
Chapter 2

Generating Functions

Do not pray for tasks equal to your powers. Pray for powers equal to your tasks.

Twenty Sermons, PHILLIPS BROOKS

Generating functions provide an algebraic machinery for solving combinatorial problems.

The usual algebraic operations (convolution, especially) facilitate considerably not only

the computational aspects but also the thinking processes involved in finding satisfactory

solutions. More often than not we remain blissfully unaware of this disinterested service,

until trying to reproduce the same by direct calculations (a task usually accompanied by

no insignificant mental strain). The main reason for introducing formal power series is

the ability to translate key combinatorial operations into algebraic ones that are, in turn,

easily and routinely performed within a set (usually an algebra) of generating functions.

Generally this is much easier said than done, for it takes great skill to establish such a
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happy interplay. Yet notable examples exist, and we examine a couple of better known

ones in considerable detail.

We begin by introducing the ordinary and exponential generating functions. Upon

closely investigating the combinatorial meaning of the operation of convolution in these

two well-known cases, we turn to specific generating functions associated with the Stirling

and Lah numbers. The latter part of the chapter touches briefly upon the uses of formal

power series to recurrence relations and introduces the Bell polynomials, in connection

with Faa DiBruno’s formula, for explicitly computing the higher order derivatives of a

composition of two functions. In ending the chapter we dote upon subjects such as Kirch-

hoff’s tree generating matrix (along with applications to statistical design), partitions

of an integer, and a generating function for solutions to Diophantine systems of linear

equations in nonnegative integers.

1 THE FORMAL POWER SERIES

2.1

The generating function of the sequence (an) is the (formal) power series A(x) =
∑

n anx
n =

a0 + a1x + a2x
2 + · · ·+ anx

n + · · ·. The summation sign always starts at 0 and extends to

infinity in steps of one. By x we understand an indeterminate.

Most of the time we view generating functions as formal power series. Occasionally,

however, questions of convergence may arise and the analytic techniques would then come

to play an important role. We recall for convenience that two formal power series are equal

if (and only if) the coefficients of the corresponding powers of x are equal.
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By writing (an) ↔ A(x) we indicate the bijective association between the sequence

(an) and its generating function A(x). In terms of this association we observe that if

(an) ↔ A(x), (bn) ↔ B(x), and c is a constant, then

(an + bn) ↔ A(x) + B(x)

(can) ↔ cA(x)

and, most importantly, multiplication by convolution

(
n∑

i=0

aibn−i

)
↔ A(x)B(x).

(The set of generating functions endowed with these operations is said to form an algebra.)

Generating functions A and B are said to be inverses of each other if A(x)B(x) = 1 =

B(x)A(x). This last relation we sometimes write as B = A−1, B = 1/A, A = B−1, or

A = 1/B. Note, for example, that A(x) = 1− x and B(x) =
∑

n xn are a pair of inverses.

An important operation with power series is that of composition (or substitution). By

A ◦B we understand the series defined as follows: (A ◦B)(x) = A(B(x)). More explicitly

still, if A(x) =
∑

n anx
n and B(x) =

∑
n bnx

n, then (A◦B)(x) = A(B(x)) =
∑

n an(B(x))n.

In order that A(B(x)) be a well-defined power series, the original series A and B need be

such that the coefficient of each power of x in A(B(x)) is obtained as a sum of finitely

many terms. [Thus if A(x) =
∑

n xn and B(x) = x + x2, A(B(x)) is well defined, but

if B(x) = 1 + x, then A(B(x)) is not well defined. In the latter case the constant

term of A(B(x)) involves the summation of infinitely many 1’s.] We can see therefore

that A(B(x)) makes sense essentially under two conditions: when A(x) has infinitely

many nonzero coefficients then the constant term in B(x) must be 0, and if A(x) has
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only finitely many nonzero coefficients [i.e., if A(x) is a polynomial], then B(x) can be

arbitrary. Whenever well defined, the series A ◦B is called the composition of A with B

(or the substitution of B into A).

We also let the linear operator D (of formal differentiation) act upon a generating

function A as follows:

DA(x) = D

(∑
n

anx
n

)
=
def.

∑
n

(n + 1)an+1x
n.

As an example, let A(x) = 2− 5x + 3x2 and B(x) =
∑

n(n + 1)−1xn. The reader may

quickly verify that

A(x)B(x) = 2− 4x +
∞∑

n=2

(n + 5)n−1(n2 − 1)−1xn.

Applying the differential operator D to A, B, and AB respectively, we obtain:

DA(x) = −5 + 3 · 2x, DB(x) =
∑
n

(n + 1)(n + 2)−1xn

and

D(A(x)B(x)) = −4 +
∞∑

n=2

(n + 5)(n2 − 1)−1xn−1.

In closing, let us mention that the operator of formal differentiation satisfies the fa-

miliar rules of differentiation:

D(AB) = (DA)B + A(DB)

DA−1 = −A−2DA,

and most importantly, the ”chain rule,”

D(A ◦B) = ((DA) ◦B)DB.
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2.2

The exponential generating function of the sequence (an) is the (formal) power series

E(x) =
∑
n

an
xn

n!
= a0 + a1

x

1!
+ a2

x2

2!
+ · · ·+ an

xn

n!
+ · · · .

In as much as the exponential generating functions are concerned, if (an) ↔ E(x),

(bn) ↔ F (x), and c is a constant, then

(an + bn) ↔ E(x) + F (x)

(can) ↔ cE(x)

and
(

n∑

i=0

(
n

i

)
aibn−i

)
↔ E(x)F (x).

In this case we say that the multiplication of two exponential generating functions corre-

sponds to the binomial convolution of sequences.

As before, we call E and F inverses if E(x)F (x) = 1 = F (x)E(x).

The operator D of formal differentiation acts here as follows:

DE(x) = D

(∑
n

an
xn

n!

)
=
def.

∑
n

an+1
xn

n!
.

We illustrate the multiplication of two exponential generating functions by a simple

example:

(∑
n

3n xn

n!

) (∑
n

1

2n

xn

n!

)
=

∑
n

(
n∑

i=0

(
n

i

)
3i 1

2n−i

)
xn

n!

=
∑
n

(
n∑

i=0

(
n

i

)
3i

(
1

2

)n−i
)

xn

n!
=

∑
n

(
3 +

1

2

)n xn

n!

=
∑
n

(
7

2

)n xn

n!
.
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The next to the last equality sign is explained by the fact that
∑n

i=0

(
n
i

)
aibn−i = (a + b)n,

where a and b are two entities that commute (such as 3 and 1
2
).

With regard to differentiation,

D

(∑
n

3n xn

n!

)
=

∑
n

3n+1xn

n!
.

2.3

The vector space of sequences can be made into an algebra by defining a multiplication of

two sequences. We require the rule of multiplication to be ”compatible” with the rules of

addition and scalar multiplication. Two such rules of multiplication have been described

in Sections 2.1 and 2.2. Other rules could be conceived, but one wonders of how much

use in combinatorial counting they would be. One well-known multiplication, of interest

to number theorists, is as follows:

(an)(bn) =




∑
d

dm=n

adbm




and is called the Dirichlet convolution. In this case we attach the formal Dirithlet series

∑
n(an/nx) to the sequence (an).

Eulerian generating functions are known to be helpful in enumeration problems over

finite vector spaces and with inversion problems in sequences. The Eulerian series of the

sequence (an) is defined as

Eq(x) =
∑
n

anxn

(1− q)(1− q2) · · · (1− qn)
.

We briefly discuss these series in Chapter 3.

Let us now make ourselves more aware of what combinatorial operations the generating

functions and the exponential generating functions perform for us.
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2 THE COMBINATORIAL MEANING OF

CONVOLUTION

2.4

In Section 1.2 we established bijective correspondences between the three general problems

listed below and showed that they all admit the same numerical solution:

(a) The number of ways to distribute n indistinguishable balls into m distinguishable boxes

is
(

n+m−1
n

)
.

(b) The number of vectors (n1, n2, . . . , nm) with nonnegative integer entries satisfying

n1 + n2 + · · ·+ nm = n

is
(

n+m−1
n

)
.

(c) The number of ways to select n objects with repetition from m different types of objects

is
(

n+m−1
n

)
. (We assume that we have an unlimited supply of objects of each type and

that the order of selection of the n objects is irrelevant.)

The three problems just mentioned consociate well to the operation of convolution with

generating functions. Specifically, let us explain how we attach combinatorial meaning to

the multiplication by convolution of several generating functions with coefficients 0 or 1:

1. The number of ways of placing n indistinguishable balls into m distinguishable boxes is

the coefficient of xn in

(1 + x + x2 + · · ·)m =

(∑

k

xk

)m

= (1− x)−m.

Indeed, we can describe the possible contents of our boxes as follows:
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Box 1 Box 2 Box 3 · · · Box m

1 1 1 1

x x x x

x2 x2 x2 x2

x3 x3 x3 x3

...
...

...
...

(∗)

The symbol xi beneath box j indicates the fact that we may place i balls in box j. Think

of m (the number of boxes) being fixed, but keep n unspecified. With this in mind we can

assume that the columns beneath the boxes are of infinite length. How do we then obtain

the coefficient of xn in the product (1+x+x2 +x3 + · · ·)m? We select xn1 from column 1

of (∗), xn2 from column 2, . . . , xnm from column m such that xn1xn2 · · · xnm = xn, and do

this in all possible ways. The number of such ways clearly equals the number of vectors

(n1, n2, . . . , nm) satisfying

m∑

i=1

ni = n,

with 0 ≤ ni, ni integers; 1 ≤ i ≤ m. By (b) above we conclude that there are precisely

(
n+m−1

n

)
solutions, which is also in agreement with (a), thus proving our statement.

In terms of generating functions, this shows that

(∑

k

xk

)m

=
∑
n

(
n + m− 1

n

)
xn. (2.1)

By observing that (1− x)−1 =
∑

n xn we can rewrite relation (2.1) as follows:

(1− x)−m =
∑
n

(
n + m− 1

n

)
xn. (2.2)

2. The number of ways of placing n indistinguishable objects into m distinguishable boxes
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with at most ri objects in box i is the coefficient of xn in

m∏

i=1

(1 + x + x2 + · · ·+ xri).

The contents of our m boxes is now as follows:

Box 1 Box 2 Box 3 · · · Box m

1 1 1 1

x x x x

x2 x2 x2 x2

...
...

...
...

xr1 xr2 xr3 xrm

Again, the coefficient of xn is the number of selections of powers of x (one from each

column) such that the sum of these powers is n. To be more precise, the coefficient of xn

is the number of all vectors (n1, n2, . . . , nm) satisfying

m∑

i=1

ni = n,

with 0 ≤ ni ≤ ri, ni integers; 1 ≤ i ≤ m.

Example. At suppertime Mrs. Jones rewards her children, Lorie, Mike, Tammie, and

Johnny, for causing only a limited amount of damage to each other during the day. She

decides to give them a total of ten identical candies. According to their respective good

behavior she chooses to give at most three candies to Lorie, at most four to Mike, at most

four to Tammie, and at most one to Johnny. In how many ways can she distribute the

candies to the children?



10 CHAPTER 2. GENERATING FUNCTIONS

In this problem we make the abstractions as follows:

children ↔ distinguishable boxes

candies ↔ indistinguishable balls

The possibilities of assignment are described by

Lorie Mike Tammie Johnny

1 1 1 1

x x x x

x2 x2 x2

x3 x3 x3

x4 x4

The generating function in question is

(1 + x + x2 + x3)(1 + x + x2 + x3 + x4)2(1 + x)

and the numerical answer we seek will be found in the coefficient of x10. As it seems

simple enough to write a computer program that multiplies two formal power series (and,

in particular, two polynomials), calculating the coefficient of a power of x can be done

expeditiously. Indeed, all it takes to program multiplication by convolution is a DO loop.

[The coefficient in question equals, as we saw, the number of solutions (n1, n2, n3, n4) to

n1 + n2 + n3 + n4 = 10

0 ≤ n1 ≤ 3

0 ≤ n2, n3 ≤ 4

0 ≤ n4 ≤ 1, ni integers.
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There are precisely nine such vectors, which we actually list below:

Lorie Mike Tammie Johnny

1 4 4 1

2 3 4 1

2 4 3 1

2 4 4 0

3 2 4 1

3 3 3 1

3 3 4 0

3 4 2 1

3 4 3 0 .]

3. The number of ways of assigning n indistinguishable balls to m distinguishable boxes

such that box j contains at least sj balls is the coefficient of xn in
∏m

j=1(x
sj(1 + x + x2 +

· · ·)) = x
∑

sj(1− x)−m =
∑

n

(
n−

∑
sj+m−1

m−1

)
xn.

