
Chapter 7

Block Designs

One simile that solitary shines

In the dry desert of a thousand lines.

Epilogue to the Satires, ALEXANDER POPE

The collection of all subsets of cardinality k of a set with v elements (k < v) has the

property that any subset of t elements, with 0 ≤ t ≤ k, is contained in precisely
(

v−t
k−t

)

subsets of size k. The subsets of size k provide therefore a nice covering for the subsets

of a lesser cardinality. Observe that the number of subsets of size k that contain a subset

of size t depends only on v, k, and t and not on the specific subset of size t in question.

This is the essential defining feature of the structures that we wish to study.

The example we just described inspires general interest in producing similar coverings

without using all the
(

v
k

)
subsets of size k but rather as small a number of them as possi-
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ble. The coverings that result are often elegant geometrical configurations, of which the

projective and affine planes are examples. These latter configurations form nice coverings

only for the subsets of cardinality 2, that is, any two elements are in the same number of

these special subsets of size k which we call blocks (or, in certain instances, lines).

A collection of subsets of cardinality k, called blocks, with the property that every

subset of size t (t ≤ k) is contained in the same number (say λ) of blocks is called a

t-design. We supply the reader with constructions for t-designs with t as high as 5. Only

recently a nontrivial 6-design has been found and no nontrivial 7-design is known. We then

study in more depth the necessary numerical conditions for the existence of a symmetric

2-design contained in a result of Bruck, Ryser, and Chowla. A more recent result, due to

Cameron, on extending symmetric 2-designs is included as well.

Special kinds of 2-designs, called Steiner triple systems, were studied in the nineteenth

century by Woolhouse, Kirkman, and Steiner. Apart from their implicit connections to

multiple transitive groups, 2-designs (known to statisticians as balanced incomplete block

designs) arise explicitly from the statistical theories of Sir R. A. Fisher, most notably

his analysis of variance. The rich combinatorial content of the theory of experimental

design and the analysis of variance, initiated by Fisher and Yates, was further pursued by

Bose and many of his students. Much of the material included in this chapter originated

in their work. One such instance is the extension of Fisher’s inequality from 2-designs

to t-designs (t ≥ 2). We devote a full section to this extension. The latter part of the

chapter provides an introduction to association schemes, the Bose-Mesner algebra, and

partial designs. Familiarity with finite fields, GF (q), and finite-dimensional vector spaces

over such fields is assumed in this chapter. The reader not exposed to these subjects is
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referred to Appendix 2 and the references given there.

1 THE BASIC STRUCTURE OF t-DESIGNS

7.1

Let P = {1, 2, ..., v} be a set of v elements that we call points. A subset of P with k

elements is called a k-subset. We assume 0 ≤ t ≤ k < v.

Definition. A t − (v, k, λt) design is a pair (P, B), where B is a collection of k-subsets

of P (called blocks) with the property that each t-subset of P occurs in exactly λt blocks.

(With less stringent emphasis we call such a pair a t-design.)

By
∑

s(P ) we denote the collection of all s−subsets of P ; |∑s(P )| =
(

v
s

)
. For notational

ease, however, we simply write σs to convey the fact that σs is a s-subset.

As we pointed out in the introduction, (P,
∑

k(P )) is a t− (v, k,
(

v−t
k−t

)
) design, for all

0 ≤ t ≤ k; this design is called the complete design. Our interest is in studying t-designs

that are not complete, that is, t-designs in which not every k-subset is a block. Though

by no means abundant, such structures do exist. Several small examples are given at the

end of this section. Well-known families of t-designs (2 ≤ t ≤ 5) are described in greater

detail in Section 2.

The result we now prove gives insight into the combinatorial structure of a t-design.

Proposition 7.1. Let (P,B) be a t− (v, k, λt) design.

(a) (P, B) is also an i− (v, k, λi) design, with λi =
(

v−i
t−i

)(
k−i
t−i

)−1
λt, for all 0 ≤ i ≤ t.

(Note that λ0 = |B|.)
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(b) For σi and τj such that 0 ≤ i+ j ≤ t, the number of blocks α such that σi ⊆ α and

τj ∩α = ∅ is
(

v−i−j
k−i

)(
v−t
k−t

)−1
λt. (We denote this number by λj

i and observe that it depends

on i and j only and not on the specific choice of the subsets σi and τj.)

(c) If v ≥ k + t, then

(P, {P − α : α ∈ B})

is a t− (v, v − k,
(

v−t
k

)(
v−t
k−t

)−1
λt design [called the complementary design of (P, B)].

(d) Let a ∈ P . Then

(P − {a}, {α− {a} : α ∈ B such that a ∈ α})

is a (t − 1) − (v − 1, k − 1, λt) design [called the derived design of (P,B) at a] and

(P − {a}, {α : α ∈ B and a 6∈ α}) is a (t− 1)− (v − 1, k,
(

v−t
k−t+1

)(
v−t
k−t

)−1
λt design [called

the residual design of (P,B) at the point a].

Proof. (a) Count in two ways the set of ordered pairs

{(σt − σi, α) : α ⊇ σt ⊇ σi, α ∈ B}.

Fix α first and obtain
(

k−i
t−i

)
λt for an answer (with λi denoting the number of blocks

containing σi). Fix σt − σi first and obtain
(

v−i
t−i

)
λt for an answer. This gives λi =

(
v−i
t−i

)(
k−i
t−i

)−1
λt, an expression that is independent of the specific subset σi. (The reader



THE BASIC STRUCTURE OF t-DESIGNS 5

should observe that, in fact,
⋂

σi⊆α α = σi for 0 ≤ i < t – or else λi ≤ λi+1, leading to a

contradiction.)

(b) Let X = {α ∈ B : σi ⊆ α}; |X| = λi. Let also {Am : m ∈ τj} be a collection of

subsets of X defined as follows:

Am = {α ∈ B : σi ⊆ α and {m} ⊆ α ∩ τj}.

There are j such Am’s. Note that

| ⋂
m∈σr

Am| = |{α ∈ B : σi ⊆ α and σr ⊆ α ∩ τj| = λi+r (σr ⊆ τj).

