
Objective: To analyze the optimum solution to see how
sensitive this solution is w.r.t. the cost coefficients and the
right-hand-side values.

Consider our example:
Maximize z = 5000x1 + 4000x2

st
10x1 + 15x2 ≤ 150
20x1 + 10x2 ≤ 160
30x1 + 10x2 ≥ 135, all xi≥0.

The optimum solution was x1
*=4.5, x2

*=7, z*=50,500
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LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE

Z) 50500.00 

VARIABLE VALUE 
4.500000 

REDUCED COST
X1 0.000000

7.000000 X2 0.000000

ROW SLACK OR SURPLUS DUAL PRICES
1) 0.000000 150.000000
2) 0.000000 175.000000
3) 70.000000 0.000000

NO. ITERATIONS= 2

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

INCREASE
5000.000000 3000.000000 

COEF DECREASE
X1 2333.333252

4000.000000 3500.000000 X2 1500.000000

RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE

INCREASE
150.000000 90.000000 

RHS DECREASE
1 70.000000

160.000000 140.000000
135.000000 70.000000 

2 40.000000
3 INFINITY



Microsoft Excel 12.0 Answer Report

Worksheet: [SUBSTITUTION OOS.xls]Sheet4

Report Created: 10/15/2008 4:35:07 PM

Target Cell (Max)

Cell Name Original Value Final Value

$A$4 Z 50500 50500

Adjustable Cells

Cell Name Original Value Final Value

$A$1 X_1 4.5 4.5

$A$2 X_2 7 7

Constraints

Cell Name Cell Value Formula Status Slack

$A$6 Constraint1 150 $A$6<=150 Binding 0

$A$7 Constraint2 160 $A$7<=160 Binding 0

$A$8 Constraint3 205 $A$8>=135 Not Binding 70

Microsoft Excel 12.0 Sensitivity Report

Worksheet: [SUBSTITUTION OOS.xls]Sheet4

Report Created: 10/15/2008 4:35:07 PM

Adjustable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease

$A$1 X_1 4.5 0 5000 3000 2333.333333

$A$2 X_2 7 0 4000 3500 1500

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$A$6 Constraint1 150 150 150 90 70

$A$7 Constraint2 160 175 160 140 40

$A$8 Constraint3 205 0 135 70 1E+30



Suppose we wish to examine variations in c1 (the coefficient for x1)
from its current value of 5000: say a variation of ∆c1 units.

Let us say the actual value is c1' =c1+∆c1 (=5000+∆c1, in this case...).

We can write
z = c1'x1 + 4000x2 ≈ x2=(-c1’/4000)*x1 + (z/4000)

The slope of the above line is (-c1'/4000); currently this slope has a
value of -5000/4000 = -1.25

If c1' increases the slope becomes more negative, and conversely, if c1'
decreases the slope becomes less negative.

In other word, the isocost line representing the objective rotates in
a clockwise (≈ more negative) or a counter-clockwise (≈ less
negative) direction.
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If this rotation is small the optimum solution might be unchanged, but for a sufficiently
large tilt the optimum could shift to a neighboring corner point.

20x1+10x2=160, slope=-2

10x1+15x2=150, slope=-2/3

5000x1+4000x2=z, slope=-5000/4000 (= -1.25)

A

B

C D
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In the above picture, the current value of c1=5000 so that the current slope is
-(5000/4000) = -1.25.

The extreme point that is currently optimal (A) is unchanged as long as the new slope
(if c1 is actually equal to c1') lies between -2 and -2/3:

-2≤(-c1'/4000)≤-2/3 ⇒ -8000≤-c1'≤-8000/3 ⇒

8000/3 ≤ c1'≤8000, i.e., 2667 ≤ c1'≤8000

So, for the basis to not change (i.e., for the optimum solution to remain at point A), the
max allowable increase is 8000-5000=3000, and the max allowable decrease is 5000 -
2667 = 2333.

i.e., -2333 ≤ ∆c1 ≤ 3000.

When the increase exceeds 3000 the optimum shifts to D, and when the decrease
exceeds 2333 the optimum shifts to B.
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Now suppose we wish to examine variations in b1 (the RHS for constraint 1)
from its current value of 150.