The composition of the m boxes is, in this case,

Box 1 Box 2 · · · Box m

xs1 xs2 xsm

xs1+1 xs2+1 xsm+1

xs1+2 xs2+2 xsm+2

...
...

...

Taking in common factor xsj from column j we obtain the generating function written

above. The process of extracting xsj in common factor from column j and the writing
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down of the generating function by multiplying all factors together parallels the com-

binatorial argument of solving this problem by first leaving sj balls in box j and then

distributing the remaining n − ∑m
j=1 sj balls without restrictions to the m boxes. This

shows in fact that the coefficient of xn in the generating function written above is

(
n−∑

sj + m− 1

n−∑
sj

)
=

(
n−∑

sj + m− 1

m− 1

)
.

4. The number of ways to distribute n indistinguishable balls into m distinguishable boxes

with box i having the capacity to hold either si1, or si2, . . ., or siri
(and no other number

of) balls equals the coefficient of xn in
∏m

i=1(x
si1 + xsi2 + · · ·+ xsiri ).

The composition of the boxes is

Box 1 Box 2 · · · Box m

xs11 xs21 xsm2

xs12 xs22 xsm2

...
...

...

xs1r1 xs2r2 xsmrm

Placing sij balls in box j corresponds to selecting the power xsij in the jth column.

Distributing a total of n balls to the m boxes amounts to selecting a vector of powers of x

(one from each column), say (s1n1 , s2n2 , . . . , smnm), such that
∑m

i=1 sini
= n. The number of

all such distributions of n balls is therefore the coefficient of xn in the generating function

given above. It also equals the number of integer solutions to

n∑

i=1

sini
= n

with sini
restricted to belong to {si1, si2, . . . , siri

}, 1 ≤ i ≤ m.
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One can geometrically visualize the solutions to these constraints as the points (y1, y2,

. . . , ym), with yi belonging to the finite set {si1, si2, . . . , siri
}, which are also on the hy-

perplane
∑m

i=1 yi = n.

5. We conclude this long section with a revision of several useful relations among gener-

ating functions. These are:

(i) (1− x)−1 =
∑

n xn.

(ii) (1− xn+1)(1− x)−1 = 1 + x + x2 + · · ·+ xn.

(iii) (1− x)−m =
∑

n

(
n+m−1

n

)
xn; m positive integer.

(iv) (1 + x)m =
∑m

n=0

(
m
n

)
xn; m positive integer.

(v) (x1 + x2 + · · ·+ xr)
m =

∑
(n1,...,nr) m!/(n1!n2! · · ·nr!)x

n1
1 xn2

2 · · ·xnr
r .

(vi)
∏m

i=1(
∑

j aijx
j) =

∑
n(

∑
(j1,...,jm)∑

k
jk=n

a1j1a2j2 · · · amjm)xn.

The contents of (i) and (ii) can be straightforwardly verified by multiplying out. The

statement made in (iii) has been established in (2.2).

To understand (iv), write (1 + x)m as

1 1 1 . . . 1

x x x x

(m columns).

A formal term in the expansion of (1 + x)m involves the choice of one entry from each of

the m columns. A term containing exactly n x’s is obtained by picking x from a subset of

n columns, and 1’s from the remaining m−n columns. The number of such terms equals

the number of subsets with n elements out of the set of m columns, that is, it equals
(

m
n

)
.

This explains (iv).
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The proof of (v) is similar. Write out m columns

x1 x1 · · · x1

x2 x2 x2

...
...

...

xr xr xr

A formal product is obtained by picking an xi from each column. The coefficient of

xn1
1 xn2

2 · · · xnr
r is the number of formal products of length m containing n1 x1’s, n2 x2’s,

. . ., nr xr’s. There are m!/(n1!n2! · · ·nr!) such products (see also Section 1.14). This

establishes (v).

To realize that (vi) is true, line up m columns of infinite length:

a10 a20 · · · am0

a11x a21x am1x

a12x
2 a22x

2 am2x
2

a13x
3 a23x

3 am3x
3

...
...

...

.

A term involving xn is obtained by picking akjk
xjk from column k (1 ≤ k ≤ m) and

making the product
∏m

k=1 akjk
xjk , with the exponents of x satisfying

∑m
k=1 jk = n. The

totality of such terms equals

∑
(j1,...,jm)∑m

k=1
jk=n

m∏

k=1

akjk
xjk ,

thus explaining the coefficient of xn.
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2.5

We turn our attention now to exponential generating functions. These generating func-

tions are helpful when counting the number of sequences (or words) of length n that can

be made with m (possibly repeated) letters and with specified restrictions on the number

of occurrences of each letter; such as the number of distinct sequences of length four that

can be made with the (distinguishable) letters a, b, c, d, e in which b occurs twice, c at

least once, e at most three times, and with no restrictions on the occurrences of a and d.

For convenience we denote the exponential generating function
∑

n xn/n! by ex. We

invite the reader to observe at once that (ex)m = emx. Indeed, the coefficient of xn/n! in

emx is mn, while the coefficient of xn/n! in (ex)m is

∑
(n1,...,nm)∑

ni=m

0≤ni, integers

n!

n1!n2! · · ·nm!
.

These two expressions count the same thing, however, namely the number of sequences

of length n that can be made with m distinguishable letters and with no restrictions on

the number of occurrences of each letter. (To be specific, we have n spots to fill with m

choices for each spot, and this gives us mn choices; on the other hand we can sort out the

set of sequences by the number of occurrences of each letter, thus obtaining the second

expression.)

The mechanism of using exponential generating functions to solve problems in counting

is similar to that described in Section 2.4. We present an example that captures all the

relevant features of a general case.

Assume at all times that we have available an abundant (and if necessary infinite)

supply of replicas of the letters a, b, c, d, e. We want to count the number of distinct
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sequences of length four containing two b’s, at least one c, at most three e’s, and with no

restrictions on the occurrences of a and d.

The recipe that leads to the solution is the following: With each distinct letter attach

a column in which the powers of x indicate the number of times that letter is allowed to

appear in a sequence. Such powers of x are divided by the respective factorials. In this

case we have

a b c d e

1 1 1

x
1!

x
1!

x
1!

x
1!

x2

2!
x2

2!
x2

2!
x2

2!
x2

2!

x3

3!
x3

3!
x3

3!
x3

3!

x4

4!
x4

4!
x4

4!

...
...

...

The exponential generating function we attach to this problem is (as before) the product

of the columns, that is,

(∑

k

xk

k!

)
x2

2!

( ∞∑

k=1

xk

k!

) (∑

k

xk

k!

) (
1 +

x

1!
+

x2

2!
+

x3

3!

)

= ex

(
x2

2!

)
(ex − 1)ex

(
1 +

x

1!
+

x2

2!
+

x3

3!

)

= e2x(ex − 1)
x2

2!

(
1 +

x

1!
+

x2

2!
+

x3

3!

)
.

The numerical answer we seek is simply the coefficient of x4/4!. If, with the same restric-

tions, we become interested in the number of sequences of length n, the answer is the

coefficient of xn/n! in the above exponential generating function.

To see that the coefficient of x4/4! is indeed the answer to our problem one has to



THE COMBINATORIAL MEANING OF CONVOLUTION 17

observe the following. The act of picking xni/ni! from column i (1 ≤ i ≤ 5) corresponds

to looking at sequences consisting of precisely n1 a’s, n2 b’s, n3 c’s, n4 d’s, and n5 e’s.

Taking the product

∏

i

xni

ni!
=

(
∑

i ni)!∏
i ni!

x
∑

i
ni

(
∑

i ni)!

(with
∑

i ni = 4) produces a coefficient of

(
∑

i ni)!∏
i ni!

=
4!

n1!n2!n3!n4!n5!

for x4/4!, which equals the number of sequences with precisely ni copies of each letter.

The totality of such pickings, with values of ni restricted to the exponents of x that

appear in column i, leads to the coefficient of x4/4!, which equals, therefore, the number

of sequences with occurrences restricted as specified.

Specifically, we have

1 · x2

2!
· x

1!
· 1 · x

1!
+ 1 · x2

2!
· x

1!
· x

1!
· 1

+1 · x2

2!
· x2

2!
· 1 · 1 +

x

1!
· x2

2!
· x

1!
· 1 · 1

=
(

1

2
+

1

2
+

1

4
+

1

2

)
x4 = 4!

(
1

2
+

1

2
+

1

4
+

1

2

)
x4

4!
.

We thus conclude that there are 42 such sequences.

Let us look at some examples of a more general nature.

Example 1. Find the number of (distinct) sequences of length n formed with m letters

(m ≥ n), with no letter repeated.

The m columns, one for each letter, are:

1 1 1 · · · 1

x x x x

.
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This gives the exponential generating function (1 + x)m. We thus seek the coefficient of

xn/n!. And since (1 + x)m =
∑m

n=0

(
m
n

)
xn this shows that xn/n! has coefficient m!/(m−

n)!(= [m]n), as expected.

Example 2. Find the number of sequences of length n, formed with m letters (m ≤ n),

in which each letter appears at least once.

The m columns are all the same, namely x/1!, x2/2!, x3/3!, . . . . Hence the exponential

generating function is (
∑∞

n=1 xn/n!)m = (ex − 1)m. The coefficient of xn/n! turns out to

be m!Sm
n , where Sm

n is the Stirling number, as we shall see in Section 3.

Example 3. How many sequences of length n can be made with the digits 1, 2, 3, . . . ,m

such that digit i is not allowed to appear ni1 or ni2 or · · · or niri
times (these being the

only restrictions)?

The ith column in this case consists of the terms of ex with precisely xnij/nij! missing

(1 ≤ j ≤ ri). We conclude therefore that the exponential generating function in question

is

m∏

i=1


ex −

ri∑

j=1

xnij

nij!


 .

The numerical answer we seek is the coefficient of xn/n!.

2.6

Having thus shown the computational power of generating functions we address a problem

that involves the permutations of the ordered set 1 < 2 < · · · < m. If i < j and

σ(i) > σ(j) we say that the permutation σ has an inversion at the pair (i, j). Denote by
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amk the number of permutations on {1, 2, . . . , m} with precisely k inversions; 0 ≤ k ≤
(

m
2

)
.

We seek the generating function for amk.

For a permutation σ and an integer j (1 ≤ j ≤ m) denote by σ(j) the cardinality

of the set {i : 1 ≤ i < j and σ(i) > σ(j)}. The number of inversions of σ can now be

written as σ(1) + σ(2) + · · ·+ σ(m). (Note that σ(1) = 0.)

Thus the number of permutations with exactly k inversions is the number of solutions

in nonnegative integers to

n1 + n2 + · · ·+ nm = k

with restrictions 0 ≤ ni ≤ i− 1. (For a fixed permutation σ, ni corresponds to σ(i).) We

know how to interpret the set of such solutions (cf. Section 2.4). Think of m distinguish-

able boxes (as columns), with column i consisting of 1, x, x2, . . . , xi−1. The generating

function that we associate is
∏m

i=0(1 + x + . . . + xi−1) and then amk, being the same as

the number of solutions to the constraints mentioned above, equals the coefficient of xk

in this generating function. We conclude, therefore, that

(m
2 )∑

k=0

amkx
k =

m∏

i=0

(1 + x + . . . + xi−1) =
m∏

i=0

(
1− xi

1− x

)
.

EXERCISES

1. How many ways are there to get a sum of 14 when 4 (distinguishable) dice are

rolled?

2. Find the generating function for the number of ways a sum of n can occur when

rolling a die an infinite (or at least n) number of times.
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3. How many ways are there to collect $12 from 16 people if each of the first 15 people

can give at most $2 and the last person can give either $0 or $1 or $4?

4. How many ways are there to distribute 20 jelly beans to Mary(G), Larry (B), Sherry

(G), Terri (G), and Jerry (B) such that a boy (indicated by B) is given an odd

number of jelly beans and a girl is given an even number (0 counts as even).

5. Find the coefficient of xn in (1 + x + x2 + x3)m(1 + x)m.

6. Find the generating function for the sequence (an) if (a) an = n2, (b) an = n3, (c)

an =
(

n
2

)
, and (d) an =

(
n
3

)
.

7. In how many ways can ten salespersons be assigned so that two are assigned to

district A, three to district B, and five to district C? If five of the salespersons

are men and five are women, what is the chance that a random assignment of two

salespersons to district A, three to B and five to C will result in segregation of the

salespersons by sex? What is the probability that a random assignment will result

in at least one female salesperson being assigned to each of the three districts?

