Junshu Bao

University of Pittsburgh

Table of contents

Introduction

Example: Treating Hypertension 2-Way ANOVA Model 3-Way ANOVA Model log Transformation

Example: School Attendance among Australian Children

Two-Way ANOVA

- Two categorical variables and one continuous outcome variable:
 - $\blacktriangleright Independent variable # 1: A$
 - $\blacktriangleright Independent variable # 2: B$
- ► Two-way ANOVA model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

- $\blacktriangleright Y_{ijk}$ is the k^{th} outcome in the i^{th} level of A and j^{th} level of B
- $\blacktriangleright \mu$ is the overall mean
- α_i is the main effect of the i^{th} level of A
- β_i is the main effect of the j^{th} level of B
- $(\alpha\beta)_{ij}$ is the first-order interaction between A and B
- $\epsilon_{ijk} \sim N(0, \sigma^2)$ is the error term

Assumptions

- 2-way and 3-way ANOVA assumptions
 - ▶ Observations are independent
 - ▶ Observations in each cell are normally distributed.
 - ▶ Observations in each cell have the same variance.

Example: Treating Hypertension

Maxwell and Delaney (2003) describe a study investigating three possible treatments for hypertension.

Treatment	Description	Levels
Drug	Medication	Drug X, Drug Y, Drug Z
Biofeed	Psychological feedback	Present, Absent
Diet	Special diet	Present, Absent

- There are 12 possible combinations of the 3 treatments: 3 × 2 × 2.
- ▶ 72 subjects suffering from hypertension were recruited for the study, with 6 being randomly allocated to each of the 12 treatment combinations.
- ▶ Outcome variable: blood pressure reading (after treatment)

Example (cont.)

The number of subjects in each of the treatment combinations:

		Special Diet				
Biofeed	Drug	No	Yes			
Yes	Х	$170\ 175\ 165\ 180\ 160\ 158$	$161 \ 173 \ 157 \ 152 \ 181 \ 190$			
	Υ	$186 \ 194 \ 201 \ 215 \ 219 \ 209$	$164 \ 166 \ 159 \ 182 \ 187 \ 174$			
	Ζ	$180\ 187\ 199\ 170\ 204\ 194$	$162\ 184\ 183\ 156\ 180\ 173$			
No	Х	$173\ 194\ 197\ 190\ 176\ 198$	$164\ 190\ 169\ 164\ 176\ 175$			
	Υ	$189\ 194\ 217\ 206\ 199\ 195$	$171\ 173\ 196\ 199\ 180\ 203$			
	Z	$202\ 228\ 190\ 206\ 224\ 204$	$205\ 199\ 170\ 160\ 179\ 179$			

Questions:

- Any difference in mean blood pressure for the different levels of the three treatments?
- ▶ Any significant interactions between the treatments?

Reading Data

- ▶ _n_ in SAS: Automatic variable saved internally. Indicates which row of data is being processed.
- ▶ array statement:
 - ▶ Defines an array by specifying a name.
 - ► An array could be thought of as a vector, matrix, etc. Specifies related variables, simplifies processing for repeat statements.
- ▶ do Loops:
 - ▶ Repeats SAS statements a fixed number of times.
 - Use an index variable that changes with each repetition.
 *When using with an array; index starts with 1 and ends with number of variables in array.

output statement:

- Writes an observation to the output dataset with the current values of all variables.
- When included within a do loop, results in index # of obs.

Descriptive Statistics

```
proc tabulate data=hyper;
  class drug diet biofeed;
  var bp;
  table drug*diet*biofeed,
            bp*(mean std n);
  format diet $YN. biofeed $PA.;
run;
```

Note that in the table statement you first specify the rows (treatment combinations), drug*diet*biofeed, and then specify the column (outcome) and the statistics requested, bp*(mean std n).

Test for Homogeneity of Variance

```
proc anova data=hyper;
  class cell;
  model bp=cell;
  means cell / hovtest;
  run;
```

Recall that the "cell" variable was created to contain all the 12 combinations of the three treatments.