We want the number of blocks in X that are in none of the Am’s. By the principle of

inclusion-exclusion (see Section 9.12) this number is

λj
i = | ⋂

m∈σr

Ām| =
j∑

r=0

(−1)r
∑
σr

(σr⊆τj)

| ⋂
m∈σr

Am|

=
j∑

i=0

(−1)r
∑
σr

λi+r =
j∑

i=0

(−1)r

(
j

r

)
λi+r.

By (a) above λs =
(

v−s
t−s

)(
k−s
t−s

)−1
λt. Hence λj

i = cλt with

c =
j∑

i=0

(−1)r

(
j

r

)(
v − i− j

t− i− r

)(
k − i− r

t− i− r

)−1

.

Note that the constant c depends only on the parameters v, k, t, i, j and not on the

particular design. Taking the design (P,
∑

k(P )) we find in this case by direct computation

λt =
(

v−t
k−t

)
and λj

i =
(

v−i−j
k−i

)
. We thus obtain the simpler expression c =

(
v−i−j
k−i

)(
v−t
k−t

)−1
.

Thus λj
i =

(
v−i−j
k−i

)(
v−t
k−t

)−1
λt.

(c) The number of blocks in (P, {P − α : α ∈ B} containing a subset of t elements is

λt
0 in (P, B), which is well defined by part (b). In fact

λt
0 =

(
v − t

k

)(
v − t

k − t

)−1

λt,



6 CHAPTER 7. BLOCK DESIGNS

which proves (c).

(d) To calculate how many blocks in the derived design contain a subset of t−1 points,

let σt−1 ∈ ∑
t−1(P −{a}). Look at σt = σt−1∪{a}. The subset σt is in λt blocks of (P,B),

all of which contain a. Therefore σt−1 is in λt blocks of the derived design, as claimed.

In the case of the residual design, t− 1 points from P − {a} are in precisely

λ1
t−1 =

(
v−(t−1)−1

k−t+1

)(
v−t
k−t

)−1
λt =

(
v−t

k−t+1

)(
v−t
k−t

)−1
λt.

This proves (d) and concludes the proof of our proposition.

7.2

As an example, consider

1 2 3 4 5 6 7 3 4 5 6 7 1 2

2 3 4 5 6 7 1 5 6 7 1 2 3 4

4 5 6 7 1 2 3 6 7 1 2 3 4 5

8 8 8 8 8 8 8 7 1 2 3 4 5 6

(7.1)

with P = {1, 2, 3, 4, 5, 6, 7, 8} and blocks B the columns of (7.1). Then one can directly

check that (P, B) is a 3− (8, 4, 1) design. The checking can be facilitated by interpreting

the blocks of (7.1) as the six faces, the six diagonal planes, plus the two ”skewed” blocks

2 3 5 8 and 4 6 7 1 of the cube below:
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Assertions (a) through (d) made in Proposition 7.1 can also be verified with enough ease

by examining the figure above. The design (P, B) turns out to be self-complementary. Its

derived design, at a = 8, is perhaps better known in its more graphical form

(7.2)

The residual design at a = 8 consists of the last seven blocks of (7.1). This residual

design turns out to be, in this case, the complementary design of the derived design of

(P,B) at a = 8. Hadamard matrices provide us with perhaps the largest supply of 3-

designs. The design we just examined is the smallest example of an infinite family of

3-designs that can be obtained from Hadamard matrices. A description of the general

method of construction is given in the next section.
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Another 3-design, not of the Hadamard kind, is listed below:

1 1 1 1 2 2 2 3 3 4 4 5 1 1 1

2 3 5 6 3 6 7 4 7 5 8 6 2 2 2

4 8 9 7 5 9 8 6 9 7 9 8 3 5 6

T T T T T T T T T T T T 9 7 8

1 1 1 1 1 2 2 2 2 2 3 3 3 4 5

3 3 4 4 7 3 3 4 4 5 4 5 6 6 6

4 5 5 6 8 4 6 5 7 8 5 7 8 7 7

7 6 8 9 9 8 7 6 9 9 9 8 9 8 9

(7.3)

The symbol T abbreviates 10. We invite the reader to examine this design and possibly

attach geometrical interpretations to it.

2 CONSTRUCTIONS OF t-DESIGNS

In the next few pages we describe several methods of constructing t-designs with 2 ≤ t ≤ 5.

Outlines of proofs, along with some references, are given in the latter part of the section.

Large families of 2- and 3-designs can be constructed through Hadamard matrices. A

n×n matrix H with entries 1 and -1 is called a Hadamard matrix if H ′H = nI (= HH ′).

Here H ′ denotes the transpose of the matrix H. Observe that multiplying rows and

columns of a Hadamard matrix by -1 leads again to a Hadamard matrix.

A Hadamard matrix may exist only if n is a multiple of 4 or if n is 2 or 1. It is not

known whether a Hadamard matrix exists for every multiple of 4 but it appears that they

do exist in abundance. We quickly mention some known families of Hadamard matrices.
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For A = (aij) a n× n matrix and B a m×m matrix we denote by A⊗B the matrix

(aijB) and call it the tensor product of A with B; A ⊗ B is nm × nm. The matrix


1 1

−1 1


 is a 2 × 2 Hadamard matrix. It can easily be verified that if H and G are

Hadamard matrices, then so is H ⊗ G. By repeatedly tensoring a Hadamard matrix of

order 2 with itself we conclude that Hadamard matrices of order 2n exist for all n ≥ 0.

It is known that a Hadamard matrix of order q + 1 exists, where q is a prime power and

q ≡ 3 (modulo 4). There also exists a Hadamard matrix of order 2(q + 1) for q a prime

power congruent to 1 modulo 4. In fact it is known that if there exists a Hadamard matrix

of order h (h > 1), then there exists a Hadamard matrix of order h(q + 1), where q is an

odd prime power.

7.3 The Hadamard 2-Designs

Let H be a Hadamard matrix of order n (n ≥ 8).