8. How many distinct formal words can be made with the letters in the word ”abra-

cadabra”?

9. Show that
∑

k(−1)k
(

n
k

)
((1+ kx)/(l +nk)k) = 0, for all x and all positive integers n.

What do we obtain by taking x = 0, or x = 1? [Hint: Write

0 =
(
1− 1

1 + nx

)n

−
(
1− 1

1 + nx

)n

=
(
1− 1

1 + nx

)n

− nx

1 + nx

(
1− 1

1 + nx

)n−1

,
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expand using the binomial expansion and sort out by
(

n
k

)
.]

3 GENERATING FUNCTIONS for STIRLING

NUMBERS

Let x and y be indeterminates and denote
∑

n xn/n! by ex,
∑

n(−1)nxn+1/(n + 1) by

ln(1 + x), and ex ln y by yx. We occasionally yield to the temptation of looking at these

formal power series as series expansions of analytic functions. While this contemplative

attitude is in itself harmless enough, the effective act of assigning numerical values to x

and y becomes an unmistakable cause of concern. Questions of convergence immediately

arise and they are of crucial importance. It can be shown that both ex and ln(1 + x)

converge for positive values of x. The relations eln x = x = ln ex are also known to hold

and are used freely in what follows. The formal expansion

(1 + y)x =
∑

k

[x]k
yk

k!

is needed as well; it holds for |x| < 1 [here [x]k = x(x− 1) · · · (x− k + 1)]. The reader can

find these series expansions in most calculus books. We take them for granted here.

2.7

Taking advantage of the new tools just introduced, let us take another look at the Stirling

and Bell numbers:

∗ Compiled beneath are several generating functions for these numbers (expanding the

right-hand side and equating like powers yields many identities):

1.
∑

n Sk
nyn/n! = (1/k!)(ey − 1)k.
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2.
∑

n sk
ny

n/n! = (1/k!)(ln(1 + y))k.

3.
∑

k Sk
nxk = e−x ∑

m mnxm/m!.

4.
∑

n

∑
k Sk

nxkyn/n! = ex(ey − 1).

5.
∑

n Bny
n/n! = eey−1.

6.
∑

n Sk
nxn−k = (1− x)−1(1− 2x)−1 · · · (1− kx)−1.

7. The Bell numbers Bn satisfy

lim
n→∞

n−
1
2 (λ(n))n+ 1

2 eλ(n)−n−1

Bn

= 1,

where λ(n) is defined by λ(n) ln λ(n) = n. (We recall the usual conventions with

indices: Sk
n = 0 for all k ≥ n, and S0

n = 0 for all n.)

Proof. 1. The proof relies on Stirling’s formula

xn =
∑

k

Sk
n[x]k,

which we proved in (c) of Section 1.7. We proceed as follows:

∑

k

∑
n

Sk
n

yn

n!
[x]k =

∑
n

∑

k

Sk
n[x]k

yn

n!
=

∑
n

xn yn

n!

=
∑
n

(xy)n

n!
= exy = (ey)x = (1 + (ey − 1))x

=
∑

k

1

k!
(ey − 1)k[x]k.

Identifying the coefficients of [x]k gives

∑
n

Sk
n

yn

n!
=

1

k!
(ey − 1)k.
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2. Start out with [x]n =
∑

k sk
nxk, a formula that we proved in (c) of Section 1.8.

Multiply both sides by yn/n!, sum over n, and use known series expansions to obtain:

∑

k

∑
n

sk
n

yn

n!
xk =

∑
n

[x]n
yn

n!
= (1 + y)x = ex ln(1+y)

=
∑

k

1

k!
(ln(1 + y))kxk.

Identifying the coefficients of xk yields the result.

3. Observe first that xkex =
∑

i x
i+k/i! =

∑
m[m]kx

m/m!, since [m]k = 0 in the first

k − 1 terms. By Stirling’s formula, recalling also that mn =
∑

k Sk
n[m]k, we have

ex
∑

k

Sk
nxk =

∑

k

Sk
nxkex =

∑

k

Sk
n

∑
m

[m]k
xm

m!

=
∑
m

xm

m!

∑

k

Sk
n[m]k =

∑
m

mnxm

m!
.

If we set x = 1, we obtain Dobinski’s formula

Bn = e−1
∑
m

mn

m!
.

4. Start with the formula established in 3, multiply it by yn/n!, and sum. What

results is

∑
n

∑

k

Sk
nxk yn

n!
= e−x

∑
m

∑
n

mnxm

m!

yn

n!
= e−x

∑
m

xm

m!

∑
n

(my)n

n!

= e−x
∑
m

xm

m!
emy = e−x

∑
m

(xey)m

m!
= e−xexey

= ex(ey−1).

5. Recall that
∑

k Sk
n = Bn. Set x = 1 in 4 to obtain 5.

6. (Induction on k.) The relation is true for k = 1 since it reduces to 1 + x + x2 +

· · · = 1/(1 − x). Assume that it holds for k − 1 and show that it holds for k. Let

f(x) =
∑

n,n≥k Sk
nxn−k. Then

f(x) =
∑

n
n≥k

Sk
nxn−k = {by the recurrence Sk

n = Sk−1
n−1 + kSk

n−1}
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=
∑

n
n≥k

(Sk−1
n−1 + kSk

n−1)x
n−k

=
∑

n
n−1≥k−1

Sk−1
n−1x

(n−1)−(k−1) + k
∑

n
n≥k

Sk
n−1x

n−k

= {by induction} =
k−1∏

m=1

(1−mx)−1 + k
∑

n
n≥k

Sk
n−1x

n−k

=
k−1∏

m=1

(1−mx)−1 + k(Sk
k−1x

0 + Sk
kx + Sk

k+1x
2 + Sk

k+2x
3 + · · ·)

=
k−1∏

m=1

(1−mx)−1 + k
∑

n
n≥k

Sk
nxn−k+1

=
k−1∏

m=1

(1−mx)−1 + kx
∑

n
n≥k

Sk
nxn−k

=
k−1∏

m=1

(1−mx)−1 + kxf(x).

We can now solve for f(x) and thus obtain the formula we want.

7. The proof of this asymptotic result is somewhat analytic in nature and we omit it

to preserve continuity. See reference [10).

2.8

The Stirling numbers occur when relating moments to lower factorial moments. Call

Mn(f) =
∑

x f(x)xn the nth moment of f and mn(f) =
∑

x f(x)[x]n the nth lower

factorial moment of f . (The sum over x could be an integral as well. The variable x is

understood to belong to some subset of the real line Stirling’s formulas give us immediately

Mn =
∑

k

Sk
nmk and mn =

∑

k

sk
nMk.

We now describe another situation in which the Stirling numbers pop up.

∗ Let D be the operator of differentiation (i.e., D = d/dx) and let θ = xD. Then

θn =
n∑

k=0

Sk
nxkDk

(
and xnDn =

n∑

k=0

sk
nθ

k

)
.
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Proof. Proceed as follows:

θ = xD = S1
1xD

θ2 = xD(θ) = xD(xD) = x(D + xD2) = xD + x2D2 = S1
2xD + S2

2x
2D2

...

θn =
n∑

k=0

Sk
nxkDk (assume this).

Then

θn+1 = xD(θn) = xd

(
n∑

k=0

Sk
nxkDk

)

= x

(
n∑

k=0

Sk
n(kxk−1Dk + xkDk+1)

)

=
n∑

k=0

Sk
nkxkDk +

n∑

k=0

Sk
nxk+1Dk+1

=
n∑

k=0

Sk
nkxkDk +

n+1∑

k=1

Sk−1
n xkDk

=
n+1∑

k=1

(Sk−1
n + kSk

n)xkDk

=
n+1∑

k=0

Sk
n+1x

kDk.

This ends the proof, by induction.

The second formula, written in parentheses in the statement above, is equivalent to

the first through a process of inversion. This process is presented in detail in Chapter 3.

2.9

We discuss here several properties of the Lah numbers Lk
n. A combinatorial interpretation

of these numbers was given in Section 1.15, where we labeled

Lk
n = (−1)n n!

k!

(
n− 1

k − 1

)
.
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For small values of n and k we have the following table for Lk
n:

k

n 1 2 3 4 5

1 -1

2 2 1 0

3 -6 -6 -1

4 24 36 12 1

5 -120 -240 -120 -20 -1

Define now numbers Lk
n (we show that these are the same as the Lah Lk

n above) by

[−x]n =
n∑

k=1

Lk
n[x]k; Lk

n = 0, for k > n.

∗ We prove the following:

1. [−x]n =
∑n

k=1 Lk
n[x]k if and only if [x]n =

∑n
k=1 Lk

n[−x]k.

2. Lk
n+1 = −Lk−1

n − (n + k)Lk
n.

3.
∑

n Lk
nt

n/n! = (1/k!)(−t/(1 + t)).

4. Lk
n = (−1)n(n!/k!)

(
n−1
k−1

)
.

5.
∑

k

∑
n Lk

nx
ktn/n! = exp(−xt/(1 + t)).

6. Lk
n =

∑n
j=k(−1)jsj

nSk
j .

Proof. 1. Interchange x and −x.

2.

n+1∑

k=1

Lk
n+1[x]k = [−x]n+1 = (−x− n)[−x]n

= (−x− n)
n∑

k=1

Lk
n[x]k =

n∑

k=1

Lk
n(−x− n)[x]k
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=
n∑

k=1

Lk
n(−(x− k)− (n + k))[x]k

=
n∑

k=1

(−Lk
n[x]k+1 − (n + k)Lk

n[x]k).

Identifying coefficients of [x]k gives 2.

3. Start with
∑

k Lk
n[x]k = [−x]n. Multiply by tn/n! and sum:

∑

k

[x]k
∑
n

Lk
n

tn

n!
=

∑
n

∑

k

Lk
n[x]k

tn

n!
=

∑
n

[−x]n
tn

n!

= (1 + t)−x =
(

1

1 + t

)x

=
(
1− t

1 + t

)x

=
∑

k

[x]k(−t/(1 + t))k

k!
,

yielding 3.

4.

∑
n

Lk
n

tn

n!
=

(−t/(1 + t))k

k!
=

1

k!
(−tk(1− t + t2 − t3 + · · ·)k)

=
∑
n

(−1)n n!

k!

(
n− 1

k − 1

)
tn

n!
.

See (2.2) for an explanation of the last equality sign.

5. Start with
∑

n Lk
ntn/n! = (−t/(1 + t))k/k!, multiply by xk, and sum

∑

k

∑
n

Lk
n

tn

n!
xk =

∑

k

(−tx/(1 + t))k

k!
= exp

( −xt

1 + t

)
.

6.

n∑

k=1

Lk
n[x]k = [−x]n =

n∑

j=1

(−1)jsj
nx

j

=
n∑

j=1

(−1)jsj
n

j∑

k=1

sk
j [x]k

=
n∑

k=1

n∑

j=1

(−1)jsj
nSk

j [x]k.
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∗ The Lah numbers occur when expressing the upper factorial moments, defined by mn(f) =

∑
x f(x)[x]n, in terms of the lower factorial moments mn(f), which we defined earlier in

this section. (Here [x]n = x(x + 1) · · · (x + n− 1).) Specifically,

mn =
∑

k

(−1)nLk
nmk and mn =

∑

k

(−1)kLk
nmk.

Further, in terms of differential operators, if θ = x2D (where D stands for d/dx), then

θn =
n∑

k=1

(−1)nLk
nxn+kDk

(or, equivalently, Dn =
∑n

k=1(−1)kLk
nx

−n−kθk). The proof is similar to the case of θ = xD

involving Stirling numbers.

4 BELL POLYNOMIALS

The object of this section is to bring to attention an explicit formula by which the higher

derivatives of a composition of two functions can be computed. Partitions of a set, and

thus Bell numbers, will enter these calculations in a natural way.

Let h = f ◦ g be the composition of f with g, that is, h(t) = f(g(t)) where t is an

argument. We assume that the functions f , g, and h have derivatives of all orders.

Denote by Dy the operator d/dy of differentiation with respect to y. By Dn
y we indicate

the n-fold application of Dy, that is, the nth derivative with respect to y.

We denote as follows:

hn = Dn
t h, fn = Dn

g f, gn = Dn
t g.

Our aim is to find an explicit formula for hn in terms of the fk’s and gk’s. To begin with,

let us look at the first few expressions for hn:

h1 = f1g1
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h2 = f2g
2
1 + f1g2

h3 = f3g
3
1 + f2(2g1g2) + f2g1g2 + f1g3

= f3g1 + f2(3g1g2) + f1g3

h4 = f4g
4
1 + f3(6g2g

2
1) + f2(4g3g1 + 3g2

2) + f1g4

...

