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Abstract

Technology scaling has led to the integration of many
cores into a single chip. As a result, on-chip interconnec-
tion networks start to play a more and more important role
in determining the performance and power of the entire
chip. Packet-switched network-on-chip (NoC) has provided
a scalable solution to the communications for tiled multi-
core processors. However the virtual-channel (VC) buffers
in the NoC consume significant dynamic and leakage power
of the system. To improve the energy efficiency of the router
design, it is advantageous to use small buffer sizes while
still maintaining throughput of the network.

This paper proposes two new virtual channel alloca-
tion (VA) mechanisms, termed Fixed VC Assignment with
Dynamic VC Allocation (FVADA) and Adjustable VC As-
signment with Dynamic VC Allocation (AVADA). The idea
is that VCs are assigned based on the designated output
port of a packet to reduce the Head-of-Line (HoL) blocking.
Also, the number of VCs allocated for each output port can
be adjusted dynamically. Unlike previous buffer-pool based
designs, we only use a small number of VCs to keep the ar-
bitration latency low. Simulation results show that FVADA
and AVADA can improve the network throughput by 41%
on average, compared to a baseline design with the same
buffer size. AVADA can still outperform the baseline even
when our buffer size is halved. Moreover, we are able to
achieve comparable or better throughput than a previous
dynamic VC allocator while reducing its critical path de-
lay by 60%. Our results prove that the proposed VA mech-
anisms are suitable for low-power, high-throughput, and
high-frequency on-chip network designs.

1. Introduction
Technology scaling has enabled the integration of bil-

lions of transistors on a single chip. Chip multiprocessors
(CMP) have emerged as an effective design for utilizing
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on-chip transistors to continue the growth of chip perfor-
mance with integration density [9, 24]. With the prolifer-
ation of CMPs, on-chip interconnection networks start to
play a more and more important role in determining the per-
formance and power of the entire chip [14]. Among various
network on-chip (NoC) designs, packet-switched network
is recognized as a scalable and flexible solution for commu-
nication in 10’s∼100’s-core CMPs.

As with designing a general microprocessor, one of the
major challenges in packet-switched NoC is how to limit its
power consumption. Studies have shown that on-chip net-
work can consume 30%∼40% of the chip power [10, 32],
which is a major limitation to future NoC development.
Hence, many techniques such as packet bypassing [16, 17],
router concentration [1], crossbar and buffer optimiza-
tion [32], bufferless routing [19] etc. have been proposed
to save dynamic power or make the NoC more energy effi-
cient. On the other hand, there has been an incessant effort
in pursuing aggressive high-throughput and high-frequency
router designs. Examples include the 5GHz router design in
Teraflops chip [10, 31] and the 4 GHz 256Gbits/s per node
router design [30]. Extremely high frequency NoCs may re-
quire long pipeline stages [10, 30] in the router, which may
be of a concern under low traffic load where packet latency
is more important. High-frequency routers are typically of
high power too. Hence, to achieve high-frequency, low-
latency and high-throughput under power constraint, one
must adopt simple yet still highly efficient router design.

One of the most power hungry components in a router
is its buffer [15, 32]. A buffer is used as a set of virtual
channels (VCs) [3, 4] to store incoming or outgoing pack-
ets. How buffers are used impacts both network throughput
and power. They are mainly determined by VC number,
VC sizes and how they are allocated. The size of a VC
queue can be either static or dynamic. A static queue al-
ways has a fixed size while a dynamic queue can grow and
shrink. Although a dynamic queue size helps to improve
the buffer utilization efficiency such that more flits can be
stored in the buffer, it does however increase the complex-
ity of the related control logic. For example, the DAMQ
design [2, 28] used hardware to implement a linked list to



manage dynamic queue size, resulting large delay in every
flit arrival/departure. Later designs avoided using linked
list, but still incur high cost in control logic. For exam-
ple, The ViChaR design [23] can support a VC size any-
where from one flit to a whole packet, generating a maxi-
mum VC count as the size of the whole buffer in terms of
flits (VC count = buffer size / VC size). This requires f :1
arbiters, where f is the buffer size, in both VC allocation
(VA) and switch allocation (SA) stage. Such cardinality of
an arbiter may introduce latency bottleneck in the critical
path of a router, which can limit the frequency of the net-
work. Hence, a static VC queue design is preferred in a
high-frequency router design unless high-complexity logic
is employed for short cycle time.

From VC allocation point of view, a VC can be statically
assigned to traffic in one direction, or dynamically assigned
to any incoming/outgoing traffic on-demand. Static alloca-
tion, though not used as much nowadays, has its advantage
in that traffic to/from all directions have equal opportunities
to compete for the switch. Dynamic allocation, on the other
hand, can better tolerate burst traffic from one direction, or
uneven traffic distribution among all directions. As we can
see, both allocation schemes have their own advantages. A
design that integrates features in both schemes would be
most beneficial to a high-throughput router.