Make 1’s in the first row and column of H, by multiplying suitable rows and columns

of H by -1. Delete the first row and column. In the remaining (n−1)×(n−1) matrix each

row generates a block: it consists of the indices of the columns in which the 1’s occur.

The resulting structure is a 2− (n− 1, n
2
− 1, n

4
− 1) design.

This construction is reversible. In other words, by starting out with any 2 − (n− 1, n
2
−

1, n
4
− 1) design we can produce a Hadamard matrix of order n by reversing the steps

above.
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7.4 The Paley Designs

A special case of the above construction are the Paley designs (these are 2-designs).

Consider GF (q), the field with q elements, where q ≡ 3 (modulo 4); q is a power of a

prime. The points are the elements of GF (q). The blocks are {Q+a : a ∈ GF (q)}, where

Q is the set of nonzero squares in GF (q). [An element x ∈ GF (q) is said to be a square

in GF (q) if x = y2, for some y ∈ GF (q).]

As an example, let q = 11. Then Q = {1, 3, 4, 5, 9} and the resulting 2-design is

1 2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 1 2

4 5 6 7 8 9 10 11 1 2 3

5 6 7 8 9 10 11 1 2 3 4

9 10 11 1 2 3 4 5 6 7 8.

(7.4)

7.5 The Hadamard 3-Designs

Let H be a Hadamard matrix of order n (n ≥ 8).

Make 1’s in the first row by multiplying suitable columns by -1. The points are the

(indices of) columns of H. Blocks are given as follows: each row (other than the first)

gives two blocks; the columns in which 1 appears is one, and the (remaining) columns in

which -1 appears is the other.

The resulting design is a 3 − (n, n
2
, n

4
− 1) design. This construction is reversible as

well. The design in (7.1) is the smallest example in this family.
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Another way of constructing 2-designs is through projective and affine geometries.

A projective geometry over GF (q) is the collection of subspaces of a vector space of

finite dimension over GF (q). The points of the geometry are the subspaces of dimension

1. A (projective) subspace is identified with the set of points it contains. Points have

(projective) dimension 0 and, in general, a (projective) subspace is assigned dimension

1 less than the vector space dimension of the subspace it comes from. Subspaces of

projective dimension 1 are called lines, those of projective dimension 2 are called planes.

An affine geometry of dimension n is the collection of cosets of subspaces of a vector

space of dimension n over GF (q). The geometric dimension here equals the usual vector

space dimension of the underlying subspace. Points are just vectors (or cosets of the

0 subspace). An (affine) subspace is identified with the points it contains. The affine

subspaces of dimension 1 are called lines and those of dimension 2 are called planes.

Projective and affine geometries contain 2- and 3-designs. Sections 7.6 and 7.7 give

the details of these constructions along with a couple of illustrative examples.

7.6 The Projective Geometries

In a projective geometry of (projective) dimension n over GF (q) the subspaces of a given

projective dimension m (2 ≤ m ≤ n− 1) form a

2−
(

qn+1 − 1

q − 1
,
qm+1 − 1

q − 1
,
[

n− 1

m− 1

]
(q)

)

design, where n
k
(x) denotes the Gaussian polynomial.

When m = n− 1 we obtain a symmetric

2−
(

qn+1 − 1

q − 1
,
qn − 1

q − 1
,
qn−1 − 1

q − 1

)
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design. [A 2-design (P,B) is said to be symmetric if the number of blocks equals the

number of points, i.e., if λ0 = |B| = |P | = v.] We denote this symmetric design by

PG(n, q). Note that PG(n, 2) is a Hadamard 2-design for all n ≥ 2.

Example. Let us construct PG(2, 2). We start with a vector space V of dimension 3

over GF (2). The space V contains eight vectors: 000, 100, 010, 001, 110, 101, 011, 111.

There are (23 − 1)/(2 − 1) = 7 subspaces of dimension 2 in V ; each is a solution to one

of the following equations: x = 0, y = 0, z = 0, x + y = 0, x + z = 0, y + z = 0, and

x + y + z = 0 (where x, y, and z denote the three coordinate axes). The subspaces are

(with 000 omitted):





0 1 0

0 0 1

0 1 1





,





1 0 0

0 0 1

1 0 1





,





1 0 0

0 1 0

1 1 0





,





1 1 0

0 0 1

1 1 1





,





1 0 1

0 1 0

1 1 1





,





0 1 1

1 0 0

1 1 1





, and





1 1 0

0 1 1

1 0 1





,

This gives rise to the following projective picture:
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in which the reader will recognize the design displayed in (7.2).

7.7 The Affine Geometries

In an affine geometry of (afflne) dimension n over GF (q) the subspaces of a given affine

dimension m (2 ≤ m ≤ n− 1) form a 2− (qn, qm,
[

n−1
m−1

]
(q)) design, where

[
n
k

]
(x) denotes

the Gaussian polynomial.

When m = n− 1 we obtain a 2− (qn, qn−1, (qn−1− 1)/(q− 1)) design. [We denote this

design by AG(n, q). An affine plane is AG(2, q).]

In an affine geometry of (affine) dimension n over GF (2) the subspaces of a given

affine dimension m (2 ≤ m ≤ n − 1) form a 3 − (2n, 2m,
[

n−2
m−2

]
(2)) design, with

[
n
k

]
(x)

being the Gaussian polynomial. AG(n, 2) is a Hadamard 3-design. Design (7.1) is such

an example, that is, it is AG(3, 2).

Example. Let us construct AG(2, 3), the affine plane over GF (3). We have nine vectors:

AG(2, 3) consists of four subspaces of dimension 1 (each coming with 2 cosets):
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x = 0 y = 0 x + 2y = 0 x + y = 0

00 10 20 00 01 02 00 10 01 00 10 02

01 11 21 10 11 12 11 21 12 12 22 11

02 12 22 20 21 22 22 02 20 21 01 20.

With an immediately obvious relabeling of points (1 through 9) we can write AG(2, 3) as

follows:

1 4 7 1 2 3 1 4 2 1 4 3

2 5 8 4 5 6 5 8 6 6 9 5

3 6 9 7 8 9 9 3 7 8 2 7.