Write in general hn =
∑n

k=1 fkαnk. Here the αnk’s are polynomials in gi’s that do not

depend upon the choice of f . The hn’s are called Bell polynomials. (As is plain to see,

these polynomials are linear in the fk’s but highly nonlinear in the gk’s.)

We proceed in establishing the explicit form of the αnk’s and do so in ”steps.” To this

end, define polynomials Bn by

Bn =
n∑

k=1

αnk.

Step 1. Bn = e−g(Dn
t e−g).

Indeed, let f(z) = ez be the exponential series. Then h = eg and hn = Dn
t eg =

∑n
k=1 fkαnk =

∑n
k=1 egαnk = eg ∑n

k=1 αnk = egBn.

Step 2. Bn+1 =
∑n

k=0

(
n
k

)
gk+1Bn−k.

Recall that if α0 and β0 are functions of t, differentiable any number of times, then

D0
t α0β0 = α0β0 (ordinary multiplication)

D1
t α0β0 = α1β0 + α0β1

D2
t α0β0 = α2β0 + α1β1 + α1β1 + α0β2

= α2β0 + 2α1β1 + α0β2

D3
t α0β0 = α3β0 + 3α2β1 + 3α1β2 + α0β3
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...

Dn
t α0β0 =

n∑

k=0

(
n

k

)
αkβn−k. (Leibnitz′s formula).

This formula is not hard to prove, and it was derived at the end of Section 1.6.

With this at hand,

Bn+1 = e−g(Dn+1
t eg) = e−gDn

t (g1e
g)

= {let α0 = g1 and β0 = eg}

= e−g
n∑

k=0

(
n

k

)
gk+1D

n−k
t eg

=
n∑

k=0

(
n

k

)
gk+1e

−g(Dn−k
t eg)

=
n∑

k=0

(
n

k

)
gk+1Bn−k.

Step 3. ln(
∑

n Bnx
n/n!) =

∑
n gn+1x

n+1/(n + 1)!.

Indeed (formally) differentiating both sides with respect to x we obtain

(∑
n

Bn
xn

n!

)−1 (∑
n

Bn+1
xn

n!

)
=

∑
n

gn+1
xn

n!

if and only if if and only if

∑
n

Bn+1
xn

n!
=

(∑
n

Bn
xn

n!

) (∑
n

gn+1
xn

n!

)

if and only if

Bn+1 =
n∑

k=0

(
n

k

)
gk+1Bn−k

(which is true by Step 2, above). This shows that the two series in Step 3 are equal, up

to a constant term. But the constant term is clearly zero on bott sides. This completes

the proof of Step 3.
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[We used here the nontrivial but familiar fact that the formal derivative of ln y (where

y is a formal power series in x) equals y−1 times the formal derivative of y with respect

to x. While true, the verification of this statement is omitted, to preserve continuity. In

passing we remind the reader that ln(1 + y) =
∑

n(−1)nyn+1/(n + 1).]

Step 4.

Bn =
n∑

k=1

∑
λi≥0∑k

i=1
λi=k∑k

i=1
iλi=n

n!

(1!)λ1 · · · (k!)λk(λ1!) · · · (λk!)
gλ1
1 gλ2

2 · · · gλk
k

(The inner sum is over all partitions of {1, 2, . . . , n} with exactly k classes;

λ1 classes of size 1

λ2 classes of size 2

...

λk classes of size k).

Indeed, exponentiating both sides of Step 3 we obtain

∑
n

Bn
xn

n!
= exp

[∑
n

gn+1
xn+1

(n + 1)!

]
=

∞∏

n=1

exp
(
gn

xn

n!

)

=
∞∏

n=1

( ∞∑

k=0

(gnx
n/n!)k

k!

)
=

∞∏

n=1

( ∞∑

k=0

1

k!

(
gn

n!

)k

xnk

)

=

{
write ank (double index) for

1

k!

(
gn

n!

)k
}

=
∞∏

n=1

( ∞∑

k=0

ankx
nk

)

= (a10 + a11x
1·1 + a12x

1·2 + · · ·)(a20 + a21x
2·1 + a22x

2·2 + · · ·)

·(a30 + a31x
3·1 + a32x

3·2 + · · ·) · · ·

=
∞∑

n=0




∑
∑n

i=1
iλi=n

a1λ1a2λ2 · · · anλn


 xn



32 CHAPTER 2. GENERATING FUNCTIONS

=
∞∑

n=0

∑
λi≥0∑

iλi=n

1

(λ1!) · · · (λn!)

(
g1

1!

)λ1

· · ·
(

gn

n!

)λn

xn

=
∞∑

n=0




n∑

k=1

∑
∑

λi=k∑
iλi=n

1

(1!)λ1 · · · (k!)λk(λ1!) · · · (λk!)
gλ1
1 gλ2

2 · · · gλk
k




xn.

Equating the coefficients of xn on both sides explains Step 4.

[Aside: The polynomial Bn evaluated at g1 = 1, g2 = 1, . . . , gn = 1 becomes the Bell

number Bn (this follows immediately from Step 4).]

Step 5.

hn =
n∑

k=1

fk




∑
λi≥0∑

λi=k∑
iλi=n

1

(1!)λ1 · · · (k!)λk(λ1!) · · · (λk!)
gλ1
1 gλ2

2 · · · gλk
k




(i.e., αnk is the inner sum in Step 5). This is Faa DiBruno’s formula.

To prove this formula denote the inner sum in Step 5 by α∗nk, for convenience. Recall

that αnk has been defined by hn =
∑n

k=1 fkαnk and that the content of Step 4 is (in this

notation)
∑n

k=1 αnk =
∑n

k=1 α∗nk(= Bn). Our aim is to prove that αnk = α∗nk.

We have the following chain of implications:

n∑

k=1

αnk =
n∑

k=1

α∗nk ⇒
n∑

k=1

(αnk − α∗nk) = 0

⇒ αnk − α∗nk = 0 ⇒ αnk = α∗nk.

The first implication is just rewriting. Let us study the second implication: It is

clear that the α∗nk’s are homogeneous polynomials of degree k in the gi’s. We now show

that the αnk’s are also homogeneous of degree k. It is easy to verify this statement for

small values of n and k. Assume it is so for the αnk’s, for all 1 ≤ k ≤ n, and show,
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by induction, that the αn+1,k’s are homogeneous of degree k, 1 ≤ k ≤ n + 1. Recall

that hn =
∑n

k=1 fkαnk. The coefficient of fk in the expression of hn+1, that is, αn+1,k,

is obtained by differentiating fk−1αn,k−1 + fkαnk. That is, Dt(fk−1αn,k−1 + fkαnk) =

fkg1αn,k−1 + fk−1Dtαn,k−1 + fk+1g1αnk + fkDtαnk. We hence have

αn+1,k = g1αn,k−1 + Dtαnk.

The right-hand side in this relation has both terms homogeneous of degree k, the first by

the inductive assumption, the second using the product rule and induction (on k). Hence

the αnk’s are homogeneous polynomials of degree k. The second implication now follows

by equating to zero all the homogeneous components of the sum. The third implication

follows because the monomials of degree k in the gi’s are linearly independent (since

the gi’s themselves are, in general). This completes Step 5 and ends the proof of Faa

DiBruno’s formula.

Bell Polynomials

h1 = f1g1

h2 = f1g2 + f2g
2
1

h3 = f1g3 + f2(3g2g1) + f3g
3
1

h4 = f1g4 + f2(4g3g1 + 3g2
2) + f3(6g2g

2
1) + f4g

4
1

h5 = f1g5 + f2(5g4g1 + 10g3g2) + f3(10g3g
2
1 + 15g2

2g1)

+f4(10g2g
3
1) + f5g

5
1

h6 = f1g6 + f2(6g5g1 + 15g4g2 + 10g2
3)
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+f3(15g4g
2
1 + 60g3g2g1 + 15g3

2)

+f4(20g3g
3
1 + 45g2

2g
2
1) + f5(15g2g

4
1) + f6g

6
1

h7 = f1g7 + f2(7g6g1 + 21g5g2 + 35g4g3)

+f3(21g5g
2
1 + 105g4g2g1 + 70g2

3g1 + 105g3g
2
2)

+f4(35g4g
3
1 + 210g3g2g

2
1 + 105g3

2g1)

+f5(35g3g164 + 105g2
2g

3
1) + f6(21g2g

5
1) + f7g

7
1

h8 = f1g8 + f2(8g7g1 + 28g6g2 + 56g5g3 + 35g2
4)

+f3(28g6g
2
1 + 168g5g2g1 + 280g4g3g1 + 210g4g

2
2 + 280g2

3g2)

+f4(56g5g
3
1 + 420g4g2g

2
1 + 280g2

3g
2
1 + 840g3g

2
2g1 + 105g4

2)

+f5(70g4g
4
1 + 560g3g2g

3
1 + 420g3

2g
2
1)

+f6(56g3g
5
1 + 210g2

2g
4
1) + f7(28g2g

6
1) + f8g

8
1

h9 = f1g9 + f2(9g8g1 + 36g7g2 + 84g6g3 + 126g5g4)

+f3(36g7g
2
1 + 252g6g2g1 + 504g5g3g1 + 378g5g

2
2

+315g2
4g1 + 1260g4g3g2 + 280g3

3)

+f4(84g6g
3
1 + 756g5g2g

2
1 + 1260g4g3g

2
1

+1890g4g
2
2g1 + 2520g2

3g2g1 + 1260g3g
3
2)

+f5(126g5g
4
1 + 1260g4g2g

3
1

+840g2
3g

3
1 + 3780g3g

2
2g

2
1 + 945g4

2g1)

+f6(126g4g
5
1 + 1260g3g2g

4
1 + 1260g3

2g
3
1)

+f7(84g3g
6
1 + 378g2

2g
5
1) + f8(36g2g

7
1) + f9g

9
1
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h10 = f1g10 + f2(10g9g1 + 45g8g2 + 120g7g3 + 210g6g4 + 126g2
5)

+f3(45g8g
2
1 + 360g7g2g1 + 840g6g3g1 + 630g6g

2
2

+1260g5g4g1 + 2520g5g3g2 + 1575g2
4g2 + 2100g4g

2
3)

+f4(120g7g
3
1 + 1260g6g2g

2
1 + 2520g5g3g

2
1

+3780g5g
2
2g1 + 1575g2

4g
2
1 + 12600g4g3g2g1

+3150g4g
3
2 + 2800g3

3g1 + 6300g2
3g

2
2)

+f5(210g6g
4
1 + 2520g5g2g

3
1 + 4200g4g3g

3
1

+9450g4g
2
2g

2
1 + 12600g2

3g2g
2
1 + 12600g3g

3
2g1 + 945g5

2)

+f6(252g5g
5
1 + 3150g4g2g

4
1 + 2100g2

3g
4
1 + 12600g3g

2
2g

3
1 + 4725g4

2g
2
1

+f7(210g4g
6
1 + 2520g3g2g

5
1 + 3150g3

2g
4
1)

+f8(120g3g
7
1 + 630g2

2g
6
1) + f9(45g2g

8
1) + f10g

10
1 .

5 RECURRENCE RELATIONS

The general question that we address here is as follows: From a rule recurrence among

the elements of a sequence (an) determine explicitly that sequence.

Examples are many. If the recurrence is an = an−1 + n with a0 = 1 (n = 1, 2, 3, . . .),

then it easily follows that an = 1 +
(

n+1
2

)
. On the other hand, if a0 = 1, a1 = 1, and the

recurrence relation is an =
∑n−1

k=1 a2
kan−k (n ≥ 2), then it is not so easy to determine an as

a function of n. Indeed, more often than not one will not be able to find an explicitly.

Generating functions provide, nonetheless, a powerful technique that leads to complete

solutions in many situations. Let us illustrate this by a classic example.
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2.10

Mr. Fibonacci just bought a pair of baby rabbits (one of each sex) possessing some

remarkable, and perhaps enviable, properties:

They take a month to mature.

When mature, a pair gives birth each month to precisely one new pair (again

one of each sex), and with the same remarkable properties.

The mating takes place only between the members of a pair born from the

same parents.

They live forever!

(Excepting these particulars, the rabbits do resemble in all other respects their more usual

mortal counterparts.)

How many pairs of rabbits will Fibonacci have at the beginning of the nth month?

The picture below shows the beginning values of the sequence an = the number of

pairs of rabbits at the beginning of the nth month (n ≥ 0). By we indicate the

month to mature, and indicates the month of pregnancy. We see from above that

a0 = 1, a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 8, . . ..
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The sequence (an) satisfies in fact the recurrence relation

an+2 = an+1 + an; n ≥ 0.