In this paper, we propose simple VC allocation schemes
to achieve high-frequency and high-throughput router de-
sign. We use a small maximum number of VCs with fixed
VC size to keep the arbiter size small and fast. To inte-
grate the advantages of both static allocation and dynamic
allocation schemes, we designate each VC for one output
port (direction) but allow such assignment to vary accord-
ing to traffic fluctuation. Since our total VC count is small,
we give body and tail flits higher priorities than a header flit
during VA to recycle a VC quickly. Our changes required to
a baseline router are extremely simple, compared to previ-
ous designs which improve network performance at the cost
of major changes in the router. Simulation results show that
our proposed scheme performs equally well compared to
the baseline router design with double the buffer size. When
buffer sizes are identical, our schemes achieves 41% better
throughput than the baseline. When compared to ViChaR,
the most aggressive dynamic VC allocation scheme that
best utilizes buffer space, our results are similar or even
better for some traffic patterns. However, we reduced its
critical path delay by 60%, which allows us to clock the
network at 1.5× higher frequency.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related works on buffer designs. Section 3
discusses the details of proposed virtual channel allocation
mechanisms as well as router architecture and adaptive rout-
ing design. Section 4 shows the experimental results. Fi-
nally, Section 5 concludes this paper.

2 Related Work
Due to the increasing stringent power constraint, there

have been many work on reducing the buffer power dissi-
pation in a router. One approach is to directly reduce the
buffer size for lower power. The “iDEAL” [13] design uti-

lizes the channel buffers to store flits during traffic conges-
tion. Through this way, the buffer size inside the router
can be decreased to save both dynamic and static power.
This method has also been pushed to one extreme to elim-
inate entirely the buffers inside a router such as the Elastic
Buffer [18] and bufferless routing [19] to achieve simple
router design and improve energy efficiency. Flits are im-
mediately passed to an output port upon arriving at an input
port [19]. This is suitable for low traffic load where buffers
are mostly under-utilized.

When buffer size is reduced, fewer flits can be stored in
the router, and the network throughput is penalized. There-
fore, many works have focused on improving the utiliza-
tion of buffers to achieve high-throughput with small buffer
sizes. ViChaR [23] is such a design which makes full use
of every flit slot in a buffer. Whenever a flit comes in, it
is stored in the buffer as long as there is a free slot. Flits
within a packet may be distributed anywhere in the buffer,
but their locations are bookkept in a control table. A VC
is reserved when a header flit comes in, and released when
its tail flit leaves the router. Hence, the number of VCs in-
side the router can range anywhere from f/p to f , where
f if the buffer size in flits, and p is the number of flits per
packet. As a result, the arbiters in the VA and SA stages
need to be as wide as f :1. For example, if a buffer can store
4 complete packets, and each packet contains 5 flits, then
the arbiters have a cardinality of 20:1. Our design in this
paper reduces it to 4:1 without losing the throughput of the
network. The buffer pool design [15] is similar to ViChaR
except that each VC can store multiple packets, and its VC
count is fixed. Though the buffer pool design uses smaller
arbiters, its VC allocation scheme is dynamic while ours is
between static and dynamic allocation, as explained next.

The DAMQ [28] and its improvements [22, 25] use fixed
number of VCs, each dedicated to an output port with an
extensible queue length. Hence, traffic heading to one di-
rection is stored in one queue. The benefit of static VC allo-
cation is that traffic from all directions have equal opportu-
nities to compete for the crossbar, resulting good arbitration
efficiency. Such philosophy can also be seen in the Row-
Column(RoCo) Decoupled Router [12] design where VCs
are grouped for traffic in x-direction and y-direction sepa-
rately. The contention in SA arbitration is effectively re-
duced as shown in that work. The dynamic queue length in
DAMQ is helpful to handle burst traffic from one direction.
However, managing the dynamic queue is very costly in the
original design. Even if the control table used in ViChaR
was adopted, the cost would still be high as the table has to
account for the longest queue length for each VC, resulting
inefficient use of control table space. Therefore, our design
fixes the VC queue size, and starts with a static VC alloca-
tion for good arbitration efficiency. When traffic becomes
imbalanced, we start dynamic VC allocation to compensate
for the inflexibility of the fixed queue size.

3 Proposed Virtual Channel Allocation
In this section, we will describe the state-of-the-art router

architecture designs, followed by the introduction of our
proposed router design with the simple buffer design.



3.1 Background: A Generic Router Ar-
chitecture

A generic router in mesh topology has 5 input/output
ports for four cardinal directions (North, South, West, East
), and one local processing element (CPU or Cache Bank).
When a header flit arrives at the router, it is first buffered
in the determined VC in the buffer writing (BW) pipeline
stage. Then, the routing computation(RC) unit determines
the output port based on the destination information in the
header flit and the routing algorithm. Next, the virtual chan-
nel allocation(VA) unit performs arbitration among all flits
requesting for the same output VC. If the flit is able to
obtain a free VC, it proceeds to the switch allocation(SA)
stage where it arbitrates for the switch input and output
ports. Once the flit is granted to use the output port, it pro-
ceeds to crossbar traversal(ST) stage where the flit traverses
the crossbar, followed by the link traversal(LT) to the next
router or PE [26]. Body and tail flits do not need to go
through RC and VA stage, but SA is still necessary and it is
done on per flit basis. Once the tail flit leaves the router, it
deallocates the VC reserved for the packet. Each pipeline
stage takes one cycle to execute. To shorten the pipeline
depth, many prior works have proposed techniques such
as look-ahead routing(LA) [7], speculative allocation [26],
pipeline bypassing [15, 17, 21], aggressive speculation [21]
to remove dependencies and parallelize pipeline stages. We
use two-stage router design similar to [11] in this paper.