(7.5)

AG(2, 3) is indeed a 2− (9, 3, 1) design with the columns of (7.5) as blocks.

7.8 The Multiply Transitive Groups

The t-transitive groups provide yet another way of constructing t-designs, 2 ≤ t ≤ 5.

A permutation group G acting on a set P is called t-transitive if for any two ordered

t-tuples with distinct entries (x1, . . . , xt) and (y1, . . . , yt) there exists g ∈ G such that

g(x1) = y1, . . . , g(xt) = yt; xi, yi ∈ P , 1 ≤ i ≤ t.

Let G act t-transitively on P and let α ∈ ∑
k(P ), with k > t. Define B = {g(α) : g ∈

G}. [We understand by g(α) the k-subset {g(x) : x ∈ α}.] Then (P,B) is a t− (v, k, λt)

design. Since
(

v
t

)(
k
t

)−1
λt = λ0 = |G|/|Gα| we obtain λt =

(
k
t

)(
v
t

)−1|G||Gα|−1; here Gα

denotes the (set) stabilizer of α, that is, Gα = {g ∈ G : g(α) = α}. Sometimes the

designs generated through this process actually turn out to be complete designs.

As nontrivial examples, the Mathieu groups M12 and M24 act 5-transitively on 12 and

24 points, respectively. They are known to generate the Mathieu designs 5 − (12, 6, 1)
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and 5 − (24, 8, 1) in the manner described above. We outline a construction and list the

Mathieu 5− (12, 6, 1) design in its entirety in Section 7.9. There exist many 2-transitive

groups. Through the process just described they can be used to generate 2-designs.

7.9 Construction through Linear Codes

We illustrate now a method of construction of t-designs through the use of linear codes.

Identify a vector space of dimension n over GF (q) with (GF (q))n, that is, n-tuples with

entries from GF (q). A subspace C of dimension m in (GF (q))n is called a (n,m) linear

code; |C| = qm. Let x ∈ C; the set of nonzero coordinates of x is called its support; the

number of nonzero coordinates of x is called the weight of x and is denoted by w(x).

Let us agree to write the vectors of (GF (q))n as row vectors. A generating matrix

G(C) for the (n,m) linear code C is a m× n matrix whose rows form a basis for C [over

GF (q)].

Designs can sometimes be obtained by the following process: The distinct supports of

the vectors of minimal (nonzero) weight of certain (quite select) linear codes over GF (q)

form the blocks of a t-design (2 ≤ t ≤ 5).

Example. Let C be the linear code of (GF (2))8 with generating matrix

G(C) =




1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1




.

Apart from the 0 vector and (11111111) all of the 14 remaining vectors in C have minimal
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(nonzero) weight 4. They are:

0 1 0 0 1 1 0 1 2 5 6 8

0 0 1 0 1 0 1 1 3 5 7 8

0 0 0 1 0 1 1 1 4 6 7 8

0 1 1 0 0 1 1 0 2 3 6 7

0 1 0 1 1 0 1 0 2 4 5 7

0 0 1 1 1 1 0 0 3 4 5 6

0 1 1 1 0 0 0 1 2 3 4 8

←→

1 0 1 1 0 0 1 0 1 3 4 7

1 1 0 1 0 1 0 0 1 2 4 6

1 1 1 0 1 0 0 0 1 2 3 5

1 0 0 1 1 0 0 1 1 4 5 8

1 0 1 0 0 1 0 1 1 3 6 8

1 1 0 0 0 0 1 1 1 2 7 8

1 0 0 0 1 1 1 0 1 5 6 7

The supports of these vectors give a 3 − (8, 4, 1) design; this is the same as design (7.1)

in Section 1. [The permutation




1 2 3 4 5 6 7 8

1 5 3 2 4 7 6 8




carries in fact the blocks of this design into those of (7.1).]

Another Example. Consider the (distinguished) (12,6) linear code C over GF (3), whose
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elements we write as -1, 0, 1, with generating matrix:

G(C) =




1 0 0 0 0 0 1 1 1 1 1 0

0 1 0 0 0 0 0 1 −1 −1 −1 −1

0 0 1 0 0 0 −1 0 1 −1 −1 −1

0 0 0 1 0 0 −1 −1 0 1 −1 −1

0 0 0 0 1 0 −1 −1 −1 0 1 −1

0 0 0 0 0 1 1 −1 −1 −1 0 −1




.

The code C is called the Golay ternary code. The minimal (nonzero) weight in C is 6

[it takes a bit of puzzling over G(C) to actually see this]. A computer search finds 264

vectors of weight 6 in C. Since a vector and its negative have the same support, there

will be at most 132 distinct supports for the 264 vectors of weight 6. As it turns out there

are precisely 132 distinct supports. These 132 supports are the blocks of a 5 − (12, 6, 1)

design, called the Mathieu 5-design on 12 points. The design is listed on page 270, with

rows as blocks.

7.10 The Method of Differences

Let G be an Abelian group with addition as group operation. For a subset α of size k

of G consider the list of k(k − 1) (ordered) differences of its elements. Call a collection

of k-subsets α1, α2, . . . , αm a set of generating blocks if among the mk(k − 1) differences

coming from these k-subsets each nonzero element of G occurs λ times.

If α1, . . . , αm is a set of generating blocks, then the collection of k-subsets {αi + a :

a ∈ G}, 1 ≤ i ≤ m, is a 2 − (v, k, λ) design, with the elements of G as points. (Here

v = |G|, λ1 = mk, and λ0 = mv.)
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To illustrate this method of construction we take G to be the Abelian (cyclic) group

with 13 elements. The difficulty always rests in selecting a set of generating blocks

(especially since sometimes they do not exist). In this case take α1 = {1, 3, 9} and

α2 = {2, 6, 5}. The list of differences is:

from α1 : 1− 3 = 11, 1− 9 = 5, 3− 9 = 7, 9− 3 = 6, 9− 1 = 8, 3− 1 = 2

from α2 : 2− 6 = 9, 2− 5 = 10, 6− 5 = 1, 5− 6 = 12, 5− 2 = 3, 6− 2 = 4.