Let us say the actual value is b1' =b1+∆b1 (=150+∆b1, in this case...).

Consider the line 10x1 + 15x2 = b1’

As the value of b1' changes, the slope is unchanged but the line moves parallel
to itself - either "upward" (if it increases in value) or "downward" (if it
decreases in value).

In general, for the case where the RHS value changes, one of several different
things could happen:

1. The current optimum point might be unaffected and remain optimum.
2. The current optimum point might not be an extreme point any longer

and thus we would have a new optimum (extreme) point, which has
a. either the same set of variables being basic
b. or a different set of variables being basic

3. The entire problem might become infeasible (for a sufficiently large
increase or decrease)
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Back to our example…

Recall that currently constraint 1 is 10x1 + 15x2 = 150

We wish to examine variations in b1 (the RHS for
constraint 1) from its current value of 150; say the
new value is b1' =b1+∆b1 (=150+∆b1, in this case...).

As the value of b1' changes the slope is unchanged
but the line moves parallel to itself - either
"upward" (if it increases in value) or "downward" (if
it decreases in value).
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In our example, as b1' changes the feasible region either expands and admits
more points, or shrinks and admits fewer points; in all cases the optimum
solution changes as does the optimal objective value.

20x1+10x2=160, slope=-2

10x1+15x2=150, slope=-2/3

5000x1+4000x2=z, slope=-5000/4000 (= -1.25)

A

B

C D
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The current feasible region is A-B-C-D

10x1+15x2=150

A

B

C D

10x1+15x2=240

10x1+15x2=80

10x1+15x2=120

N
M

L 

K J

P

Q

10x1+15x2=200
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Note that if
 b1'= 120, the new feasible region is M-L-C-D and the optimum is at M (same basis)
 b1'= 80, the new feasible region is N-C-D and the optimum is at D (different basis)

Similarly, if
 b1'= 200, the new feasible region is J-P-K-C-D and the optimum is at J (same basis)
 b1'= 240, the new feasible region is Q-K-C-D and the optimum is at Q (different basis)

Note that the current optimal basis is unchanged as long the new RHS satisfies
80≤b1'≤240

That is, since b1'=150+∆b1 -70 ≤ ∆b1≤ 90

Also note that the value of z* changes in all cases (even if the basis is unchanged) and that
as b1 becomes smaller and smaller, at some point the problem could become infeasible!
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 Changes in cj do not affect feasibility in any way. However, the optimum
solution may shift to another extreme point (with a different BFS) for a
sufficiently large change. In either case z* will change too.

 Changes in bi affect the shape of the feasible region and big changes could
make the feasible region vanish. If the problem is still feasible after the
change the optimum may or may not change. If it does change, the value of
z* will change too and the new optimum may or may not have a different set
of basic variables (i.e., may be at a point of intersection of a different set of
lines than before).

LINDO and the Excel Solver provide the range of values for each cj and for each bi

in which the basis is unchanged. They do not provide the new values of the
objective though...
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RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
X1 5000.000000 3000.000000 2333.333252
X2 4000.000000 3500.000000 1500.000000

RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE
2 150.000000 90.000000 70.000000
3 160.000000 140.000000 40.000000
4 135.000000 70.000000 INFINITY

 2020, Jayant Rajgopal 



 2020, Jayant Rajgopal 



Definition: The shadow price for constraint i is the rate at which the
optimum objective z* improves (i.e., increases for a max problem, or
decreases for a min problem) when the RHS for that constraint (=bi)
increases, provided the basis does not change.

In our example consider b1. Suppose it becomes b1'=b1+∆b1

Suppose the basis does not change so that the optimum is still at the
intersection of
the line 10x1 + 15x2 = 150+∆b1, and
the line 20x1 + 10x2 = 160.

This point is given by x1
*= 4.5-(∆b1/20) and x2

*= 7+(∆b1/10).

So the optimal objective is z* = 5000x1
* + 4000x2

*

= 5000{4.5-(∆b1/20)} + 4000{7+(∆b1/10)} = 50,500+150∆b1

Thus the shadow price for the first constraint is 150!
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Similarly, the shadow price for the second constraint is equal
to 175.