(To see this observe that at stage n + 2 we have all the an+1 pairs that we had at stage

n + 1 plus the an children or grandchildren of the pairs we had at stage n, that is,

an+2 = an+1 + an.)

To find an as a function of n only we proceed as follows. Denote by A(x) the generating

function of (an), that is, A(x) =
∑

n anxn. Then

an+2 = an+1 + an

implies

an+2x
n+2 = an+1x

n+2 + anx
n+2

implies

∑
n

an+2x
n+2 =

∑
n

an+1x
n+2 +

∑
n

anxn+2

implies

A(x)− a1x− a0 = x(A(x)− a0) + x2A(x)
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implies

A(x)− x− 1 = xA(x)− x + x2A(x),

which leads to

A(x) =
1

1− x− x2
.

We use this closed form expression of A(x) to find an explicit power series expansion

for A(x). Observe first that 1 − x − x2 = −(a − x)(b − x), where a = 1
2
(−1 − √5) and

b = 1
2
(−1 +

√
5). Now

A(x) =
1

1− x− x2
=

−1

(a− x)(b− x)

= (a− b)−1
(
(a− x)−1 − (b− x)−1

)

= (a− b)−1

(
a−1

(
1− x

a

)−1

− b−1
(
1− x

b

)−1
)

= (a− b)−1

(
a−1

∑
n

(
x

a

)n

− b−1
∑
n

(
x

b

)n
)

=
∑
n

[
(a− b)−1(a−n−1 − b−n−1)

]
xn.

Hence an = (a− b)−1(a−n−1 − b−n−1), or

an =
1√
5




(
2

−1 +
√

5

)n+1

−
(

2

−1−√5

)n+1

 , n ≥ 0.

In general an explicit expression for an in terms of n only (although not always desir-

able) usually gives a more accurate idea of the magnitude of an, a fact that the recurrence

might not immediately convey. We have thus found how many pairs of rabbits Fibonacci

will have at the beginning of the nth month.

Note: If we expand the generating function A(x) = (1−(x+x2))−1 as the power series

1 + (x + x2) + (x + x2)2 + (x + x2)3 + · · · what expression for the Fibonacci numbers do

we obtain?
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2.11

The case of the Fibonacci sequence, which we just described, is part of a more general

class of problems known as linear recurrence relations with constant coefficients.

∗ Let (an) be a sequence satisfying the recurrence relation

c0an + c1an−1 + c2an−2 + · · ·+ ckan−k = 0; (2.3)

c0 = 1; ck 6= 0; n ≥ k

with ci’s constants (not depending on n). Then the generating function of (an) is of the

form

p(x)

q(x)
(2.4)

where q(x) is a polynomial of degree k with a nonzero constant term and p(x) is a poly-

nomial of degree less than k.

Conversely, given polynomials p(x) and q(x) as in (2.4), there exists a sequence (an)

that satisfies a recurrence relation as in (2.3) and whose generating function is p(x)/q(x).

Indeed, suppose (an) satisfies (2.3) and has initial values a0, a1, . . . , ak−1. Proceed

exactly as in the case of the Fibonacci sequence treated in Section 2.10 to obtain A(x),

the generating function of (an). In fact, A(x) = p(x)/q(x), where q(x) =
∑k

i=0 cix
i, and

p(x) =
∑k

j=0(
∑k−j−1

i=0 aix
i).

Conversely, given q(x) = b0 + b1x + · · · + bkx
k with b0 6= 0, bk 6= 0 and p(x) =

d0 + d1x + · · · + dk−1x
k−1, using partial fractions and the expansion 1− y−1 =

∑
n yn we
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can write

p(x)

g(x)
= a0 + a1x + a2x

2 + · · ·+ anx
n + · · · (2.5)

Rewrite (2.5) as follows:

d0 + d1x + · · ·+ dk−1x
k−1 = (b0 + b1x + · · ·+ bkx

k)

·(a0 + a1x + a2x
2 + · · ·).

Identifying coefficients of powers of x on both sides we obtain

b0a0 = d0

b0a1 + b1a0 = d1

... (2.6)

b0ak−1 + b1ak−2 + · · ·+ bk−1a0 = dk−1

and

b0an + b1an−1 + · · ·+ bkan−k = 0, for n ≥ k.

Divide this last relation by b0 and set cj = bj/b0 to obtain the recurrence relation men-

tioned in (2.3). The initial values a0, a1, . . . , ak−1 can be determined from (2.6).

2.12

Merely as an exercise, consider finding all sequences (an) that satisfy the recurrence rela-

tion

an+1 = 3an − 5(n + 1) + 7 · 2n, n ≥ 0.

The way we proceed is typical of how one uses generating functions to solve problems of

this sort.
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Let A(x) =
∑

n anx
n. Then

an+1x
n = 3anxn − 5(n + 1)xn + 7 · 2nxn

∑
n

an+1x
n = 3

∑
n

anxn − 5
∑
n

(n + 1)xn + 7
∑
n

2nxn

x−1(A(x)− a0) = 3A(x)− 5(1− x)−2 + 7(1− 2x)−1

(1− 3x)A(x) = a0 − 5x(1− x)−2 + 7x(1− 2x)−1

A(x) =
a0

1− 3x
− 5x

1

(1− 3x)(1− x)2
+ 7x

1

(1− 3x)(1− 2x)
.

We expand A(x) in a power series again, but first we use partial fraaction decompositions

as follows:

1

(1− 3x)(1− x)2
=

A

1− 3x
+

Bx + C

(1− x)2
,

which upon solving for A, B, and C gives A = 9
4
, B = 3

4
, C = −5

4
. Similarly

1

(1− 3x)(1− 2x)
=

3

1− 3x
− 2

1− 2x
.

We now proceed

A(x) =
a0

1− 3x
− 5x

(
9
4

1− 3x
+

3
4
x− 5

4

(1− x)2

)
+ 7x

(
3

1− 3x
+

2

1− 2x

)

A(x) = a0

∑
n

(3x)n − 45

4
x

∑
n

(3x)n − 15

4
x2

∑
n

(n + 1)xn

+
25

4
x

∑
n

(n + 1)xn + 21x
∑
n

(3x)n − 14x
∑
n

(2x)n.

Looking at the coefficient of xn we immediately obtain

a0, a1 = 3a0 + 2,

and

an+2 =
(
3a0 +

39

4

)
3n+1 − 7 · 2n+2 +

10

4
(n + 1) +

25

4
, n ≥ 0.

This sequence does indeed verify the original recurrence.
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2.13

Let us count the number of permutations σ on the set 1 < 2 < 3 < · · · < n that satisfy

σ(1) > σ(2) < σ(3) > σ(4) < · · ·. (The signs > and < alternate). Denote by an the

number of such permutations.

To begin with, let us look at the initial values of the sequence an:

n: 1 2 3 4

2 1 4 3

3 1 4 2

σ: 1 2 1
2 1 3

3 1 2

3 2 4 1

4 1 3 2

4 2 3 1

an: 1 1 2 5

It is well worth observing that the sequence (an) satisfies the recurrence

an+1 =
∑
k=0

(k even)

(
n

k

)
akan−k (2.7)

where, for convenience, we define a0 = 1.

We explain this for n = 5 and the argument will carry over to any value of n. Take

any permutation σ that satisfies σ(1) > σ(2) < σ(3) > σ(4) < σ(5), say σ = 3 2 5 1 4.

Then n + 1, in this case 6, can be inserted in all the ”even” positions in a to produce

permutations on 6 symbols with the same property, that is,



RECURRENCE RELATIONS 43

3 2 5 1 4

↑ ↑ ↑
Possible places to insert 6.

(An ”even” position is defined by the fact that there is an even number of symbols at the

left of the place where n + 1 is inserted – note that n + 1 may not be inserted in ”odd”

positions.)

For fixed σ the insertion of n + 1 in position k (k even) produces precisely
(

n
k

)
akan−k

new permutations (on n + 1 symbols).

Indeed, for each selection of digits at the left of n + 1 there are akan−k possible permuta-

tions. And there are
(

n
k

)
possible choices for the digits left of n + 1.

Summing up we obtain the recurrence in (2.7).

(The case k = 0 requires, in fact, special attention. Note that 6 3 2 5 1 4 is not of the

form we want. But by changing the digits 1 ↔ n, 2 ↔ n − 1, etc we produce 6 3 4 1 5 2,

which is fine. This being a bijection the recurrence (2.7) remains valid as stated.)

Denote by A(x) =
∑

n anx
n/n! the exponential generating function of (an). With the

substitution bn = an/n! the recurrence relation (2.7) can be written as

(n + 1)bn+1 =
∑
k=0

(k even)

bkbn−k.

This leads to

(n + 1)bn+1x
n = (bkbn−k) xn.
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Summing, we obtain

∑
n

(n + 1)bn+1x
n =

∑
n




∑
k=0

(k even)

bkbn−k


 xn

= (b0 + b2x
2 + b4x

4 + b6x
6 + · · ·)

(∑
n

bnx
n

)

=
1

2
(A(x) + A(−x))A(x).

Since
∑

n(n + 1)bn+1x
n = DA(x) [the formal derivative of A(x)] we obtain

DA(x) =
1

2
(A(x) + A(−x))A(x). (2.8)

This functional equation, along with the knowledge that the constant term is 1, force a

unique solution for A(x). Indeed, (2.8) and the constant term being 1, determine uniquely

the coefficient of x, then that of x2, of x3, and so on.

If we denote 1−(x2/2!)+(x4/4!)−(x6/6!)±· · · by cos x and (x/1!)−(x3/3!)+(x5/5!)−

(x7/7!) ± · · · by sin x, a solution (and therefore the solution) to (2.8) is (sin x/ cos x) +

(1/ cos x). If, by analogy to the notation in trigonometry, we further denote (sin x/ cos x)

by tan x and (1/ cos x) by sec x, the unique solution to (2.8) can be written as

A(x) = tan x + sec x.

We conclude, therefore, that the exponential generating function for sequence of per-

mutations (an) defined at the beginning of this paragraph is A(x) = tan x + sec x.

[While most of us surely can appreciate a wild guess that works, the claim that tan x+

sec x is a solution to (2.8) touches undeniably upon the miraculous. Let us sketch a proof

that A′(x) = 1
2
(A(x) + A(−x))A(x) and A(0) = a0 = 1 imply A(x) = sec x + tan x (here

the prime denotes the derivative).
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Let B(x) = 1
2
(A(x) + A(−x)) and C(x) = 1

2
(A(x)− A(−x)). Note that

B′(x) =
1

2
(A′(x)− A′(−x)) =

1

4
(A(x) + A(−x))(A(x)− A(−x))

= B(x)C(x) (2.9)

C ′(x) =
1

2
(A′(x) + A′(−x)) =

1

4
(A(x) + A(−x))2 = B(x)2

Hence (B(x)2 − C(x)2)′ = 2B(x)B(x)C(x) − 2C(x)B(x)2 = 0. And since B(0) = 1 and

C(0) = 0 we have

B(x)2 − C(x)2 = 1. (2.10)

Next note that and
(

1

B(x)

)′
= −B′(x)

B(x)2
= −C(x)

B(x)
,

and

(
1

B(x)

)′′
= −

(
C(x)

B(x)

)′
= −C ′B − CB′

B2
= {by (2.9)}

= −B3 −BC2

B2
= − 1

B
(B2 − C2) = {by (2.10)}

= − 1

B(x)
.

Now,
(

1

B(x)

)′′
= − 1

B(x)
and − 1

B(0)
= 1 imply − 1

B(x)
= cos x.

Hence B(x) = sec x, and by (2.10) C(x) = ± tan x. By (2.9) C(x) = tan x, necessarily.

This gives

A(x) = B(x) + C(x) = sec x + tan x.]
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EXERCISES

1. Let cn = (n + 1)−1
(

2n
n

)
.

(a) Find the number of increasing lattice paths from (0, 0) to (n, n) that never

cross, but may touch, the main diagonal [i.e., the line joining (0, 0) with

(n, n)].

Answer: 2cn

(b) How many ways can the product x1x2 · · ·xn be parenthesized? (Note: we do

not allow the order of the x’s to change.)

Example: n = 4

((x1x2)(x3x4)), (((x1x2)x3)x4), ((x1(x2x3))x4),

(x1((x2x3)x4)), (x1(x2(x3x4))).

Answer: cn−1

(c) Let Pn be the regular n-gon on n labeled vertices. A diagonal triangulation of

Pn is a triangulation of Pn that involves exactly n−3 nonintersecting diagonals
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of Pn. Find the number of diagonal triangulations of Pn (Euler).