We conclude that λ equals 1 in this case. By expanding the two blocks we obtain the

2− (13, 3, 1) design listed below:

1 2 3 4 5 6 7 8 9 10 11 12 13

3 4 5 6 7 8 9 10 11 12 13 1 2

9 10 11 12 13 1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 9 10 11 12 13 1

6 7 8 9 10 11 12 13 1 2 3 4 5

5 6 7 8 9 10 11 12 13 1 2 3 4

7.11 Construction through Hypergraphs

A hypergraph H is simply a collection of subsets (called edges) of a set. We also assume

that every element of the set is on at least one edge. An automorphism group G of H is a

group of permutations on the elements of the set that preserves the edges of H. Nontrivial

designs with t as high as 5 (and possibly 6) have been obtained as follows:

Take the edges of H as the points of the design. Then G has a natural action on the

subsets of k edges. Unions of certain (carefully selected) orbits under this action form a
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t-design (2 ≤ t < k).

As a small example, let H be the set of (ordinary) edges of the complete graph on five

vertices. Our prospective design will thus have
(

5
2

)
= 10 points.

1 2 4 10 11 12 1 4 6 8 10 12 1 3 4 9 10 11

1 3 8 10 11 12 1 4 7 9 10 12 1 3 5 6 8 10

1 5 9 10 11 12 1 5 6 8 9 12 1 3 5 7 10 11

1 6 7 10 11 12 1 5 7 8 10 12 1 3 5 8 9 11

2 3 5 10 11 12 2 3 4 5 7 12 1 3 6 7 9 11

2 6 9 10 11 12 2 3 4 9 10 12 1 3 7 8 9 10

2 7 8 10 11 12 2 3 5 6 9 12 1 4 5 6 10 11

3 4 6 10 11 12 2 3 6 8 10 12 1 4 5 7 9 11

3 7 9 10 11 12 2 3 7 8 9 12 1 4 5 8 9 10

4 5 7 10 11 12 2 4 5 8 10 12 1 4 6 7 8 9

4 8 9 10 11 12 2 4 6 7 10 12 1 4 7 8 10 11

5 6 8 10 11 12 2 4 6 8 9 12 1 5 6 7 8 11

1 2 3 9 11 12 2 5 6 7 8 12 1 5 6 7 9 10

1 2 5 7 11 12 2 5 7 9 10 12 1 6 8 9 10 11

1 2 6 8 11 12 3 4 5 6 8 12 2 3 4 5 6 10

1 3 4 7 11 12 3 4 6 7 9 12 2 3 4 5 8 9

1 3 5 6 11 12 3 4 7 8 10 12 2 3 4 6 7 8

1 4 5 8 11 12 3 5 6 7 10 12 2 3 4 6 9 11

1 4 6 9 11 12 3 5 8 9 10 12 2 3 4 7 10 11
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1 7 8 9 11 12 4 5 6 9 10 12 2 3 5 6 8 11

2 3 4 8 11 12 4 5 7 8 9 12 2 3 5 7 8 10

2 3 6 7 11 12 6 7 8 9 10 12 2 3 5 7 9 11

2 4 5 6 11 12 1 2 3 4 5 11 2 3 6 7 9 10

2 4 7 9 11 12 1 2 3 4 7 9 2 3 8 9 10 11

2 5 8 9 11 12 1 2 3 4 8 10 2 4 5 6 7 9

3 4 5 9 11 12 1 2 3 5 6 7 2 4 5 7 8 11

3 5 7 8 11 12 1 2 3 5 9 10 2 4 5 9 10 11

3 6 8 9 11 12 1 2 3 6 8 9 2 4 6 8 10 11

4 6 7 8 11 12 1 2 3 6 10 11 2 4 7 8 9 10

5 6 7 9 11 12 1 2 3 7 8 11 2 5 6 7 10 11

1 2 3 4 6 12 1 2 4 5 6 8 2 5 6 8 9 10

1 2 3 5 8 12 1 2 4 5 7 10 2 6 7 8 9 11

1 2 3 7 10 12 1 2 4 6 7 11 3 4 5 6 7 11

1 2 4 5 9 12 1 2 4 6 9 10 3 4 5 7 9 10

1 2 4 7 8 12 1 2 4 8 9 11 3 4 5 8 10 11

1 2 5 6 10 12 1 2 5 6 9 11 3 4 6 8 9 10

1 2 6 7 9 12 1 2 5 7 8 0 3 4 7 8 9 11

1 2 8 9 10 12 1 2 5 8 10 11 3 5 6 7 8 9

1 3 4 5 10 12 1 2 6 7 8 10 3 5 6 9 10 11

1 3 4 8 9 12 1 2 7 9 10 11 3 6 7 8 10 11

1 3 5 7 9 12 1 3 4 5 6 9 4 5 6 7 8 10

1 3 6 7 8 12 1 3 4 5 7 8 4 5 6 8 9 11

1 3 6 9 10 12 1 3 4 6 7 10 4 6 7 9 10 11

1 4 5 6 7 12 1 3 4 6 8 11 5 7 8 9 10 11
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Take the block size to be 4. The automorphism group in question will be S5, the symmetric

group on the five vertices. The three orbits with orbit representatives {12, 14, 23, 34},

{12, 13, 14, 15}, and {12, 13, 23, 45} form a 3 − (10, 4, 1) design. By drawing out the

subgraphs corresponding to these three orbit representatives one can easily check that

any three edges of the complete graph on five vertices is contained in exactly one image

of one of our initial three subgraphs. The 5-transitivity of S5 is what simplifies things

significantly in this particular example.

The list of construction procedures that we gave is by no means exhaustive. Generating

projective planes through complete sets of latin squares is but one example of well-known

constructions that we do not include. Of special interest would be constructions that

lead to nontrivial t-designs with high values of t. For t ≥ 7 no such constructions are yet

known.