VC ID OP RP WP Status Pre-route OVC
0 EAST 0 1 SA EAST 0

Table 1. A sample entry of VC control table.

3.2 VC Buffer Organization and VC Con-
trol Table

The components we revise over the baseline two-stage
router are in the VA stage. First, the buffers are imple-
mented as SRAM (Static Random Access Memory) arrays.
Each input port has a buffer which is organized as 4 VCs,
each having 5 flits, the size of a packet. We will defer the
allocation schemes of the VCs to later sections. The man-
agement of the VCs is carried through a control table as
shown in Table 1. The table maintains the state of each
VC. The “OP” is the output port produced by the RC of the
last router to denote the required output port of the current
node. The “RP” is the read pointer used as address to read
flit from the SRAM and pass it on to the crossbar. The “WP”
is the write pointer which indicates the write address for the
next incoming flit. If the read pointer and write pointer are
the same after a write operation, the VC buffer is full. If
they are the same after a read operation, the buffer is empty.
The “Status” field indicates the status or in which stage the
packet in this VC is in — idle, RC, VA, SA, ST, and others.
The “Pre-route” produced by RC at local node is the output
port index for the next node downstream. The “OVC” is
the VC ID for the flit to switch to in the downstream router.
We use the credit-based flow control in this work, where a
credit is the number of available buffer slots for each VC

of the downstream node. It decrements whenever a flit is
read out of the buffer and leaves the current router, and in-
crements when it receives the one-bit control signal from
downstream router to denote that a flit has left. If a flit ob-
tained an output VC successfully, won the SA stage and the
credit of the chosen VC was larger than zero, it can proceed
to the ST stage and then traverse to the next node.

3.3 Arbiter

The arbitration stages in VA select a winner per output
VC among all flits at the head of the VCs. This process
VA together with SA are the bottleneck stages of the router
pipeline [23]. since they account for most of the router con-
trol logic. Hence, their latencies determine the clock cycle
time of the router. The VA and SA latencies are dependent
on the cardinality of the arbiters, or the worst-case delay on
the critical path. For our buffer size of 20 flits, an aggressive
dynamic allocation scheme such as ViChaR requires 20:1
arbiters. This is a significant delay, area and power budget
in the router, even when the actual number of requests are
smaller than 20. Table 2 compares essential metrics for a
20:1 and 4:1 arbiter, the latter being used in our VA and
SA. Both arbiters are implemented in HSPICE with 45nm
PTM [33] device models at 1.1V and a temperature of 90◦C.
As we can see, the 20:1 arbiter is more than 4× slower, con-
sumes more than 2× dynamic power and 7× static power,
and takes more than 4× the area than a 4:1 arbiter. We also
varied the number of inputs to each arbiter and observed
that the dynamic power consumption of the arbiter is inde-
pendent of the number of inputs. This is shown in Table 3.
The reason behind it is that there is a priority vector inside
the arbiter, and this vector changes according to some al-
gorithm, e.g. Round Robin, on every arbitration. Hence,
larger arbiters constantly consume more power than small
arbiters. Based on the above observations, we conclude that
simple arbiter design is more advantageous.

Arbiter Delay Dynamic Static Area
Design (ps) Power (mW ) Power (µW ) (µm2)

4:1 arbiter 140 1.07 1.59 120
20:1 arbiter 600 2.49 11.2 530

Table 2. Latency, area and power of an arbiter.

Arbiter Design Request Type Power (mW )

4:1 arbiter

0 request 1.049
1 request 1.059
4 requests 1.037
random requests 1.079

20:1 arbiter

0 request 2.478
1 request 2.459
20 requests 2.455
random requests 2.521

Table 3. Power of an arbiter with different
types of inputs.



3.4 Arbitration Priority

Following our study, we use small arbiters in VA and
SA for low latency and low power. We use 4 VC/port for
our Fixed VC Assignment with Dynamic VC Allocation
(FVADA) scheme, and 2∼5 VC/port for Adjustable VC As-
signment with Dynamic VC Allocation (AVADA) scheme
respectively. FVADA and AVADA will be introduced in
next sections. The choice of VC count will also follow nat-
urally there.

Since the VC resources in our design is not as ample
as other dynamic VC allocation designs, we do not want
a packet to hold many VCs across the intermediate router
nodes. In current router design, once a portion of a packet
occupies a VC queue, other packets are not allowed to use
the rest free VC flit slots until the tail flit of the current
packet comes, so as to avoid interleaving of flits from dif-
ferent packets. As a result, this scheme implies a poor
buffer resource allocation since the vacant VC resources are
wasted if the rest of the packet is blocked in some router up-
stream. To alleviate this problem, especially for small VC
count design, the arbitration in our design gives higher pri-
ority to the body and tail flits over a new header flit. This
way the body or tail flit can release their VC number sooner
than otherwise. This scheme was used in [15] to improve
SA efficiency. We use it here for fast recycling of VCs. If,
however, the body or tail flit is not in the router yet, the
arbiter still selects a header flit for VC allocation.

Note that such a priority rule will not incur starvation
because at any time, there are only limited number of VCs
in the middle of transferring a packet, and each packet has
only limited number of flits. Hence, a header flit can always
become a SA winner within finite number of arbitrations.
Such a priority rule is not useful for other buffer manage-
ment schemes with large number of VCs because VC re-
sources are abundant. However, too many VCs could cause
a packet to spread across many routers, which increases its
latency in the network [5]. This will be discussed further in
the performance evaluation section later.