LINDO (and Excel Solver) provide these dual prices as well:

ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 150.000000
3) 0.000000 175.000000
4) 70.000000 0.000000
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The signs of the Shadow Prices can always be predicted: suppose i represents the shadow price 
for constraint i.  Assume that the basis is unchanged for a 1 unit increase in bi.  Recall that i is  
the improvement in the objective function for this 1 unit increase. 

Case 1: Constraint i is a  constraint. 
In this case a 1 unit increase in the RHS makes it easier to satisfy, i.e., it loosens the constraint,  
i.e., expands the feasible region and admits more feasible points.  So the new objective cannot 
get any worse (we have everything we had before plus additional points to choose from!).  Thus  
the improvement is always positive, or more precisely, nonnegative: 

Thus i must be nonnegative (0). 

Case 2: Constraint i is a  constraint. 
In this case a 1 unit increase in the RHS  makes it harder to satisfy, i.e.,  tightens the constraint,  
i.e., shrinks the feasible region and eliminates some points that are currently feasible.  Thus the 
new objective cannot get any better, (we have fewer points to choose from compared to what w
e had before). Thus the “improvement” is always negative, or more precisely, nonpositive: 

Thus i must be nonpositive ( 0). 

Case 3: Constraint i is an = constraint. 
In this case i could take on any sign. 
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Recall that the reduced cost for a variable is its entry in Equation 0 in the Simplex
tableau - thus the optimum reduced cost value
 for a basic variable is always equal to 0,
 for a nonbasic variable - since the tableau is optimal - is always

≥ 0 if we are maximizing
≤ 0 if we are minimizing

Also recall that the reduced cost for a nonbasic variable was defined as the decrease
in z for a 1 unit increase in that variable. An alternative interpretation of the optimum
reduced cost for a nonbasic variable xj (currently =0 at the optimum) is as follows:

 For a max problem it is the required increase in the value of its profit coefficient
cj before it can be entered into the basis (and made positive)

 For a min problem it is the required decrease in the value of its cost coefficient cj
before it can be entered into the basis (and made positive).

LINDO and Excel Solver provide these as well:

VARIABLE VALUE REDUCED COST
X1 4.500000 0.000000
X2 7.000000 0.000000
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This is an important concept that applies only to ≤ or ≥ constraints and it may
be stated as follows:

At the optimum:

 if a particular inequality constraint is non-binding (i.e., loose or
inactive) so that the corresponding slack/ excess variable is positive, then
the shadow price for that constraint must be equal to zero, and

 If the shadow price for some constraint is non-zero, then that
constraint must be binding (i.e., tight or active) so that the
corresponding slack/excess variable is equal to zero.

Thus
(slack or excess variable for constraint i) * (πi) = 0 

Note that it is possible for both the slack/excess as well as the shadow price 
to be equal to zero - however, it is impossible for both to be non-zero. 
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Consider the following LP in n variables and m constraints (we will call it a
“normal” maximization problem):

Program P (The Primal LP)

Maximize z = � �
�
��� Maximize z = cTx

st i.e., st

�� �
�
��� � for i = 1,2,…,m Ax ≤ b

xj ≥ 0, for j =1,2,…,n x ≥ 0

Associated with this LP is another LP in m variables and n constraints (we call it a
“normal” minimization problem):
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The Dual LP (a “normal” minimization problem) has m variables and n
constraints :

Program D (The Dual LP)

Minimize w = � �
�
��� Minimize w = bTy

st i.e., st

�� �
�
��� � for j = 1,2,…, n ATy ≥ c

yi ≥ 0, for i =1,2,…, m y ≥ 0

The pair of programs (P and D) are referred to as a (symmetric) Primal-Dual pair
of linear programs
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Maximize z = Minimize w =

st st

for i = 1,2,…,m for j = 1,2,…,n

xj ≥ 0, for j =1,2,…,n yi ≥ 0, for i =1,2,…, m
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Minimize w = 25y1+30y2

