =4 | | 3 | 0 | 4 | 3 | 0 | 0 | 1 | 12 | S_3 | 12/4 =3 | #### Iteration 1 | | | | K | | | | | | | |-----|---|-------|-------|----------------|-------|-------|-----|--------------------------------------|-------------| | Row | Z | X_1 | X_2 | S ₁ | S_2 | S_3 | RHS | Basic | | | 0 | 1 | 0 | -1.5 | 0 | 0 | 0.5 | 6 | Z | | | 1 | 0 | 0 (| 0.25 | 1 | 0 | -0.25 | 0 | $\mathcal{S}_{\scriptscriptstyle 1}$ | 0/0.25 =0 | | 2 | 0 | 0 | 1.25 | 0 | 1 | -0.25 | 1 | S_2 | 1/1.25 =0.8 | | 3 | 0 | 1 | 0.75 | 0 | 0 | 0.25 | 3 | X_1 | 3/0.75=4 | #### Iteration 2 | 1 | |---| | | | Row | Z | X_1 | X_2 | S_1 | S_2 | S_3 | RHS | Basic | |-----|---|-------|-------|-------|-------|-------|-----|-------| | 0 | 1 | 0 | 0 | 6 | 0 | -1 | 6 | Z | | 1 | 0 | 0 | 1 | 4 | | -1 | 0 | X_2 | | 2 | 0 | 0 | 0 | -5 | 1 | | 1 | S_2 | | 3 | 0 | 1 | 0 | -3 | 0 | 1 | 3 | X_1 | #### Iteration 3 | Row | Ζ | X_1 | X_2 | S ₁ | S_2 | S_3 | RHS | Basic | |-----|---|-------|-------|----------------|-------|-------|-----|-------| | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 7 | Z | | 1 | 0 | 1 | 0 | 2 | -1 | 0 | 2 | X_1 | | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 1 | X_2 | | 3 | 0 | 0 | 0 | -5 | 1 | 1 | 1 | S_3 | Once again, we got to the same optimal solution. **BUT**, we took one extra iteration: note that we got temporarily "stuck" at the second iteration - there was no improvement in Z_i ; it stayed at 6! | | | 5 | | |-----------|---------|----------------------------|--------------------| | Extr. Pt. | BFS No. | Basic Variables (or BASIS) | Nonbasic Variables | | А | 1 | S1=3, S2=4, S3=12 | X1 = X2 = 0 | | В | 2 | S1=1, X2=2, S3= 6 | X1 = S2 = 0 | | С | 3 | X1=2, X2=1, S3= 1 | S1 = S2 = 0 | | D | 4 | X1=3, S2=1, S3= 0 | S1 = X2 = 0 | | D | 5 | X1=3, S2=1, S1= 0 | S3 = X2 = 0 | | D | 6 | X1=3, S2=1, X2= 0 | S1 = S3 = 0 | We took different routes to reach the optimum at C (\approx BFS No. 3): - $BFS_1 \rightarrow BFS_2 \rightarrow BFS_3 (A \rightarrow B \rightarrow C)$ - BFS₁ \rightarrow BFS₄ \rightarrow BFS₃ (A \rightarrow D \rightarrow C) BFS₁ \rightarrow BFS₅ \rightarrow BFS₆ \rightarrow BFS₃ (A \rightarrow D \rightarrow D \rightarrow C) 3. ## Theorem: - For every BFS with an associated basis there is an extreme point that is unique - For every extreme point there is a corresponding BFS with an associated basis (that is not necessarily unique) - If there is more than one basis associated with an extreme point, it is said to be degenerate and has more than n constraints being active there