In summary, therefore, there are two distinct characters
in our design. The first one is that we use small number
of VCs to keep the latency of every major component of
the router low so that the router is able to accommodate
high clock frequency. The second one is that the body/tail
flits are given higher priority to mitigate inefficient buffer
resources allocation. Next, we will describe our VC alloca-
tion mechanisms.

3.5 FVADA

Alleviating HoL. Since our VC number is small, using
existing dynamic allocation would create many Head-of-
Line (HoL) blocking, meaning that the flit at the head of
a VC could not move forward due to output port being busy
or no free buffer slot in the downstream router, then all other
flits following this flit in that VC are blocked even if their
required port and buffer resources are available. In order to
reduce the HoL blocking and increase the network through-
put, FVADA maps each VC to an output port. For example,
the buffer for the East input port has 4 VCs, corresponding

to West, South, North, and Local respectively. The pack-
ets destined to a particular output port will be queued into
the corresponding VC. This is supported by the pre-routing
outcome in the upstream router. Such a mapping is fixed
and pre-defined. Figure 1 illustrates how this allocation can
alleviate the HoL blocking.

Assume there are four incoming packets P1∼P4, with
designated output ports EAST, EAST, WEST and WEST
respectively in the current router. Consider a condition
that the EAST output port is busy now, or, the downstream
router does not have free buffer resources so that the flits
heading to EAST have to stay in the current buffer. In Fig-
ure 1(a), it shows the scenario of the baseline router design:
P1 and P2 at the head of VC0 and VC1 cannot move for-
ward, so they block subsequent header flits of P3 and P4
that are routed to the WEST port. While in FVADA design,
shown in Figure 1(b), the packets routed to the same direc-
tions are stacked in the same queue. The flits in VC1 routed
to the WEST port are now separated from flits in VC0 since
they go to different directions. They are not blocked from
being transmitted to their next node.

To 
East
P1_H

VC0

To 
East
P2_H

VC1

To 
East
P1_H

VC0

To 
West
P3_B

To 
West
P3_T

VC1

(a) Baseline (b) FVADA

H = Head Flit, B = Body Flit, T = Tail FlitHead‐of‐Line Blocking No Blocking

To 
West
P3_H

To 
West
P4_H

To 
West
P4_H

To East
P2_H

Figure 1. VC Allocation in FVADA. Four in-
coming packets P1∼P4: P1 to East, P2 to
East, P3 to West, P4 to West. Flits heading
to EAST cannot move forward now as EAST
port is busy or the downstream router does
not have free buffer resources.

Better Arbitration Efficiency. In addition to reducing
the HoL blocking, FVADA can also improve the efficiency
of the two-level SA arbitration. The first stage of SA se-
lects a local winner from 4 VCs, the second stage selects
from local winners those that can be forwarded to the next
routers at the same time through the switch. With FVADA,
more local winners may be selected in the second stage of
SA, and so more flits can be passed on to their next routers,
improving the overall network throughput. This is mainly
attributed to the fixed mapping between the VCs and the
output ports.

We use an example to illustrate this benefit. Figure 2
compares the arbitration results of a baseline router and
FVADA for two cycles: t and t + 1. In a baseline router,
there could be more number of VCs than in FVADA. Hence,
packets heading to the same output port can be allocated to
different VCs, such as the V0 and V1 in Figure 2(a). Both
are routed to the EAST port. Assume that V0 and V1 are
the local winner at t and t+ 1 respectively. Let us consider
two scenarios where they might fail the global arbitration in
the baseline router but not in FVADA. In the first scenario,
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Figure 2. An example of FVADA Arbitration.
Scenario A: Local input port has competi-
tors for EAST output port. Scenarios B: The
buffers of downstream router at EAST side
are full.

suppose there is a Vx in another input port requesting also
for the EAST port. In the baseline router, even if V0 wins
the EAST port at t, V1 cannot win again at t+1 because the
global arbitration will grant the request to Vx to ensure fair-
ness. While in FVADA (Figure 2(b)), V1 may still win to-
gether with Vx because V1 stores flits heading to the North
port. In the second scenario, suppose the EAST port down-
stream router is temporarily out of buffer resources. In the
baseline router, as shown in Figure 2(c), both V0 and V1
will fail. Whereas in FVADA, V0 fails but V1 may still win
at t+1 because the North port downstream router may have
free buffer slots. As we can see, FVADA design is able to
improve the global arbitration efficiency by improving the
fairness among the output ports instead of the VCs. This
can better utilize the available resources such as idle output
ports and the vacant buffer slots in downstream routers.

Dynamic VC Allocation. When traffic is fairly evenly
distributed across the network, FVADA performs well and
delivers good throughput. However, if the distribution is
not always even and packets traveling in certain directions
dominate, the buffer utilization efficiency of FVADA will
be significantly impaired because each direction has only

one fourth of the total available buffer space. This pressure
can quickly backfires to the sender where packets to other
directions can be blocked simply because the local queue is
filled.