- Test statistic: F = 1.01
- p-value = 0.4452
- ► Fail to reject the null.

Two-Way ANOVA Models (1)

Before we consider the full three-way model, we will fit the two-way models.

```
proc anova data = hyper;
  class diet drug;
  model bp = diet drug diet*drug;
  format diet $YN.;
  means diet drug diet*drug;
  ods output means = twowayDIET_DRUG;
run;
```

- ▶ The anova procedure is specifically for balanced designs.
- ► The model statement specified the model: $Y = x_1 \ x_2 \ x_1 * x_2$. A shorthand way: $Y = x_1 | x_2$
- ▶ The means statement generates a table of cell means
- ▶ The ods output statement saved the means in a SAS data set.

SAS Output of Interest

- ▶ Model p-value (model utility test)
 - Simultaneous effects

•
$$H_0: \alpha_i = \beta_j = (\alpha \beta)_{ij} = 0$$
 for all *i* and *j*.

- ► Source p-values
 - ► Main effect of A: α_i 's
 - ▶ Main effect of $B: \beta_j$'s
 - Interaction of A and B: $(\alpha\beta)_{ij}$'s

► Notes:

- Order of variables is specified in the model statement.
- Source p-value quantifies how significant the corresponding effect is.
- ▶ If the interaction effect is not significant, we can re-fit a smaller model with only main effects ('Main Effect model').
- If the interaction IS significant, to interpret the interaction, we draw an interaction plot.

Test Results

► Simultaneous effects:

• Test statistic F = 10.07

▶ p-value < 0.0001

Source p-values

• Main effect of diet: p-value < 0.0001

• Main effect of drug: p-value = 0.0002

• Interaction diet*drug: p-value = 0.1057

* The interaction is not significant.

```
Lectures 8: Two-, Three-, and Four-Way ANOVA

Example: Treating Hypertension

2-Way ANOVA Model
```

Interaction Plot

```
proc sgplot data=twowayDIET_DRUG;
  series y=mean_bp x=diet / group=drug;
run;
```

Observations from the interaction plot:

- Drug X is significantly different with (smaller than) Drug Y and Drug Z no matter special diet is present or absent.
- For each drug, having special diet reduces the blood pressure.

Two-Way ANOVA Models (2)

Now, consider another 2-way model:

```
proc anova data = hyper;
  class drug biofeed;
  model bp = drug|biofeed;
  format diet $YN.;
  means biofeed*drug;
  ods output means = twowaybiofeed_DRUG;
run;
```

▶ Simultaneous effects:

• Test statistic F = 4.75

• p-value = 0.0009

Source p-values

- Main effect of drug: p-value < 0.0014
- Main effect of biofeed: p-value = 0.0058
- Interaction diet*biofeed: p-value = 0.6002

Three-Way ANOVA

- Three categorical variables and one continuous outcome variable:
 - $\blacktriangleright Independent variable # 1: A$
 - $\blacktriangleright Independent variable # 2: B$
 - $\blacktriangleright Independent variable # 3: C$

► Three-way ANOVA full model:

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

where $(\alpha\beta\gamma)_{ijk}$ is the second-order interaction between the three variables.

Three-Way ANOVA Model

```
proc anova data=hyper;
  class diet drug biofeed;
  model bp=diet|drug|biofeed;
  format diet $YN. biofeed $PA.;
  means diet*drug*biofeed;
  ods output means=outmeans;
run;
```

Three-Way ANOVA Model: Test Results

► Simultaneous effects:

- Test statistic F = 7.66
- ▶ p-value < 0.0001

Source p-values

► Main effects:

- drug: p-value < 0.0001
- diet: p-value < 0.0001
- biofeed: p-value = 0.0006
- ► First-order interactions:
 - $diet^*drug$: p-value = 0.0638
 - diet*biofeed: p-value = 0.6529
 - \blacktriangleright drug*biofeed: p-value = 0.4425
- Second-order interaction:

• diet*drug*biofeed: p-value = 0.0388

Note that the second-order interaction is significant, though none of the first-order interactions is significant.