Example:

Answer: cn−2

(d) Given 2n people of different heights, in how many ways can these 2n people be

lined up in two rows of length n each so that everyone in the first row is taller

than the corresponding person in the second row?

Answer: cn

(e) (Application to politics.) In an election candidate A receives a votes and

candidate B receives b votes (a > b). In how many ways can the ballots

be arranged so that when they are counted, one at a time, there are always

(strictly) more votes for A than B?

Answer: ((a− b)/(a + b))
(

a+b
a

)

(If the election ends in a tie with n votes to each, then the number of sequences

in which at no time of the counting is B ahead is 2cn.)

(f) Show: cn =
∑n−1

k=0 ckcn−k−1, c0 = 1.

(g) Show:
∑

n cnxn = (1−√1− 4x)/2x.

The (cn)’s are called Catalan numbers.

cn : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .
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2. Let (an) be a sequence satisfying the recurrence relation

an + an−1 − 16an−2 + 20an−3 = 0, n ≥ 3

with a0 = 0, a1 = 1, a2 = −1. Find an (as a function of n).

3. Let (an) be the Fibonacci sequence (take a0 = 0, a1 = 1, a2 = 1 and an = an−1+an−2,

n ≥ 3). Verify that:

(a) a1 + a2 + · · ·+ an = an+2 − 1.

(b) a1 + a3 + a5 + · · ·+ a2n−1 = a2n.

(c) a2 + a4 + a6 + · · ·+ a2n = a2n+1 − 1.

(d) a3
n + a3

n+1 − a3
n−1 = a3n.

(e)
(

n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+ · · · = an+1.

(f) an+m = aman+1 + am−1an. Show also that amn is a multiple of an.

(g) an is (1/
√

5)((1 +
√

5)/2)n rounded off to the nearest integer.

(h) a1a2 + a2a3 + · · ·+ a2n−1a2n = a2
2n.

4. Place n points on the circumference of a circle and draw all possible chords through

pairs of these points. Assume (at least formally) that no three chords are concur-

rent. Let an be the number of regions formed inside the circle. Find (an) and the

generating function of (an).

5. Define a0 to be 1. For n ≥ 1, let an be the number of n × n symmetric matrices

with entries 0 or 1 and row sums equal to 1 (i.e., symmetric permutation matrices).

Show that an+1 = an + nan−1 and then prove that
∑

n anx
n/n! = exp(x + 1

2
x2).
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6 THE GENERATING FUNCTION OF LABELED

SPANNING TREES

Let us temporarily drift away from generating functions of sequences to present a result

in graph theory: the generating function for the spanning trees of a graph.

2.14

A graph G is a collection of (possibly repeated) subsets of cardinality two (called edges)

of a finite set of points (called vertices). Below is an example of a graph:

In the definition of a graph we also allow the notation {4, 4} for an edge joining the vertex

4 to itself, which we call a loop. All edges, including the multiple ones, are distinguishable

from each other. A path is a collection of edges like this

◦−−◦−−◦−−◦−−◦−−◦

(any length). A cycle is a collection of edges like this:

(any length). We call a graph connected if any two distinct vertices can be joined by a

path. A tree is a set of edges containing no cycles. By a spanning tree of a graph with n
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vertices we understand a set of n − 1 edges containing no cycles. (Graphs that are not

connected have no spanning trees.) A path, cycle, tree, or spanning tree is understood to

contain no loops or multiple edges.

The following two pictures are spanning trees in the graph above:

These two are not:

Two spanning trees are the same if they consist of exactly the same n− 1 edges. (There

are two spanning trees associated with our first picture of a spanning tree above, because

there are two distinguishable edges {1, 2} in G.) Given a graph G we address two issues

(i) How many spanning trees does G have?

(ii) Generate a list of all spanning trees of G.

2.15

To a graph G we associate its information (or Kirchhoff) matrix C = (cij) (both rows and

columns indexed by the vertices of G in the same fixed order) as follows:

−cij = number of edges between vertices i and j, i 6= j



THE GENERATING FUNCTION OF LABELED SPANNING TREES 51

cii = −∑
j

j 6=i

cij.

Suppose G has n vertices labeled 1, 2, . . . , n. The matrix C is then n × n. Denote by 1

the column vector with all its entries 1 (and by 1t its transpose). Properties of the matrix

C:

1. C1 = 0 (i.e., 1 ∈ ker C = kernel of C).

2. If rank C = n− 1, then all cofactors of C are equal and nonzero.

3. C ≥ 0 (i.e., xtCx ≥ 0, for all vectors x).

4. C is of rank n− 1 if and only if G is connected.

Proof. Statement 1 follows from the definition of C. To realize that statement 2 is true

denote by Cij the cofactor of cij. Then

(cij)(Cij)
t = (det C)I

where det C stands for the determinant of C and I is the n × n identity matrix. This

equality holds for any square matrix. In our case det C = 0 since C is singular, by

statement 1. Hence all column vectors of (Cij)
t belong to ker C = 〈1〉 (because the rank

of C is n− 1). Thus for fixed i all Cij’s are equal. Similarly (working with transposes) for

fixed j, all Cij’s are equal and therefore (Cij) is a multiple of J , the matrix with all entries

1. This proves statement 2. For an edge {i, j} in G denote by Cij the Kirchoff matrix

of the graph on n vertices and with {i, j} the only edge (of multiplicity 1). Then Cij is

the n × n matrix




1 −1

−1 1


 with 1’s in ith and jth diagonal positions, -1 in positions
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(i, j) and (j, i), and 0 elsewhere. It is easy to check that xtCijx ≥ 0, for all x. (Note that

Cii = 0, i.e., the Kirchhoff matrix of a loop is zero.) Then

C =
∑
{i,j}

edge of
graph G

Cij and xtCijx =
∑

xtCijx ≥ 0,

which gives statement 3. (The expression of C as a sum of Cij’s is important because it

shows how C gathers ”information.”) We now prove statement 4. If A ≥ 0, B ≥ 0, and

B ≤ A (notation for A − B ≥ 0), then the row span of B is included in the row span of

A [because ker A ⊆ ker B – this is easy to check – and the column (or row) span of B is

included in the column (or row) span of A as orthogonal complements of kernels]; keep

this in mind. Let G be connected. Then a path γ exists between 1 and any other vertex

k. Say the path is (12 · · · k) (without loss). Then the Kirchhoff n× n matrix of the path

is

Cγ =




1 −1

−1 2 −1 0

−1 2 −1

. . .

−1 2 −1

−1 1

0




with the 0 in the bottom right-hand corner of dimension (n − k) × (n − k). Let ei =

(0 · · · 010 · · · 0) with 1 in the ith place. The first row of Cγ is f1 = e1 − e2, the sum of

first two rows gives f2 = e2 − e3, . . . , the sum of first k − 1 rows gives fk−1 = ek−1 − ek.

Then
∑m

i=1 fi = e1 − em, 2 ≤ m ≤ k, are in the row span of Cγ. But for any path γ,
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C = Cγ + Cβ, where β is the set of edges in G but not in γ, that is, Cβ =
∑
{i,j}∈β Cij.

Clearly Cγ ≤ C, and by the above remark e1− ek is also in the row span of C; 2 ≤ k ≤ n.

These n− 1 vectors span a subspace of dimension n− 1. The converse is easy. If G is not

connected, then C can be written as

C =




C1 0

0 C2




where C1 is the Kirchhoff matrix of a connected part (or component) of G. The vectors

(1,0) and (0,1) are both in the kernel of C, showing that C can be of rank n− 2 at the

most [1 in (1, 0) has |C1| entries, and 1 in (0,1) has |C2| entries, or coordinates]. This

proves statement 4.

2.16

Let G be a graph. We label by the indeterminate xij the edge between vertices i and j

(if there are multiple edges between i and j we use x
(1)
ij , x

(2)
ij , . . . , etc.). To each spanning

tree of G we associate a monomial of degree n− 1, the product of all xij’s, where {i, j}’s

are the n− 1 edges of the spanning tree.

Let C(G) be the (vertex versus vertex) matrix with off diagonal (i, j)th entry −xij (if

multiple edges −∑
k x

(k)
ij ), 0 if there is no edge between i and j, and ith diagonal entry

the negative of the sum of the off-diagonal entries in the ith row. (If G has n vertices,

then C(G) is n× n with zero row and column sums.)

We now return to the issues considered at the end of Section 2.14, accomplishing (ii)

and answering (i).
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∗ Let G be a graph with matrix C(G). Delete a row and (not necessarily same) column

of C(G). Denote the resulting matrix by K. Let det K be (the formal expansion of) the

determinant of K. Then the monomials in the expansion of det K (after cancellations)

are all square free and give a complete list of all spanning trees of G. (Each monomial

corresponds uniquely to a spanning tree.) When setting all xij’s equal to 1 in C(G) det K

equals (up to sign) the number of spanning trees of G.

We call det K the generating function of the spanning trees of G.

The proof of this result may best be illustrated by an example that captures all the

relevant features of a general proof:

[Recall that xii = −(sum of the off-diagonal entries in row i).]

The general idea of the proof is as follows: Select an edge of G (say x
(1)
34 ). Par-

tition the spanning trees of G into those that do not contain the edge x
(1)
34 and those

that do. The first class can be identified with the spanning trees of the graph G1 =

{G without edge x
(1)
34 },while the second class consists of spanning trees (augmented with

edges x
(1)
34 ) of the graph G2, obtained from G by shrinking edge x

(1)
34 into a point (thus

making vertices 3 and 4 the same vertex and deleting edge x
(1)
34 ). Both classes defined

above involve listing spanning trees in graphs with one edge less than G (G2 has also one
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vertex less) and hence we can complete the proof by induction on the number of edges of

G.

Obtain K by deleting row 4 and column 4 in C(G). (The fact that det K is independent

of which row or column we delete in C(G) to obtain K can be proved as property 2 of

matrices C discussed in Section 2.15.) We obtain

The matrix C(G1) is obtained from C(G) by setting x
(1)
34 = 0. Add row 4 to row 3 and

column 4 to column 3 in C(G), then delete row and column 4, to obtain C(G2). [Note

that by just looking at G2 it is not clear whether x13 or x14 is an edge. But C(G2) clears

this up: x13 is an edge, x14 is not.]

The first determinant gives the list of trees not containing x
(1)
34 (upon expansion and

cancellation). They are

x12x23x
(2)
34 + x23x

(2)
34 x14 + x

(2)
34 x14x12 + x14x12x23
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+x12x24x
(2)
34 + x23x24x14 + x12x24x23 + x14x24x

(2)
34 (8 in all).

The second determinant gives the spanning trees containing x
(1)
34 :

x12x13x
(1)
34 + x12x23x

(1)
34 + x12x24x

(1)
34

+x13x23x
(1)
34 + x13x24x

(1)
34 (5 in all).

Hence G contains 13 spanning trees. Indeed, when all xij = 1 det K becomes
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 −1

−1 3 −1

−1 −1 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 13.

Application to Optimal Statistical Design

The information (or Kirchhoff) matrix C, introduced in Section 2.15, is an important

representative of a class of matrices known to statisticians as Fisher information matrices

(also known as C-matrices). They capture all the relevant statistical information locked

into the actual planning (or design) of an experiment. Without dwelling on the general

concerns that surround the planning, we wish to point out (in purely mathematical terms)

a specific problem that often arises and that, as yet, has not been brought to a satisfactory

solution:

Among all graphs with n vertices and m edges identify

those with a maximum number of (labeled) spanning trees.

An understanding of the structure of such graphs translates directly into optimum

ways of planning experiments. The resulting design will be called D-optimal by the

statistician.
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It might not be surprising to find that the Kirchhoff tree generating matrix plays an

important part in the solution. For the necessary background in statistics we refer the

reader to Chapter 8.

EXERCISES

1. How many (labeled) spanning trees does the graph displayed below have?

2. Let 0 = µ0(G) ≤ µ1(G) ≤ · · · ≤ µn−1(G) be the eigenvalues of the Kirchhoff matrix

C(G) of a graph G on n vertices. Show that n−1 ∏n−1
i−1 µi(G) = number of labeled

spanning trees of G.

3. A graph is called simple if between any two vertices there is at most one edge and

no loops are allowed. By Kn we denote a simple graph on n vertices with an edge

between any two vertices. We call Kn the complete graph; Kn has
(

n
2

)
edges. How

many labeled spanning trees does Kn have?