A Justification That the Methods of Construction Described so Far Indeed

Generate the t-Designs We Claimed They Do: Hadamard Matrices

In the introductory pages to this section we discussed Hadamard matrices and their

existence in particular. A necessary condition for a Hadamard matrix H of order n to

exist (with n ≥ 4) is that n actually be a multiple of 4. Indeed, multiplying suitable

rows of H by -1 makes the first column of H consist of all 1’s. Look now at the first

three columns only. Denote by x the number of rows of the form (1, 1, 1), by y those of

the form (1, 1,−1), by z and w those of the form (1,−1, 1) and (1,−1,−1), respectively.

(Then x+y + z +w = n.) Writing in terms of x, y, z, w the fact that any pair of the three

distinct columns are orthogonal, we obtain a system of linear equations with solution
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x = y = z = w (= n/4). Since x is obviously integral we conclude that 4 divides n,

necessarily.

Hadamard matrices are well researched, existence being a central problem. Many

constructions are known, of which we mentioned several. We refer the reader to the

expository article [17] and the references contained therein for the detailed proofs.

The Hadamard 2-Designs (Section 7.3)

Let the first row and column of H consist of 1’s only. Fix the first column and two

additional (distinct) columns; the two additional columns correspond to two distinct

points in our prospective design. Then the number of blocks containing these two points

equals the number of vectors of the form (1, 1, 1) across the three columns, minus one. The

”minus one” is the vector (1, 1, 1) from the first row of H which has in effect been deleted.

From our previous discussion, in which we showed that the dimension of a Hadamard

matrix must be a multiple of 4, we know that there are precisely n/4 vectors of the form

(1, 1, 1). Hence two (arbitrary) points are always in precisely n
4
− 1 blocks. We thus have

a 2-design with λ2 = n
4
− 1.

The Paley Designs (Section 7.4)

Let Q be the set of nonzero squares in GF (q), with q equal to 3 modulo 4. The first

thing to observe is that -1 is not a square in such a field. [If it were we could write

−1 = w2 or 1 = w4. Since the nonzero elements of GF (q) form a group with respect to

multiplication, the order of w must divide the order of the group, that is, 4 must divide

q − 1. This contradicts the fact that q equals 3 modulo 4.] The second observation is

that d (6= 0) is a square if and only if −d is not a square. One can see this by recalling
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that the multiplication structure of GF (q) is in fact a cyclic group. If ξ generates this

group, then the even powers of ξ are the (nonzero) squares in GF (q); there are 1
2
(q − 1)

of these. The remaining half are not squares. It is also clear that not both d and −d can

be squares because then -1 would also be a square, as their quotient. This tells us that

the set of nonsquares of GF (q) is precisely {−d : d a nonzero square in GF (q)}.

The points of our design are the q elements of the field GF (q) and the blocks are the

subsets {Q + a : a ∈ GF (q)}. To check that we do indeed have a 2-design we have to

show that every two (distinct) elements of GF (q) are in the same number of blocks. Let

x and y be two such elements. Then

|{α : {x, y} ∈ α, α block}|

= |{a ∈ GF (q) : {x, y} ∈ Q + a}|

= |{a ∈ GF (q) : x− a ∈ Q and y − a ∈ Q}|

= |{a ∈ GF (q) : x− a = α2 and y − a = β2, with α, β 6= 0}|

= |{(α2, β2) : α2 − β2 = x− y, α and β 6= 0}|.

Now if x− y is a square, say γ2, then (dividing out by γ2) one can see that α2 − β2 = γ2

has the same number of solutions as the equation s2 − u2 = 1. If x − y is not a square,

then we pointed out that −(x − y) must be a square, say δ2 , and α2 − β2 = −δ2 has

again precisely as many solutions as u2 − s2 = 1 (or s2 − u2 = 1) does. This constant

number of solutions is therefore independent of x and y and it equals the number of blocks

containing two points. We have thus proved that the sets {Q + a : a ∈ GF (q)} form a

2-design. The reader might wish to compute its parameters as functions of q only. [Hint:

Find k = |Q| first, then λ1.]
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The Hadamard 3-Designs (Section 7.5)

Assume, without loss, that the first row of the Hadamard matrix has all its entries equal

to 1. With each row (other than the first) we associate two blocks. Observe that we do

not affect these two blocks if we multiply the row by -1.

Select now three columns of H; this corresponds to selecting three distinct points. The

number of blocks containing these three points equals the number of vectors of the form

(1, 1, 1) or (−1,−1,−1) across the three columns (excepting the first row). Multiply now

by -1 all the rows in which (−1,−1,−1) occurs across the three columns. The number of

blocks containing the three points equals now the number of rows having (1, 1, 1) across the

three columns, minus one. We subtract one because the first row does not generate blocks.

We know (see the proof for Hadamard 2-designs) that there are precisely n/4 vectors of

the type (1, 1, 1) throughout H in the three columns. Three points are therefore contained

in n
4
− 1 blocks.

The Projective Geometries (Section 7.6)

In a vector space V of dimension n+1 over GF (q) fix two (distinct) subspaces of dimension

1. The two subspaces of dimension 1 necessarily generate a subspace W of dimension 2.

The number of subspaces of dimension m + 1 (with 2 ≤ m ≤ n) containing W equals

the number of subspaces of dimension m − 1 in the quotient space V/W . The number

of such subspaces equals
[

n−1
m−1

]
(q), where

[
n
k

]
(x) denotes the Gaussian polynomial (see

Section 6 in Chapter 3). Since the number of subspaces of dimension m+1 containing two

distinct subspaces of dimension 1 is independent of the choice of the two one-dimensional

subspaces [as it always equals
[

n−1
m−1

]
(q)], we conclude that the structure so defined is a
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2-design.

The projective geometries do not generate 3-designs in the same manner. For if we

choose three (projective) points they may generate a subspace of (vector space) dimension

2 or 3. In the former case they will be in
[

n−1
m−1

]
(q) subspaces of (vector space) dimension

m + 1, while in the latter case they will be in
[

n−2
m−2

]
(q) such subspaces.