Interpretation of Interactions

What does a significant second-order interaction mean?

- ► The first-order interaction between two of the variables differs in form or magnitude in different levels of the remaining variable.
- The presence of a significant second-order interaction means that there is little point in drawing conclusions about either the non-significant first-order interactions or the significant main effects.

The interpretation of main effects may be misleading.

Interaction Plots

To better understand the second-order interaction, we may create the interaction plot.

```
proc sgpanel data=outmeans;
  panelby drug / rows = 1 ;
  series y=mean_bp x=biofeed / group=diet;
run;
```

-,

Observations:

- Drug X: diet has a negligible effect when biofeedback is present, but substantially reduces blood pressure when biofeedback is absent.
- ▶ Drug Y: the situation is the reverse of drug X.
- Drug Z: the blood pressure drop when the diet is given and when it is not is approximately equal for both levels of biofeedback.

Log-Transformation

A significant high-order interaction may make interpretation of the results from a factorial analysis of variance difficult. In such cases, a transformation of the data may help.

```
data hyper;
  set hyper;
  logbp=log(bp);
run;
proc anova data=hyper;
  class diet drug biofeed;
  model logbp=diet|drug|biofeed;
  format diet $YN. biofeed $PA.;
  means diet*drug*biofeed;
run;
```

Now the second-order interaction is only marginally significant (p-value = 0.0447). We can fit a main effect only model to the log-transformed blood pressures.

Main Effect Model for Log(BP)

```
proc anova data=hyper;
  class diet drug biofeed;
  model logbp=diet drug biofeed;
  means drug / scheffe cldiff lines;
run;
```

- Simultaneous test: p-value < 0.0001.
- ► Source p-values:
 - diet: p-value < 0.0001
 - drug: p-value = 0.0001
 - biofeed: p-value = 0.0009
- Pairwise comparison:
 - ▶ Drug X is significantly different with Drugs Y and Z
 - Drug Y and Drug Z are not significantly different

Balanced versus Unbalanced Designs

- Balanced designs have the same number of observations in each cell.
 - ► Can use proc anova or proc glm
- Unbalanced designs have different numbers of subjects in each cell.
 - ► Should use proc glm

Notes: proc anova is used for the analysis of balanced data only, with some exceptions including one-way ANOVA.

Sum of Squares

Balanced versus unbalanced designs:

- For balanced designs, it is possible to partition the total variation (SST) in the response variable into non-overlapping or orthogonal sums of squares representing factor main effects and factor interactions.
- ► For unbalanced designs, there is no unique way of finding sum of squares for each effect since these effects are no longer independent of each other.
 - * Order matters! The sum of squares that can be attributed to a factor depends on which factors have already been allocated a sum of squares.
- ▶ There are different ways sum of squares are calculated which matter significantly if you have unbalanced designs.
 - ► Type I Sum of Squares
 - ► Type III Sum of Squares:

Type I Sum of Squares

- ▶ Sequential, forward.
- \blacktriangleright If A, B, AB order:
 - Effect of A is estimated given no effects in model.
 - Effect of B is estimated given A is in the model.
 - Effect of AB is estimated given A and B in model.
- ▶ Order is important. Preferred for unbalanced designs
 - Principle of parsimony (begin with simplest model)
 - Significance of interactions without main effects makes little sense.

Type III Sum of Squares

▶ Order of input does not matter.

- Effect of A is estimated given B and AB in model
- Effect of B is estimated given A and AB in model
- Effect of AB given A and B in model.
- 'Given all other effects are present', p-values test whether the effect of a factor is significant.
- When balanced data, Type I = Type III.

Notes: Nelder (1977) and Aitkin (1978) are strongly critical of "correcting" main effects sums of squares for an interaction term involving the corresponding main effect and recommend to use Type I sums of squares.