4. Partition n1 + n2 + · · · + nm vertices into m classes, the ith class containing ni

vertices. Produce a simple graph K(n1, n2, . . . , nm) by joining each vertex in class

i to all vertices outside class i (and to none within class i); do this for all i. The

resulting graph is called the complete multipartite graph K(n1, n2, . . . , nm). For

example K(2, 3) is
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How many labeled spanning trees does K(n1, n2, . . . , nm) have?

5. Place n2 vertices into an n×n square array and join two vertices if and only if they

are in the same row or same column. Call the resulting graph Sn. Compute the

number of labeled spanning trees of Sn. (S3 is drawn below.)

6. A graph is called regular if each of its vertices has the same degree. The complemen-

tary graph G of a simple graph G is the graph on the same set of vertices as G whose

edges are precisely those that are missing in G. For G a regular and simple graph

relate the eigenvalues of C(G) to those of C(G), and (with the help of Exercise 2)

obtain a relationship between the number of labeled spanning trees in G and G.

7. Show that among all graphs on n vertices and e edges (with e sufficiently large)

those that have a maximal number of labeled spanning trees must have the degrees

of their vertices differ by at most 1 and the number of edges between any two vertices

differ by at most 1. [Hint: look at
∏n−1

i−1 (µi + x) for large values of x.]
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7 PARTITIONS OF AN INTEGER

We touch only briefly here upon a rich and well-developed subject: that of partitioning

an integer.

2.17

The question we raise regards the number of (unordered) ways of writing the number n as

the sum of exactly m positive integers. Let us call this number Pm(n). More rigorously,

|{(α1, α2, . . . , αm) : each αi is a positive

Pm(n) = integer, α1 + α2 + · · ·+ αm = n, and

α1 ≥ α2 ≥ · · · ≥ αm ≥ 1}|.

The αi’s are called the parts of n. Clearly m ≤ n.

The number of ways of writing n as the sum of 1 integer, as the sum of n− 1 integers,

or as the sum of n integers is unique, so that P1(n) = Pn(n) = Pn−1(n) = 1.

We wish to find a pattern, a simple recurrence relation, for Pm(n). Our first result is

the following:

P1(n) + P2(n) + · · ·+ Pk(n) = Pk(k + n), for k ≤ n.

Proof. Let

P = {partitions of n into k or fewer parts}

=

{
(α1, α2, . . . , αm, 0, . . . , 0) ∈ {k − tuples}

m∑

i

αi = n,m ≤ k

}
.

Define a mapping on P as follows:

(α1, α2, . . . , αm, 0, . . . , 0) → (α1 + 1, α2 + 1, . . . , αm + 1, 1, . . . , 1).
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The image is a k-tuple again, and the number of single 1’s is the same as the number of

0’s in its preimage.

Note that the image corresponds, in fact, to a partition of k + n into k parts. This

mapping is injective, and for each partition of k + n into k parts there is a k-tuple in P

that is mapped into it, that is, the mapping is also onto the set of partitions of n+k into k

parts. Hence |P | = |image of P | = Pk(n+k). But also |P | = P1(n)+P2(n)+ · · ·+Pk(n),

from which the recurrence relation follows. This ends the proof.

For small values of m and n we have the following table for Pm(n):

m

n 1 2 3 4 5 6

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 1 1 0 0 0

4 1 2 1 1 0 0

5 1 2 2 1 1 0

6 1 3 4 2 1 1

2.18 Ferrer Diagrams

We can also represent a partition by a Ferrer diagram, which will be very useful in

visualizing many results. Given a partition we represent each part by the appropriate

number of dots in a row and place the rows beneath one another. For example, the Ferrer
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diagram of the partition (6, 4, 3,1) is

• • • • • • 6 dots

• • • • 4 dots

• • • 3 dots

• 1 dot

Given a partition α = (α1, α2, . . . , αm) we define a new partition (α∗1, α
∗
2, . . . , α

∗
k), where

α∗i is the number of parts in α that are greater than or equal to i. The new partition α∗

is called the conjugate of α. For example, if α = (5, 3, 2), then α∗ = (3, 3, 2, 1, 1). The

simplest and most visual way to construct α∗ is by rotating the Ferrer diagram of α about

the diagonal. (It is thus clear that α∗∗ = α.) For example,

• • • • • • • •

α = • • • ←→ • • • = α∗

• • • •

•

•

It is also clear from the way α∗ is obtained on the Ferrer diagram that
∑m

1 αi =
∑k

1 α∗i ,

that is, if α is a partition of n, α∗ is also a partition of n. The bijective correspondence

between partitions of n and conjugate partitions suggests the following result:

∗ The number of partitions of n into k parts is equal to the number of partitions of n into

parts the largest of which is k.

Proof. Let P = {(α1, . . . , αk) : partitions of n into k parts}. The mapping (α1, . . . , αk) →

(α∗1, α
∗
2, . . .) is a bijection, for the conjugate is obtained by a rotation of the Ferrer diagram.
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Also, the largest part of (α∗1, α
∗
2, . . .) does not exceed k.

As an easy consequence we have:

∗ The number of partitions of n with at most k parts equals the number of partitions of n

in which no part exceeds k.

If α = α∗ we call α self-conjugate. Note that α is self-conjugate if and only if its

Ferrer diagram is symmetric with respect to the diagonal. With this definition we have

the following result:

∗ The number of self-conjugate partitions of n is equal to the number of partitions of n

with all parts unequal and odd.

Proof. Take each (odd) part of the initial partition, bend in the middle, and reassemble

as indicated below:

• • • • • • • •

• ↖ • • • •

• • • • −→ • • •

• • ↖ • •

• •

We thus obtain a self-conjugate partition. This operation produces, in fact, a (visual)

bijection from partitions of n with distinct and odd parts to self-conjugate partitions of

n.

Another transformation of a Ferrer diagram is used in establishing the following result.
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∗ The number of partitions of n into unequal parts is equal to the number of partitions of

n into odd parts.

Proof. Consider a partition of n into odd parts. Write it as n = k1α1 +k2α2 + · · ·+kmαm

with ki the multiplicity of αi (where the αi’s are odd).

We produce a new partition as follows: expand each ki in binary base, say ki =

ε02
0 + ε12

1 + · · · + εri
2ri . Group together εs2

s rows of αi (attached to ki), as s ranges

between 0 and ri, and εs = 0 or 1. Form the new partition of n with parts εs2
sαi, as s

and i take values in their respective ranges.

As an example, let α = (7, 7, 7, 7, 5, 3, 3, 3, 1, 1, 1, 1, 1), that is, n = 4·7+1·5+3·3+5·1.

Then

Since the αi’s are odd, 2aαi 6= 2bαj for i 6= j or a 6= b. Hence the above transformation
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sends odd partitions of n to unequal partitions, and it is clear that the new partitions are

of n, because the total number of dots is preserved.

This transformation can be reversed in a unique way, for given β = (β1, β2, . . . , βm)

with βi’s distinct; write each βi as a product of an odd number and a power of 2. This

representation of the βi’s is unique. Therefore, if βi = 2riαi with αi odd, obtain a new

partition α with parts αi of appropriate multiplicities. Clearly α is a partition of n

with odd parts. We have therefore a bijection between unequal partitions of n and odd

partitions of n, proving the above statement.

Our next result can be stated as follows:

∗ Let P (n; d, o) and P (n; d, e) denote, respectively, the number of partitions of n into an

odd/even number of distinct parts. Then

P (n; d, e)− P (n; d, o) =





(−1)m if n = m(3m + 1)/2

0 otherwise.

(This result is known as Euler’s pentagonal theorem.)

Proof. We initially try to establish a bijective correspondence between the distinct parti-

tions of n into even parts and the distinct partitions of n into odd parts.

Given a partition λ = (λ1, λ2, . . . , λr) of n into distinct parts let s(λ) = λr, that is,

s(λ) is the smallest part of λ, and let σ(λ) be the number of consecutive parts of λ from

λ1 down. [More formally, σ(λ) = max{j : λj = λ1 − j + 1}.]
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Examples.

We separate the proof into two cases.

Case 1. s(λ) ≤ σ(λ). Add 1 to each of the first s(λ) parts of λ and delete the smallest

part. Thus (7, 6, 4, 3, 2) → (8, 7, 4, 3).

This transformation is always possible, except when the dots enumerated by s(λ) and

σ(λ) meet [and s(λ) = σ(λ)], for example, if λ = (5, 4, 3).

Then, if the initial partition had an odd number of distinct parts, the above transformation

does not lead to a partition with an even number of parts. In all other cases, however,

the above transformation establishes a bijective map between partitions into distinct, odd
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parts and partitions into distinct, even parts.

Case 2. s(λ) > σ(λ). Subtract 1 from each of the σ(λ) largest parts of λ and add a new

smallest part of size σ(λ). Thus (8, 7, 5, 4, 3) → (7, 6, 5, 4, 3, 2).

This transformation is always possible except when the dots of σ(λ) and s(λ) meet and

s(λ) = σ(λ) + 1, as in λ = (6, 5, 4).

In this case the above transformation will not give a partition into distinct parts but in

all other cases it will transform an odd, distinct partition into an even, distinct,partition.

The two exceptional cases depend on the number n, for:

(a) If s(λ) = σ(λ) and the dots in s(λ) meet with the dots in σ(λ), then

n is divided into σ(λ) parts. By writing m = σ(λ) we conclude that n =

m + (m + 1) + · · ·+ (m + m− 1) = m(3m− 1)/2.

(b) If s(λ) = σ(λ) + 1 and the dots in s(λ) meet with the dots in σ(λ), then

n is divided into σ(λ) parts. Hence, if m = σ(λ), then n = (m + 1) + (m +

2) + · · ·+ (m + 1 + m− 1) = m(3m + 1)/2.

Therefore, if n 6= m(3m ± 1)/2 for some positive integer m, then Case 1 and Case 2



PARTITIONS OF AN INTEGER 67

establish a bijective mapping from partitions of n into an odd number of distinct parts

to partitions of n into an even number of distinct parts. For such integers P (n; d, o) =

P (n; d, e).

We now investigate the exceptional cases (a) and (b) mentioned above. Let n =

m(3m− 1)/2 for some odd m, m ≥ 1. For this n only the exceptional situation described

in Case (a) can occur, and this exceptional situation involves only the one partition

mentioned in Case (a). For this sole partition the bijective transformation fails. The

”extra” partition explains why for m odd, and n = m(3m - 1)/2, we have

P (n; d, o) = P (n; d, e) + 1.

Similar arguments will explain the result for even m and, in Case b, for n = m(3m +

1)/2. This ends our proof.

2.19

A lot of results about partitions can be obtained by means of generating functions. Let

us look at some of these:

1. F (x) = (1−xa)−1(1−xb)−1(1−xc)−1 · · · is the generating function of P (n; {a, b, c, . . .}),

the number of ways of writing n as the sum of integers from the set {a, b, c, . . .} with

repetitions allowed.

Proof. Consider the coefficient of xn in the series expansion of F (x): (1 − xa)−1(1 −

xb)−1(1−xc)−1 · · · = (1+xa +x2a + · · ·+xka + · · ·)(1+xb + · · ·+xkb + · · ·)(1+xc + · · ·) · · ·.

If the term xn is formed from the product of xk1a, xk2b, xk3c, . . . then

n = a + · · ·+ a︸ ︷︷ ︸
k1 times

+ b + · · ·+ b︸ ︷︷ ︸
k2 times

+ c + · · ·+ c︸ ︷︷ ︸
k3 times

+ · · · .
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Hence the term xn arises exactly as often as n can be written as the sum of a’s, b’s, c’s,

. . . . The coefficient of xn is therefore P (n; {a, b, c, . . .}).

Immediate consequences of the above observation are:

1.1. The generating function for P (n), the number of ways of writing n as the sum of

positive integers, is

F (x) = (1− x)−1(1− x2)−1(1− x3)−1 · · · (1− xk)−1 · · · .

1.2. The generating function for P (n; {odd integers}) is

(1− x1)−1(1− x3)−1(1− x5)−1 · · · (1− x2k+1)−1 · · · .

1.3. The generating function for P (n; {1, 2, . . . , k}) is

(1− x)−1(1− x2)−1 · · · (1− xk)−1.

1.4. We have

∑
n

Pm(n)xn = xm(1− x)−1(1− x2)−1 · · · (1− xm)−1.

Proof. We prove 1.4. As we just saw (1− x)−1(1− x2)−1 · · · (1− xm)−1 =

∑
n P (n; {1, 2, . . . , m})xn. Multiplying by xm we obtain xm(1 − x)−1(1 − x2)−1 · · · (1 −

xm)−1 =
∑

m P (n; {1, 2, . . . , m})xn+m =
∑∞

n=m P (n−m; {1, 2, . . . , m})xn =

∑∞
n=m(

∑∞
k=1 Pk(n −m))xn =

∑∞
n=m Pm(n)xn, as claimed. The last two signs of equality

are explained by the first two results proved in this section. This proves 1.4.