st

5y1 + y2 ≥ 50

y1 + 3y2 ≥ 40

12y1 + 8y2 ≥ 20

y1, y2 ≥ 0

Maximize z = 50x1+40x2+20x3

st

5x1 + x2 + 12x3 ≤ 25

x1 + 3x2 + 8x3 ≤ 30

x1, x2, x3 ≥ 0

y1

y2

Program P Program D
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Minimize w = 25y1+30y2

st

5y1 + y2 ≥ 50

y1 + 3y2 ≥ 40

12y1 + 8y2 ≥ 20

y1, y2 ≥ 0

Maximize z = 50x1+40x2+20x3

st

5x1 + x2 + 12x3 ≤ 25

x1 + 3x2 + 8x3 ≤ 30

x1, x2, x3 ≥ 0

x1

x2

x3

Program D Program P

In general, every linear program has another linear program associated
with it – one is called the PRIMAL and the other is called the DUAL
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1) PRIMAL has n variables ⇒ DUAL has n constraints.

2) PRIMAL has m constraints ⇒ DUAL has m variables.

3) Coefficient matrix for the PRIMAL is A ⇒ Coefficient
matrix for the DUAL is the transpose of A.

4) RHS vector for the PRIMAL becomes the objective
coefficient vector for the DUAL; and the objective
coefficient vector for the PRIMAL becomes the RHS
vector for the DUAL.
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5) IF the PRIMAL is a MAXIMIZATION problem THEN
 First convert any '≥' constraints to '≤' by multiplying through by -1
a) DUAL is a MINIMIZATION problem.
b) Dual variable corresponding to a primal '=' constraint is UNRESTRICTED.
c) Dual variable corresponding to a primal '≤' constraint is NONNEGATIVE (>0)
d) Dual constraint corresponding to a nonnegative primal variable is ≥.
e) Dual constraint corresponding to an UNRESTRICTED primal variable is =.

6) IF the PRIMAL is a MINIMIZATION problem THEN
 First convert any '≤' constraints to '≥' by multiplying through by -1
a) DUAL is a MAXIMIZATION problem.
b) Dual variable corresponding to a primal '=' constraint is UNRESTRICTED.
c) Dual variable corresponding to a primal '≥' constraint is NONNEGATIVE (> 0)
d) Dual constraint corresponding to a nonnegative primal variable is ≤.
e) Dual constraint corresponding to an UNRESTRICTED primal variable is =.
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Always associate variables of one program with a corresponding constraint in the other.

 For a MAX problem, a ≤ constraint is considered "normal"

 For a MIN problem, a ≥ constraint is considered "normal"

 A nonnegative variable is considered "normal" for both MAX and MIN

Then

 A "normal" constraint in one problem will give rise to a (normal) nonnegative
variable in the other

 Equality constraints always give rise to unrestricted variables

Similarly,

 A "normal" nonnegative variable in one problem will always give rise to a "normal" 
constraint in the other. 
An unrestricted variable in one will give rise to an equality constraint in the other. 
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1. The Dual of the Dual is the Primal

2. Symmetry: It doesn’t matter which problem is called the Primal
and which one the Dual; typically we refer to the Primal-Dual
pair.

Without loss of generality (from (2) above…) let us denote the
Primal as the Maximization problem and the Dual as the
corresponding Minimization problem, i.e.

(P) Max cTx (D) Min bTy
st Ax ≤ b st ATy ≥ c

x≥0 y≥0

where c,x∈Rn, b,y∈Rm, and A is a matrix of order m×n
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3. Weak Duality Theorem: If the vector x is feasible in the Max
problem and the vector y is feasible in the corresponding Min
problem, then cTx ≤ bTy. That is, for any two vectors that are
feasible in their respective problems, the objective for the MAX
problem is ≤ objective for the MIN problem.

4. Strong Duality Theorem:
If one problem is feasible and has an optimal solution, then the
other is also feasible with an optimal solution. Moreover, their
optimal values are equal to each other, i.e., cTx* = bTy*

5. If (P) is unbounded then (D) is infeasible. If (D) is unbounded then
(P) is infeasible.

6. If (P) is infeasible, then (D) is either unbounded or infeasible. If (D)
is infeasible, then (P) is either unbounded or infeasible.
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