## **ECE 0142 Computer Organization**

Lecture 4 Arithmetic-Logic Unit

# **Arithmetic - Logic Unit ALU**

- **☐** Handles integers
- Does the calculations

## **Arithmetic-Logic Unit ALU**

- ☐ Performs arithmetic
  - add, subtract
- ☐ Performs logicand, or, invert, complement
- □ Shifts
  right, left, arithmetic, logical
- Provides result and status

# **Review Binary Addition**



## **Example Numbers**

■ 8 bit 2's complement

$$+127 = 011111111 = 2^7 - 1$$
  
 $-128 = 10000000 = -2^7$ 

☐ 16 bit 2's complement

## **Sign Extension**

Positive number pack with leading zeros

```
+18 = 00010010
+18 = 0000000 00010010
```

■ Negative number pack with leading ones

☐ i.e. pack with MSB (sign bit)

#### **Addition and Subtraction**

- Normal binary addition circuitry
- □ Take two's complement of subtrahend and add to minuend i.e. a - b = a + (-b)
- Need only addition and complement circuits

## **Consider Binary Addition**

### **Assume 5 bits 2's complement arithmetic**

$$12 - 7 = 12 + (-7) = 5$$



# **Consider Binary Addition**

#### **Assume 5 bits 2's complement arithmetic**

$$12 - 13 = 12 + (-13) = -1$$



# **ALU Inputs and Outputs**



## **ALU - Addition**

# Could try this as an 8 input, 4 output combinational logic problem



# **Instead - Consider Stages**



Depends on 1's or 2's comp arithmetic

#### **Full Adder**

#### **Truth Table**

| Α | В | Cin | S | С |
|---|---|-----|---|---|
| 0 | 0 | 0   | 0 | 0 |
| 0 | 0 | 1   | 1 | 0 |
| 0 | 1 | 0   | 1 | 0 |
| 0 | 1 | 1   | 0 |   |
| 1 | 0 | 0   | 1 | 0 |
| 1 | 0 | 1   | 0 | 1 |
| 1 | 1 | 0   | 0 | 1 |
| 1 | 1 | 1   | 1 | 1 |

$$S = A'B'C_{in} + A'BC_{in}' + AB'C_{in}' + ABC_{in}' + ABC_{in}'$$

$$C = A'BC_{in} + AB'C_{in} + ABC_{in} + ABC_{in}$$
$$= (A \oplus B)C_{in} + AB$$

#### **Full Adder**



# 4 Bit Ripple Carry 2's Complement Adder



# **Constructing an Arithmetic Logic Unit**

Start with a 1-Bit ALU

## **Simple Logical Operations**

1. AND gate  $(c = a \cdot b)$ 



| a | b | c = a . b |
|---|---|-----------|
| 0 | 0 | 0         |
| 0 | 1 | 0         |
| 1 | 0 | 0         |
| 1 | 1 | 1         |

2. OR gate (c = a + b)



| а | b | c = a + b |
|---|---|-----------|
| 0 | 0 | 0         |
| 0 | 1 | 1         |
| 1 | 0 | 1         |
| 1 | 1 | 1         |

3. Inverter ( $c = \overline{a}$ )



| а | $c = \overline{a}$ |
|---|--------------------|
| 0 | 1                  |
| 1 | 0                  |

4. Multiplexor  $\Box$ (if d = = 0, c = a;  $\Box$ else c = b)



| d | С |
|---|---|
| 0 | а |
| 1 | b |

## Starting from "AND" and "OR"



If Operation is 0, then Result = a AND b

If Operation is 1, then Result = a OR b

#### **Consider a 1 bit Full Adder**



#### With "add"

If Op is 0, then Result = a AND b

If Op is 1, then Result = a OR b

If Op is 2, then Result = sum of (a + b)





#### With Subtraction



Add a 1 into Carryln<sub>0</sub> to get 2's comp

# ALU with Zero Detection — for comparing a and b



#### **Overflow**

## ☐ Result too large for finite computer word:

e.g., adding two n-bit numbers does not yield an n-bit number

```
0111
```

+ 0001 note that overflow term is somewhat misleading, 1000 it does not mean a carry "overflowed"

## **Detecting Overflow**

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- □ Overflow occurs when the value affects the sign:
  - overflow when adding two positives yields a negative
  - or, adding two negatives gives a positive
  - or, subtract a negative from a positive and get a negative
  - or, subtract a positive from a negative and get a positive
- □ Consider the operations A + B, and A − B
  - Can overflow occur if B is 0 ?
  - Can overflow occur if A is 0?

# **Example Overflow Logic**



How is this derived? - Homework!

#### **Effects of Overflow**

- □ An exception (interrupt) occurs
  - Control jumps to predefined address for exception
  - Interrupted address is saved for possible resumption
- □ Details based on software system / language
  - example: flight control vs. homework assignment
- Don't always want to detect overflow
  - MIPS instructions: addu, addiu, subu
  - More later

# **Common Symbol for ALU**



#### **Recall Full Adder**



#### **Full Adder - Half Adders**



From Z to C is 2 delays for each subsequent stage or 2N + 2

# 4 Bit Ripple Carry Adder



2n+2 gate delays (10) for 2's complement

#### **Carry Lookahead Equations**

Let 
$$g_i = a_ib_i$$
 generating carry  $p_i = a_i + b_i$  propagating carry 
$$c_1 = b_0c_0 + a_0c_0 + a_0b_0 \qquad c_1 = g_0 + p_0c_0$$
 
$$c_2 = b_1c_1 + a_1c_1 + a_1b_1 \qquad c_2 = g_1 + (p_1g_0) + (p_1p_0c_0)$$
 
$$c_3 = b_2c_2 + a_2c_2 + a_2b_2 \qquad c_3 = g_2 + p_2g_1 + (p_2p_1g_0) + (p_2p_1p_0c_0)$$
 
$$c_4 = b_3c_3 + a_3c_3 + a_3b_3$$
 
$$c_4 = g_3 + p_3g_2 + p_3p_2g_1 + (p_3p_2p_1g_0) + (p_3p_2p_1p_0c_0)$$
 
$$G_{0-3} \qquad P_{0-3}$$



Reduces delay to 6 gate delays (from input to S)

4 gate delays from input to C

**Carry Lookahead Adder** 

# **Carry Lookahead – Second Level**



# **Carry Propagation**

- ☐ 2's complement best
- □ 1's complement twice as long
- □ Significant delay reduction using Carry Look Ahead concept