Our next result is the following:

2. F (x) = (1 + xa)(1 + xb)(1 + xc) · · · is the generating function of P (n; d, (a, b, c, . . .}),
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the number of ways of writing n as a sum using the distinct numbers a, b, c, . . . at most

once each.

Proof. To form xn we can choose either 1 or xa from the first factor and there is no option

for choosing xa again. The same is true for xb, xc, . . .. Hence n = εaa + εbb + εcc + · · ·,

where εk = 1 or 0. We can see that xn arises as often as n can be written in the above

way; hence the coefficient of xn is P (n; d, {a, b, c, . . .}). This ends our proof.

Immediate consequences are:

2.1. The generating function of P (n; d), the number of ways of writing n as the sum of

distinct integers, is

(1 + x)(1 + x2)(1 + x3) · · · .

2.2. The generating function of P (n; d, {odd integers}) is

(1 + x)(1 + x3)(1 + x5) · · · .

2.3. The generating function of P (n; d, (2k : k = 0, 1, 2, . . .}) is
∏∞

k=0(1 + x2k
).

In Section 2.18 we proved the equality of P (n; d) and P (n; {odd integers}) using Ferrer

diagrams. Relying on generating functions we can prove this as follows:

∑
n

P (n; d)xn = (1 + x)(1 + x2)(1 + x3) · · ·

=
(1− x)(1 + x)(1− x2)(1 + x2)(1− x3)(1 + x3) · · ·

(1− x)(1− x2)(1− x3) · · ·
=

(1− x2)(1− x4)(1− x6)(1− x8) · · ·
(1− x)(1− x2)(1− x3)(1− x4) · · ·

=
1

(1− x)(1− x3)(1− x5) · · ·
=

∑
n

P (n; {odd integers})xn.
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REMARK. We all know that a positive integer has a unique expression in base 2. It is

somewhat amusing to see how this follows from easy work with generating functions.

∑
n

P (n; d, {2k : k = 0, 1, 2, . . .})xn

= (1 + x)(1 + x2)(1 + x4)(1 + x8) · · ·

=

(
1− x2

1− x

) (
1− x4

1− x2

) (
1− x8

1− x4

) (
1− x16

1− x8

)
· · ·

=
1

1− x
=

∑
n

xn.

Hence P (n; d, {2k : k = 0, 1, 2, . . .}) = 1, for all n.

Let us close this section with a series expansion version of Euler’s pentagonal theorem:

m∏

n=1

(1− xn) = 1 +
∞∑

m=1

(−1)m(xm(3m−1)/2 + xm(3m+1)/2).

Proof.

∞∑

m=1

(−1)m(xm(3m−1)/2 + xm(3m+1)/2)

= (−1)mxm(3m±1)/2

=
∞∑

n=1

xn





(−1)m if n = m(3m± 1)/2

0 otherwise

= {by the result in Section 2.18}

=
∞∑

n=1

(P (n; d, e)− P (n; d, o))xn.

We need to show that

1 +
∞∑

n=1

(P (n; d, e)− P (n; d, o))xn =
∞∏

n=1

(1− xn).

Let us look at the coefficient of xn in
∏∞

n=1(1− xn). Since xn can be formed as a product

of (−x)k1(−x2)k2 · · · (−xn)kn , where ki = 0 or 1, we have xn = (−1)k1+···+knxk1+2k2+···+nkn .
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The coefficient of xn is therefore

∑

(k1,...,kn)

(−1)k1+k2+···+kn ,

where each n-tuple corresponds to a partition of n into distinct integers as n = k1 +2k2 +

3k3 + · · ·+ nkn (ki = 0 or 1). Note that k1 + k2 + · · ·+ kn gives us the number of parts of

the partition of n. Hence (−1)k1+···+kn if the partition has an even number of parts and -1

if it has an odd number parts. This observation leads us to conclude that the coefficient

of xn in
∏∞

n=1(1− xn) is

∑

(k1,...,kn)

(−1)k1+···+kn = P (n, d, e)− P (n; d, o).

The constant term is clearly 1 on both sides. We have therefore proved that

∞∏

n=1

(1− xn) = 1 +
∞∑

n=1

(P (n; d, e)− P (n; d, o))xn

= 1 +
∞∑

m=1

(−1)m(xm(3m−1)/2 + xm(3m+1)/2).

Brief Note on Terminology

The word pentagonal has been mentioned more than once in connection with Euler’s

result. Numbers of the form m(3m ± 1)/2 are called pentagonal. These are exceptional

integers for which the number of distinct even partitions does not equal the number of

distinct odd ones. We call them so because each can be written as the sum of a square

and a ”triangular” number, thus producing the geometric effect of a pentagon (or of a

house), as displayed below:
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Indeed, m(3m± 1)/2 = s + t, where s = m2 and t = m(m± 1)/2.

EXERCISES

1. The number of noncongruent triangles with circumference 2n and integer sides is

equal to P3(n). Prove this.

2. A partition of the number n is called perfect if every integer from 1 to (n − 1) can

be written in a unique way as the total of a subset of the parts of this partition.

Prove that the number of perfect partitions of n is the same as the number of ways

of factoring n + 1, where the order of the factors counts and factors of 1 are not

counted. When will the trivial partition n = 1 + 1 + · · ·+ 1 be the only solution?

3. Find a generating function for the number of integer solutions of n = 2x + 3y + 7z

with:

(a) x, y, z ≥ 0.

(b) 0 ≤ z ≤ 2 ≤ y ≤ 8 ≤ x.

4. Find a generating function for the number of ways of making n cents change in
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pennies, nickels, dimes, and quarters.

5. Show with generating functions that every positive integer can be written as a sum

of distinct powers of 10, that is, it has a unique decimal expansion.

6. Prove the identity

1

1− x
= (1 + x + x2 + · · ·+ x9)(1 + x10 + x20 + · · ·+ x90)

·(1 + x100 + x200 + · · ·+ x900) · · · .

7. Show that the number of partitions of the integer 2r + k into exactly r + k parts is

the same for any nonnegative integer k.

8. Show that the number of partitions of n into at most two parts is [n/2] + 1, with

[x] denoting the integral part of x.

9. Prove that the number of partitions of n in which only odd parts may be repeated

equals the number of partitions of n in which no part appears more than three times.

10. Prove that the number of partitions of n with unique smallest part (i.e., the smallest

part occurs only once) and largest part at most twice the smallest part equals the

number of partitions of n in which the largest part is odd and the smallest part is

larger than half the largest part.
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8 A GENERATING FUNCTION FOR SOLUTIONS

OF DIOPHANTINE SYSTEMS IN

NONNEGATIVE INTEGERS

The title, pretty well describes our intentions with regard to the contents of this section.

Consider

n∑

j=1

aijxj = bi; i = 1, 2, . . . , m (2.11)

where aij and bi are nonnegative integers. We investigate the solutions to the Diophantine

system (2.11) in nonnegative integers.

Write

x = (x1, . . . , xn), s = (s1, . . . , sn)

b = (b1, . . . , bm), t = (t1, . . . , tm)

sx =
∏n

j=1 s
xj

j , tb =
∏m

i=1 tbi
i .

The notation x ≥ 0 or b ≥ 0 means that the respective components are nonnegative (and,

in this case, also integral).

Assume that each column of the m×n matrix (aij) has a nonzero entry. The nonneg-

ativity of the entities involved insures then at most a finite number of solutions to system

(2.11).

For x ≥ 0 and b ≥ 0 set

Nx(b) =





1 if x is a solution of (2.11)

0 otherwise

and let N(b) be the number of solutions to (2.11).
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∗ We assert that

∑
x≥0
b≥0

Nx(b)s
xtb =

n∏

j=1

(1− sjt
a1j

1 t
a2j

2 · · · tamj
m )−1

and

∑

b≥0

N(b)tb =
n∏

j=1

(1− t
a1j

1 t
a2j

2 · · · tamj
m )−1.

The proof rests upon routine expansions:

∑
x≥0
b≥0

Nx(b)s
xtb =

∑

x≥0

sx1
1 · · · sxn

n t

∑
j

a1jxj

1 · · · t
∑

j
amjxj

m

=
n∏

j=1




∞∑

xj=0

s
xj

j t
a1jxj

1 · · · tamjxj
m




=
n∏

j=1

∞∑

xj=0

(sjt
a1j

1 · · · tamj
m )xj

=
n∏

j=1

(1− sjt
a1j

1 · · · tamj
m )−1.

The second formula is explained similarly. This explains the assertion.

Further, by writing our first formula as




n∏

j=1

(1− sjt
a1j

1 · · · tamj
m )







∑
x≥0
b≥0

Nx(b)s
xtb


 = 1

and equating the coefficients of sxtb on both sides we obtain recursive formulas for the

Nx(b)’s. The same can be done to the second formula to obtain recurrences for the N(b)’s.

In particular, the reader may wish to investigate in detail the Diophantine system

x0 + x1 + x2 + · · ·+ xn = b1

x1 + 2x2 + · · ·+ nxn = b2





.

It leads to the so-called Gaussian polynomials which we discuss in Section 6 of Chapter 3

– see, in particular, Exercise 5 of that section.
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9 HISTORICAL NOTE

What we have seen in this chapter is by and large classical material on generating func-

tions. Much of the first two sections introduce the (formal) power series and explain the

combinatorial meaning of multiplication by convolution. Of the results in Section 3 those

regarding Stirling numbers rely fundamentally on Stirling’s formulas, introduced in Sec-

tions 1.7(c) and 1.8(c) of Chapter l. The Lah numbers, and their analogous behavior to

those of Stirling, were only relatively recently noticed by Ivo Lah [8] of the University of

Belgrade, Yugoslavia. Though less fundamental in nature than the numbers of Stirling,

we meet them again in connection with inversion formulas.

Faa DiBruno observed the pattern of the higher order derivative of a composition of

two functions in terms of (what we now call) Bell polynomials; this result can be found

in [1]. We only briefly discussed recurrence relations and only those aspects that call for

immediate use of generating functions. The contents of Section 2.13 are based upon a

paper of D. André of 1879 [6].

Enumerating labeled spanning trees of a graph, as we did, was (implicitly) noted by

Kirchhoff in his classic paper [5] on electrical networks of which the famous Kirchhoff

laws of current form the main topic. That the Kirchhoff matrix coincides with the Fisher

information matrix in the setting of statistical designs (with blocking in one direction – see

[7]) is an unexpected connection with possibly interesting ramifications. We discuss these

shared aspects in Chapter 8, the chapter on statistical design. The contents of Section

8 are of recent origin and appear only as part of a more substantial work on Fuchsian

groups [9] by R. S. Kulkarni.
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The pentagonal theorem (hereinafter written as theorem P ) dates back almost to the

very beginnings of the work with generating functions [4]. It had preoccupied Euler a

good deal over the span of at least a decade. In 1740, while expanding
∏

n(1− xn), Euler

observed the pattern of -1’s and 1’s that arises in connection with the pentagonal numbers.

The reader may be entertained by how Euler relates this:

Theorem P is of such a nature that we can be assured of its truth without

giving it a perfect demonstration. Nevertheless, I will present evidence for it of

such a character that it might be regarded as almost equivalent to a rigorous

demonstration.

We are then informed that he has compared coefficients of up to the 40th power of x and

that they all follow the proposed pattern.

I have long searched in vain for a rigorous demonstration of theorem P , and

I have proposed the same question to some of my friends with whose ability

in these matters I am familiar but all have agreed with me on the truth of

theorem P without being able to unearth any clue of a demonstration. Thus it

will be a known truth, but not yet demonstrated . . . . And since I must admit

that I am not in a position to give it a rigorous demonstration, I will justify

it by a sufficiently large number of examples . . . . I think these examples are

sufficient to discourage anyone from imagining that it is by pure chance that

my rule is in agreement with the truth . . . . If one still doubts that the law

is precisely that one which I have indicated, I will give some examples with

larger numbers.



78 CHAPTER 2. GENERATING FUNCTIONS

Here he tells how he took the trouble to examine the coefficients of x101 and x301 and how

they came out to be just what he had expected.

These examples which I have just developed undoubtedly will dispel any

qualms which we might have had about the truth of theorem P .

Euler did succeed in proving the pentagonal theorem in 1750. The passages above were

extracted from Pòlya’s work mentioned also as reference [4].

Of the texts available that treat similar material we recommend [1], [2], and [3].
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