We leave to the reader the task of computing the remaining parameters of these 2-

designs. After doing so it is easy to check that when m = n − 1 we obtain a symmetric

design.

The Affine Geometries (Section 7.7)

The affine geometry consists of parallel classes of cosets. When selecting two distinct

points this allows us to choose one as the origin, without loss of generality. It is now clear

that the number of (affine) subspaces of dimension m containing the origin and the other

point (call it x) equals the number of (vector space) subspaces of dimension m containing

the one-dimensional subspace generated by x. There are
[

n−1
m−1

]
(q) such m-dimensional

subspaces, where n is the dimension of the whole vector space [over GF (q)]. This number

is independent of the original choice of the two points. We thus have a 2-design. The

other parameters are even easier to establish and we omit these details.

In a vector space over GF (2) the situation is even nicer (due mostly to the lack of

room!). Select three distinct points among which one is the origin (without loss). Then

necessarily the other two must be linearly independent (as vectors) and hence must span a

subspace of (vector space) dimension 2. The number of affine subspaces of affine dimension

m containing the three points equals the number of (vector space) subspaces of dimension
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m that contain them. There are
[

n−2
m−2

]
(2) of these. We thus have a 3-design.

The Multiply Transitive Groups (Section 7.8)

The Mathieu groups M12 and M24 mentioned in Section 7.8 are 5-transitive groups on 12

and 24 letters, respectively. We refer the reader to [13, pp. 637 and 648] for proofs of

5-transitivity. A general treatment of permutation groups can be found in [14].

Constructions through Linear Codes (Section 7.9)

A result of Assmus and Mattson (see [13, p. 177]) gives sufficient conditions for construct-

ing t-designs from codes. Families of 5-designs have been generated by this method.

The 5-design of Mathieu (on 12 points) that we have listed in its entirety has been

generated by the author on a CDC 6600 computer. We list the design as a successive

three point extension of the affine plane AG(2, 3), that is, of the 2 − (9, 3, 1) design, see

(7.5). The reader will observe that the one point extension is the design listed in (7.3),

which is a 3− (10, 4, 1) design.

The Method of Differences (Section 7.10)

Let x and y be two distinct elements of G. For a fixed i we refer to {αi + a : a ∈ G} as

the cycle generated by the block αi. Suppose x and y are in a block β. The block β is

in some cycle, say the cycle generated by αi. Then β = αi + a, for some a in G, and in

particular x = c+a and y = d+a, with c and d elements of αi. The mapping β → (c, d) is

a bijection between the blocks containing x and y and the ordered pairs in the generating

blocks whose differences equal x − y. There are, by construction, λ such pairs for any

nonzero element of G. There are hence λ blocks containing two distinct elements of G.

We thus have a 2-design.
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Construction through Hypergraphs (Section 7.11)

We mention here the general approach of constructing t-designs through hypergraphs

which the reader can find in [16]. Let Ok
j denote the jth orbit in the action of the group

G on the k-subsets of edges of H, and let Ot
i denote the ith orbit of G on the t-subsets

of edges of H (2 ≤ t < k). For a t-subset σt in Ot
i denote by aij the number of k-subsets

of Ok
j in which σt is contained. The number aij is well defined in the sense that it only

depends on Ot
i and Ok

j and not on the specific choice of σt in Ot
i . (This is clearly so

because of the transitive action of G within an orbit.) Form the matrix A(t, k) = (aij)

with the rows indexed by the orbits of the t-subsets of edges. The following statement is

now self-evident:

If there exists a vector x with entries 0 and 1 such that A(t, k)x = λtx then there

exists a t− (v, k, λt) design. (Hence v is the total number of edges of the hypergraph H.)

It is generally complicated to even determine the dimensions of the matrix A(t, k).

This involves the counting of orbits under the action of a group. A substantial theory

has been developed in Chapter 6 to handle just this problem. Computing the entries

of A(t, k) is no less complicated a task. Much of the work undertaken in this direction

involves significant computer interaction.

3 FISHER’S INEQUALITY

7.12

Fisher proved the inequality that bears his name for 2-designs. This inequality informs us

that in a 2− (v, k, λ2) design we must necessarily have at least as many blocks as points,

that is, λ0 ≥ v.
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The original proof, which Fisher gave, goes as follows: Denote by J the matrix with

all its entries 1 and by I the identity matrix. Let N = (nij) be the v×λ0 incidence matrix

of points versus blocks; that is, nij = 1 if point i belongs to block j and 0 otherwise. Then

NN ′ is a v×v matrix with all its diagonal entries equal to λ1 and all its off diagonal entries

equal to λ2. Write therefore NN ′ = (λ1−λ2)I +λ2J . The matrix NN ′−(λ1−λ2)I = λ2J

has rank 1 and its nonzero eigenvalue is λ2v (the value of the rows sums of λ2J). This

tells us that NN ′ has eigenvalues (λ1 − λ2) + vλ2 = λ1 + (v − 1)λ2 of multiplicity 1, and

λ1 − λ2 of multiplicity v − 1. All these eigenvalues are strictly positive [since λ1 − λ2 = 0

implies (v − 1)(k − 1)−1λ2 = λ2, or k = v, which we do not allow]. Hence the matrix

NN ′ is nonsingular. The rank of N must therefore be v and thus N must have at least

v columns, that is, λ0 ≥ v. This ends the proof of Fisher’s inequality for 2-designs.

A 2-design in which the number of blocks actually equals the number of points is

called symmetric. Examples are the Hadamard 2 − (n − 1, n
2
− 1, n

4
− 1) designs and

the PG(n, q)’s of which the projective planes are special cases. Symmetry has strong

geometric implications concerning the intersections of blocks. Our next result shows

what these implications are.

Proposition 7.2. In a 2− (v, k, λ2) design the following conditions are equivalent:

(i) λ0 = v.

(ii) λ1 = k.

(iii) Any two distinct blocks intersect in λ2 points.