To avoid performance degradation, FVADA employs dy-
namic VC allocation instead of static partitioning. Dur-
ing VC allocation, the “home” VC was first considered. A
“home” VC is the one corresponding to the flit’s output port.
If this home VC is full or already reserved, the allocation
logic will consider other free VCs with vacant buffer slots.
If there is no such VC, the home VC will still be assigned to
this packet. We term this process “VC Selection”, a prepa-
ration step for “VC Assignment”, illustrated in Figure 3.
The selection logic can be implemented using very simple
circuit, as one depicted in Algorithm 1 that produces the
corresponding selection decision. This simple circuit can
operate in parallel with the SA stage. The latency is only
90ps in 45nm node, compared to the 280ps two-level ar-
biter latency in the baseline router. Since FVADA can also
allocate VCs dynamically, packets routed to different ports
may still mingle together, though not as much as in the base-
line dynamic allocated VCs. For example, we observed that
the chances of a packet being mingled as such in the Bit-
Complement Traffic at its saturation point is only 3%.

We remark that FVADA has two major advantages over
the DAMQ design and its improvements. First, FVADA is
capable of adjusting VC allocation based on traffic varia-
tion, which reduces more blocking than in DAMQ. The VC
allocation of DAMQ is always fixed, which is inferior when
the traffic distribution is uneven. For example, if the packet
at the head of the VC for EAST port is blocked in some
upstream router, then the entire VC is simply occupied and
later packets cannot go into this VC even if the EAST port
and the link are idle, wasting network resources. While
FVADA takes a more flexible approach by starting with
fixed allocation, and adjusting to varying VC occupancy.
As a result, one blocking packet does not block all the pack-
ets to the same direction. Second, the overhead in manag-
ing the variable VC queue was overly expensive in DAMQ.
Though later improvements could reduce the hardware im-
plemented linked list, other overhead introduced turned out
to be also prohibitive [22]. As we discussed earlier, even if
we use a VC control table like the ones in [15, 23], its size
must accommodate the longest queue length which is very
inefficient in both area and power consumption. FVADA on
the other hand has a very small control table. And the VA
selection logic only requires several 2:1 multiplexers. Also
it can be operated in parallel with the SA stage.

3.6 AVADA

In FVADA, the mapping between a VC and an output
port index is fixed, meaning that VC0 is always mapped
to EAST, for example. An alternative design is to use an
adjustable mapping between VCs and the output ports. The
goal is to adapt the number of VCs to the varying traffic
loads in all directions. For example, VC0 can be mapped
to EAST and later WEST output port. Also multiple VCs
can be mapped to the same output port, depending on the
traffic conditions. This can provide more flexibility in using



VCs. We term this mechanism Adjustable Number of VCs
with Dynamic VC Allocation, or AVADA. AVADA does not
require 4 VCs per input port so that the number of VCs does
not depend on the number of output ports. This can vary,
as shown later in simulation results where VC number per
input port varies from 2 to 4.

The mapping between VCs and ports can be stored in
a small table that is content addressable (CAM). Each en-
try corresponds to a VC number in the input port of the
downstream router, and stores the mapped output port in
that router, as indicated in the VC mapping table of Fig-
ure 3. During the VC selection stage, the outcome of the
pre-routing will be used to lookup for an available VC from
the mapping table. If found, then the VC (home VC) will
be assigned to the flit if it has an available slot. Otherwise,
an empty VC is identified and assigned to the flit. The map-
ping table is updated accordingly. If no empty VC can be
found, then the selection logic will pick any VC that has an
available slot. Here an available slot means a vacant one
that follows a tail flit. The mapping table is extremely small
— only 12 bits are necessary for a 4-VC buffer organiza-
tion since 3 bits are necessary to index each output port and
empty status.

3.7 FVADA and AVADA Implementation

In this section, we introduce the implementation of
our proposed VC allocation mechanisms: FVADA and
AVADA. We adopted the non-speculatively VA design [15]
in our router. In a generic router designs, the routing unit re-
turns an output VC for each packet. Then, the VA stage ar-
bitrates among conflicting requests holding the same VC of
the same input port in the next router. Our baseline VA stage
is similar to ViChaR where VC assignment is performed af-
ter the arbitration stage, when the global winners are clear.
This design results in simpler VA logic since it only needs to
arbitrate for each output port, not each VC as in the generic
case, and then assigns each global winner a VC pulled from
a free-VC pool using some priority rules such as Random
or FIFO.

Algorithm 1 Control Logic for VC Selection in FVADA
VD: home VC
VF: VC with free buffer slots
VO: Output VCID
if (VD does not have free buffer slots and there is VF)
then

VO = VF;
else

VO = VD;
end if

In this paper, we adopt the concept of assigning VCs
to the SA winners since there are at most 4 of them. The
pipeline stages are shown in Figure 4, along with the base-
line pipeline for comparison. The architecture details of
the VC allocation is shown in Figure 3(b). Our router has
only two stages. The first stage includes parallelized Look-
ahead routing (LA), Buffer Writing (BW), Switch Allo-

Algorithm 2 Control Logic for VC Selection in AVADA
VD: home VC
VE: VC which is currently empty
VF: VC with free buffer slots
VFIFO: VCID at the head of available VC queue
VO: Output VCID
if (there is VD and VD has empty buffer slots or there is
no VF) then

VO = VD;
else

if there is VE and VD has no free buffer slots or there
is no VD then

VO = VE;
end if

else
if there is VF and there is no VE and (no VD or VD
has no free buffer slots) then