Example: School Attendance among Australian Children

- ▶ Unbalanced design: different number of students within in each cell.
- ▶ A sociological study of 154 Aboriginal and non-aboriginal children reported by Quine (1975)
 - ▶ Independent variables:
 - 1. Cultural origin (aboriginal, non-aboriginal)
 - 2. Four grade levels (F0, F1, F2, F3)
 - 3. Type of learner (SL 'slow learner', AL 'average learner')
 - 4. Gender (female, male)
 - ▶ Dependent variable: number of days absent from school
 - ▶ Design: 2 x 4 x 2 x 2 factorial (4-way ANOVA).

Four-Way ANOVA Model

The usual model for Y_{ijklm} , the number of days absent for the i^{th} child in the j^{th} sex group, the k^{th} age group, the l^{th} cultural group and the m^{th} learning group is

$$Y_{ijklm} = \mu + \alpha_j + \beta_k + \gamma_l + \delta_m + (\alpha\beta)_{jk} + (\alpha\gamma)_{jl} + (\alpha\delta)_{jm} + (\beta\gamma)_{kl} + (\beta\delta)_{km} + (\gamma\delta)_{lm} + (\alpha\beta\gamma)_{jkl} + (\alpha\beta\delta)_{jkm} + (\alpha\gamma\delta)_{jlm} + (\beta\gamma\delta)_{klm} + (\alpha\beta\gamma\delta)_{jklm} + \epsilon_{ijklm}$$

where $\epsilon_{ijklm} \sim N(0, \sigma^2)$.

Data structure

Cell	Origin	\mathbf{Sex}	Grade	Type	Days of Absence
1	А	М	$\mathbf{F0}$	SL	2,11,14
2	А	Μ	$\mathbf{F0}$	AL	$5,\!5,\!13,\!20,\!22$
3	А	Μ	F1	SL	$6,\!6,\!15$
4	А	Μ	F1	AL	$7,\!14$
5	А	Μ	F2	SL	$6,\!32,\!53,\!57$
:	÷	÷	÷	÷	:
30	Ν	\mathbf{F}	F2	AL	1
31	Ν	\mathbf{F}	F3	SL	8
32	Ν	F	F3	AL	$1,\!9,\!22,\!3,\!3,\!5,\!15,\!18,\!22,\!37$

Reading Data

```
data ozkids;
    infile 'ozkids.dat' dlm=' ,' expandtabs missover;
    input cell origin $ gender $ grade $ type $ days @;
    do until (days=.);
        output;
        input days @;
        end;
run;
```

- ▶ The expandtabs option converts tabs to spaces so that the list input can be used to read the tab-separated values.
- ▶ The dlm=',' option specifies that both spaces and commas are delimiters by including a space and a comma in the quotes.
- The do loop is used to output an observation for each value of days of absence. Read the textbook for more details.

Fitting Main Effect Only Models (1)

For unbalanced designs, proc glm should be used rather than proc anova. We begin by fitting one main effects only model.

```
proc glm data=ozkids;
  class origin gender grade type;
  model days=origin gender grade type /ss1 ss3;
run;
```

- ▶ Both Type I and Type III sums of squares are requested.
- ▶ When dealing with a main effects only model, the Type III sums of squares can be used to identify the most important effects. (Here: 'origin' and 'grade')

Fitting Main Effect Only Models (2)

Now we will fit more main effects only models for different orders of the main effects.

```
proc glm data=ozkids;
    class origin gender grade type;
    model days=grade gender type origin /ss1;
run;
proc glm data=ozkids;
    class origin gender grade type;
    model days=type gender origin grade /ss1;
run;
proc glm data=ozkids;
    class origin gender grade type;
    model days=gender origin type grade /ss1;
run;
```

Since the Type III sums of squares are invariant to the order only Type I sums of squares are requested.

Fitting a Full Model

Next we fit a full factorial model as follows:

```
proc glm data=ozkids;
  class origin gender grade type;
  model days=origin gender grade type origin|gender|grade|type /ss1 ss3;
run;
```

We specify the main effects explicitly so that they are entered before any interaction tems when calculating Type I sums of squares.