VO = VF;
end if

else
VO = VFIFO;

end if

cation and VC Allocation (SA+VA). The second stage in-
cludes Buffer Read (BR) and Switch Transmission (ST). In
the first stage, we split VA into “VC Selection” and “VC
Assignment”, and parallelize “VC Selection” with LA and
SA. The SA performs typical two-stage arbitration to pro-
duce local and global winners for the output ports. The LA
also performs typical pre-routing for the next router using
either DOR or adaptive routing. The “VC Selection” logic,
being in parallel with SA and LA does not have the knowl-
edge of the global winners and their output ports in the next
router. However, what it can do is to assume that each out-
put port will have a winner, and prepare the VC candidates
for that winner with all possible output directions it will go
in the next router. For example, the “VC Selection” will
use either the FVADA or AVADA algorithm to compute 4
VCs for the flit that will traverse through the EAST output
to the next router, assuming the flit will be pre-routed to
the EAST, NORTH, SOUTH and LOCAL port in the next
router. Hence, once the outcomes of the SA and LA are
available, the “SA Assignment” can simply choose from the
VC candidates for the true winner (indicated by SA) and its
true output direction (indicated by LA). Continuing the ex-
ample, if there is a global winner for the EAST output port,
and this flit will go to the SOUTH output port in the next
router, then the VC prepared for that path is used in the as-
signment stage. As we can see, the only dependencies are
from LA and SA to “VC Assignment”. There are no depen-
dencies among LA, SA and “VC Selection”, and hence they
can be parallelized.

The algorithms of the “VC Selection” logic for FVADA
and AVADA are shown in Algorithm 1 and 2 respectively.
The “Home VC”, or VD is determined by the fixed map-
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Figure 4. FVADA/AVADA router pipeline design.

ping in FVADA, or the CAM mapping in AVADA. “VF” is
derived from the buffer credit. The “VE” used in AVADA
is also provided by the CAM mapping table. The “VFIFO”
is the head of free-VC queue, similar to that in the baseline
and ViChaR. Finally, “VO” is decided based on both the
buffer fullness and VC status. The former is indicated by
the credit-based flow control, and the latter is provided by
the AVADA’s CAM table.

We now discuss the timing of different pipeline stages
in Figure 4. The shaded boxes highlight the differences
between the baseline and FVADA/AVADA. If Determined-
Ordered Routing( DOR) is used, then the LA circuit re-
quires only 70ps, measured from our circuit implementa-
tion using 45nm technology. The SA stage in baseline and
our design requires 280ps, versus the 740ps required by
ViChaR. This is because ViChaR uses large arbiters in this
stage. The control logic of VC selection is very simple, and
the sizes of VC mapping table and VC queues are small.
The selection logic requires 105ps and 225ps for FVADA
and AVADA respectively. The logic for AVADA includes a
12-bit CAM, which is slower than FVADA’s logic but still
tolerable. From those latencies, we can see that paralleliz-
ing LA, SA and VC Selection stages does not increase the
stage time since SA is the bottleneck. The VC Assignment
stage is different from the baseline and ViChaR, but it is
only a 4:1 MUX (select one winner from four candidates).
The total latency of (SA+VA) stage is 315ps, also listed in
Table 4, which is much shorter than the delay in ViChaR.
3.8 Adaptive Routing

We also designed our buffer management to support
adaptive routing, which is used to balance the link loads
and improve the network performance, or to tolerate net-
work failures.

To avoid deadlocks, we adapt a previous deadlock-free
design [6] to our FVADA/AVADA. In that scheme, the VCs
are divided into two classes: one employs minimum adap-
tive routing(AR) and the other employs DOR routing. Once

packets are stored in the VC of DOR class, they can only use
the VCs in the same class. For packets in the AR class, they
can also pick VCs in the DOR class if the routing decision
generates the same direction as DOR routing. The VCs of
DOR class are used as escape VCs to break the deadlock,
so at least one VC is reserved for this type of VC class.
For FVADA, one more VC is necessary to apply deadlock
avoidance since the other four VCs are mapped to four out-
put ports. AVADA has more flexibility in VC mapping so
deadlock-free design does not require additional VCs.

Previous dynamically allocated buffer designs [13, 23]
use an existing VC as one of the escape VCs to break dead-
lock when a pre-specified time threshold is exceeded. Since
FVADA/AVADA uses a small number of VCs, using a dedi-
cated VC for escape is inefficient as it is not used frequently.
Our objective here is to ensure deadlock-free without sacri-
ficing the throughput. Therefore, The DOR VCs set in our
design is not dedicated for escape. It can also be allocated
to the packets when all the VCs of AR class are not avail-
able or the router is out of buffer resources. Once the packet
is steered into the DOR class VCs, it uses DOR routing and
stays in this class. This helps greatly in improving the VC
and buffer utilization for small number of VCs design. The
efficiency will be shown in section 4.

We remark that DAMQ would not work well with adap-
tive routing algorithm unless it doubles its VC count. This is
because every VC is dedicated to one direction. If only one
VC is added as escape VC, it would be filled with packets
going to all directions, creating many HoL blocking which
can severely hurt the network performance.

4 Performance Evaluation

In this section, we present simulation-based performance
evaluation for our proposed FVADA/AVADA. We compare
the results with the state-of-the-art generic router and dy-
namic VC Regulator (ViChaR) designs developed in previ-
ous researches [23].



Router Pipeline Critical path
delay (ps)

BW Stages 145
SA(baseline) 280

SA(FVADA/AVADA) 315
SA (ViChaR) 740

BR+ST 275

Table 4. Critical path delay for
FVADA/AVADA and ViChaR designs.

Component Area Dynamic Power Static Power
(one input port) (µm2) (mW ) (µW )
Buffer( 20 flits) 1500 37.39 1030

SA+VA logic (Baseline) 173 1.23 6.99
SA+VA logic(FVADA) 213 1.27 7.12
SA+VA logic(AVADA) 635 2.03 33.66
SA+VA logic (ViChaR) 666 2.79 24.77

Crossbar 36335 101.06 326.1

Table 5. Power and area for FVADA/AVADA and ViChaR designs.

4.1 Simulation Infrastructure

To model and compare different network designs, we use
a cycle-accurate 2D NoC simulator Noxim [34] developed
in SystemC. The simulator models all major components
of the NoC. An 8×8 mesh topology with 2-stage pipelined
routers are modeled in this paper. Each router has 5 ports,
and each port has 4 VCs in the baseline design. Each VC
is 5-flit deep. The size of each flit and the link bandwidth
is 128 bits. The baseline, ViChaR and FVADA/AVADA are
compared with equal size of buffers (5 × 4 = 20 buffer
slots for each input port). Each packet consists of one head
flit, three body flits and one tail flit. The baseline router has
fixed number of VCs with fixed VC size, but uses dynamic
VC allocation. The ViChaR design used dynamically allo-
cation buffer regulator to achieve variable number of VCs
and adjustable VC depth.

We tested (1) Uniform Random traffic type where each
node uniformly injects packets into the network with ran-
dom destinations and (2) Permutation traffic type, where
each node has dedicated destination node. We evaluated
Bit-Complement, Transpose, Tornado, Butterfly, Bitrever-
sal and Shuffle traffic. We used both DOR and deadlock-
free minimum adaptive routing to measure the average net-
work latency and saturation throughput of baseline, ViChaR
and FVADA/AVADA designs.

4.2 Latency, Power and Area Estimation
for the Router

The main components of the router were implemented to
analyze the power, area and latency overhead. An SRAM
based buffer in 45nm technology node with one read/write
port is modeled using CACTI [29]. There are 20 entries in
the buffer for each input port, with 128 bits in each entry.
A 4-input arbiter, a 20-input arbiter and a crossbar are built
and simulated in HSPICE with the 45nm PTM [33] device
model. For the arbiters, we utilize a typical arbiter design
described in [5], which updates the priority in a round-robin
manner. The 5-port, 128 bit wide crossbar is built as a ma-
trix crossbar. The control logics of VC allocation mecha-
nisms are also simulated in HSPICE using 45nm Technol-
ogy. All circuits are simulated with 1.1V Vdd and a tem-
perature of 90◦C. We use the πRC model for modeling the
wires, and we assume a 25% activity factor in the simula-
tion. The critical path delay of each pipeline stage of our
design and ViChaR design is shown in Table 4.

From Table 4, we can see the critical path delay of
FVADA/AVADA is only 42.6% of ViChaR design. It is

mainly because large number of VCs used by ViChaR re-
quires complicated control logics in SA stage. The single-
cycle of SA stage design for ViChaR can sustain a net-
work frequency of no more than 1.35GHz. To obtain higher
clock frequencies, the SA stage must be divided to multiple
pipeline stages to accommodate smaller cycle time, such as
the SA design in [20] which consists of 2 pipeline stages.
We implemented a 3-stage ViChaR router that can sustain a
higher frequency, e.g. 2.5GHz network. Since the critical
delay of FVADA and AVADA is less than 400ps, the SA
stage can complete in one cycle at 2.5GHz. We model both
low frequency(1GHz) router and high frequency (2.5GHz)
routers, and compare the performance among three designs.

Table 5 shows the power and area estimation of major
router components. As FVADA/AVADA adds the VC se-
lection logic and use different VC assignment from base-
line, they consume higher power and area than the base-
line design. However, the increase is still trivial. Power
increases by 0.58%/1.1% of the total router power and area
increases by 0.35%/4.1% for FVADA and AVADA respec-
tively. The VC selection of AVADA also costs a little more
than FVADA. Both schemes provide dynamic power and
area savings in control logic compared to ViChaR, whose
overhead mainly comes from the large arbiters.

4.3 Simulation Results and Discussion

For DOR, baseline and FVADA/AVADA have 4VC/port,
each VC can hold 5 flits, while ViChaR has equal-sized
buffer slots (20 slots per port). Figure 5 plots the average
flit latencies for a 8 × 8 mesh topology using DOR (a-g)
and Adaptive Routing, AR, (h-i) with both types of traffic.
Figure 5(a) and 5(b) show the average latency for uniform
random (UR) and bit-complement traffic (BC). Both per-
form well with DOR but not AR [8] since the traffic by it-
self is fairly balanced. Local congestion information could
be a disturbance and create global imbalance. For other traf-
fic types in (c)∼(g), imbalanced loads cannot be solved by
DOR, and their saturation occurs earlier than in UR.

As we can see, FVADA/AVADA consistently outperform
the baseline in throughput. The improvement is 41% on
average and 66.7% maximally, even though both of them
employs statically VC number and size. It proves that
FVADA/AVADA can work well either in uniform or non-
uniform traffic types. FVADA/AVADA have comparable
performance in almost all traffic patterns. FVADA achieves
better throughput than ViChaR in BC by 10.5% and in Shuf-
fle Traffic Pattern by 4.7%. The reasons are two-fold: (1)
FVADA improves the SA efficiency as we discussed in Sec-
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Figure 5. Average network latency for a 8×8 network at 1GHz under DOR and Adaptive Routing.
tion 3.5. Ideally, we hope to produce winners in the first
stage of SA that are heading to as many output ports as
possible to reduce the contention in the second stage. For
example, if the 4 first-stage winners go to 4 different di-
rections, they are then all winners in the second stage be-
cause they can share the switch in one cycle. We collected
this data for BC in Figure 6. It shows the number of out-
put ports requested by the first stage local winners, relative
to the ViChaR results. We can see that FVADA wins over
ViChaR in 4 output ports by 20%. This is a strong proof of
the SA efficiency in FVADA design. Again, this is mainly
because VA assigns the VC based on their designated output
port. (2)The average path length in BC is longer than other
traffic types. ViChaR has a large number of VCs, which in-
troduces higher number of interleaving packets, especially
when the path is long. The packets occupy VCs resources
throughout their routing path, increasing the average packet
latency. AVADA, on the other hand, cannot match the per-
formance of FVADA in BC and Shuffle traffic due to the dy-
namical VC mapping. Multiple VCs can be mapped to the
same output ports, generating contention in SA. However
AVADA has its advantages in adaptive routing as shown in
Figure 5(h) and (i).

Figure 5(h) and (i) show the network latency under AR
for Transpose and Butterfly traffic. “AVADA 5”means that
it has 5 VC/port etc. As we mentioned before, FVADA uses

fixed VC and output port mapping. To have a fair compari-
son, we also increase the number of VCs in the baseline and
ViChaR. FVADA/AVADA still outperforms the baseline in
terms of throughput by 52.5%/84.2%. AVADA has better
performance than FVADA in adaptive routing because it has
more flexible mapping. Multiple VCs can be assigned to
DOR class to alleviate the HoL blockings without increas-
ing the total number of VCs. AVADA with 4VC/port has
2.2% less throughput than VichaR with 4VC/port due to less
VC resources. The scenario was discussed in section 3.8.
For example, the buffer credits of the downstream router
may show that the packet should pick a direction using AR
over DOR. However, there might not be available VCs of
class AR at current node. Then, VA cannot allocate a VC
for the packet and it has to wait for several cycles. If the
port select logic picks the DOR direction based on the VC
resources information, then it has chosen a busier path for
the packet. And once the packet enters the DOR class, it
cannot come out and return to AR class VCs, which weak-
ens the advantage of adaptive routing. For ViChaR design,
VCs number is not a constraint factor so it does not limit
the adaptive routing performance, resulting a slightly better
throughput than AVADA.

Figure 8 shows the average latency for higher frequency
router design. The no-load latency of FVADA/AVADA is
reduced by 33% on average compared to ViChaR design. It
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Figure 7. Average latency for different buffer sizes.

is mainly because the critical path delay of ViChaR is too
long to fit in one cycle. FVADA/AVADA still have compa-
rable saturation throughput with ViChaR design, and even
better throughput in BC and the Shuffle traffic. Figure 8(h)
and (i) show the network latency using adaptive routing.
The saturation point of AVADA is able to match the ViChaR
design for butterfly traffic. Because ViChaR has a deeper
pipeline under high frequency, the delay of the credit loop
also increases. The latency of the backward credit path im-
pairs the utilization of buffer resources in a router because
it increases buffer idle time between uses. Increasing the
buffer turnaround time hurts the network throughput [27].
Therefore, the throughput of ViChaR is now the same as
the AVADA design.

Finally, Figure 7 plots the latency curves for AVADA
with various buffer sizes compared to ViChaR using equal-
sized buffers, and the baseline with fixed buffer size under
UR. This figure proves that our AVADA design can outper-
form the baseline even with half of the buffer size. We are
always comparable to ViChaR under different sizes. Reduc-
ing buffer size by 50% could produce sigificant savings in
both area and power, which alleviates the limitation of tight
power budget in network design.

5 Conclusion
We propose two new VA mechanisms, termed Fixed VC

Assignment with Dynamic VC Allocation (FVADA) and
Adjustable VC Assignment with Dynamic VC Allocation
(AVADA) to improve the buffer utilization. VCs are as-
signed based on the designated output port of a packet to
reduce the HoL blocking. Also, the number of VCs allo-
cated for each output port can be adjusted dynamically ac-
cording to the traffic condition. A small number of VCs
is used to keep the arbitration latency low. Simulation re-
sults show that for either uniform or non-uniform traffic,
FVADA can improve the network throughput by 41% on
average, compared to a baseline design with the same buffer
size using DOR. Compare to FVADA, AVADA is more suit-
able for adaptive routing due to its dynamic VC mapping.
AVADA outperforms the baseline even when our buffer size
is halved. Therefore by using small buffer sizes, we could
save significant power and area overhead and the through-
put of the networks does not degrade. Moreover, we are
able to achieve comparable or better throughput than a pre-
vious work ViChaR while reducing its critical path delay

by 57.4%. Our results prove that the proposed simple VA
mechanisms are suitable for low-power, high-throughput,
and high-frequency on-chip network designs.
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Figure 8. Average network latency for a 8×8 network at 2.5 GHz under DOR and Adaptive Routing.
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