Proof. Observe that λ0 = v(v − 1)k−1(k − 1)−1λ2 = vk−1λ1. From this it directly follows

that (i) and (ii) imply each other. Let N denote the incidence matrix between points and
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blocks. We know that N has rank v (from the proof of Fisher’s inequality, which we just

gave).

Assume condition (i). This implies that N is a v × v (nonsingular) matrix. The

matrix N satisfies NJ = JN [this simply being condition (ii), which (i) implies]. Since N

commutes with J and since NN ′ = (λ1− λ2)I + λ2J , we conclude that N commutes also

with NN ′. Then N ′N = N−1(NN ′)N = N−1N(NN ′) = NN ′ = (λ1 − λ2)I + λ2J . The

matrix N ′N has as (i, j)th entry the cardinality of the intersection of the blocks i and j.

The fact that N ′N = (λ1 − λ2)I + λ2J tells us that any two distinct blocks intersect in

λ2 points; this is statement (iii). We thus showed that (i) implies (iii).

To see that (iii) implies (i) think of the blocks as ”points” and of the points as ”blocks”

with a ”point” belonging to a ”block” if the block contains the respective point. Statement

(iii) tells us that any two ”points” are in λ2 ”blocks.” Our ”points” and ”blocks” form

therefore a 2− (λ0, λ1, λ2) design. Fisher’s inequality written for this design gives v ≥ λ0.

In our original 2 − (v, k, λ2) design we have λ0 ≥ v. Hence λ0 = v and we conclude the

proof of our proposition.

The reader should observe the nice duality between points and blocks that exists in a

symmetric design. Results about points could be dualized into results concerning blocks

and conversely.

7.13

The several extensions of Fisher’s inequality to t-designs are described in the remaining

pages of Section 3. We follow the vector space approach given in [3], although shorter

proofs involving matrices exist. To start with we prove Fisher’s inequality for t-designs
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with even t:

∗ Let (PB) be a t− (v, k, λt) design with t = 2s (and v ≥ k + s). Then λ0 ≥
(

v
s

)
.

Proof. Let V be a vector space (over the real numbers) with basis indexed by
∑

s(P );

dim V =
(

v
s

)
. Consider the subspace

V (B) =

〈
α̂ =

∑

σs⊆α

σs : α ∈ B

〉

spanned by the λ0 vectors α̂, α ∈ B. (In writing
∑

σs⊆α σs we identify σs in the sum with

the basis vector whose index is σs.)

We claim that V (B) = V . [If we show this, then the number of vectors in the span of

V (B) is at least equal to the number of vectors in the basis of V , that is, |V (B)| = λ0 ≥
(

v
s

)
, as is to be shown.]

Let τs ∈ ∑
s(P ) be fixed. Denote

ei =
∑

|σs∩τs|=s−i

σs;

(note that e0 = τs) and

fi =
∑

|α∩τs|=s−i

α̂,

for i = 0, 1, . . . , s. (Clearly fi ∈ V (B), 0 ≤ i ≤ s.) We can express fr as a linear

combination of the ei’s. (The figure below captures the details.) For σs ∈ ∑
s(P ) with

|σs ∩ τs| = s − i the coefficient of σs in fr is: the number of blocks α such that σs ⊆ α

and |α ∩ τs| = s− r.
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(To see this fix r points in τs; there are then λr
i +(s−i)+(i−r) = λr

s−r+i blocks α as above

that omit these specific r points.) The required coefficient is therefore
(

s−(s−i)
r

)
λr

s−r+i.

Hence

fr =
s∑

i=r

(
i

r

)
λr

s−r+iei, 0 ≤ r ≤ s.

The associated matrix is
((

i
r

)
λr

s−r+i

)
0≤r≤s,r≤i≤s

(the rows being indexed by r). This is an

upper triangular matrix; its diagonal elements, λi
s, are in fact nonzero since

λi
s = 0 if and only if

(
v − s− i

k − s

)(
v − t

k − t

)−1

λt = 0

if and only if k + s > v

(but our hypothesis assumes v ≥ k +s). Hence the matrix
((

i
r

)
λr

s−r+i

)
is nonsingular and

we may solve for e0 = τs as a linear combination of the fr’s. This shows that τs ∈ V (B)

and hence V ⊆ V (B), which establishes the claim and concludes the proof.

Occasionally Fisher’s inequality allows us to conclude the nonexistence of certain t-

designs. Consider, for example, whether or not a 6 − (120m, 60m, (20m − 1)(15m −

1)(12m− 1)) design exists. The numbers

λi =

(
120m−i

6−i

)
(

60m−i
6−i

) (20m− 1)(15m− 1)(12m− 1)

are indeed all integers, 0 ≤ i ≤ 6. However, Fisher’s inequality requires λ0 ≥
(

120m
3

)
. But
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in this case

λ0 =

(
120m

6

)
(

60m
6

) (20m− 1)(15m− 1)(12m− 1)

= 2(120m− 1)(40m− 1)(24m− 1),

which is strictly less than
(

120m
3

)
. A 6-design with these parameters, therefore, cannot

exist.

7.14

We next give a version of Fisher’s inequality for t-designs with odd t.

∗ Let (P, B) be a t−(v, k, λt) design with t = 2s+1 (and v−1 ≥ k+1). Then λ0 ≥ 2
(

v−1
s

)
.

Proof. Let a ∈ P . Form the derived and residual designs on P − {a}; both of these are

2s-designs on v − 1 points. Applying Fisher’s inequality (for even t) to each one of these

leads to λ0 ≥
(

v−1
s

)
+

(
v−1

s

)
.

The lower bound on λ0 can be sharpened with additional assumptions on the design:

∗ Let (P,B) be a t − (v, k, λt) design with t = 2s (and v ≥ k + s). Assume that there

exists a partition of the blocks B = B1∪B2∪· · ·∪Br such that (P,Bi) is a s− (v, k, λs(i))

design, 1 ≤ i ≤ r. Then λ0 ≥
(

v
s

)
+ r − 1.

Proof. With the same notation as in the proof of Fisher’s inequality we recall that

V = V (B) = 〈α̂ : α ∈ B〉, where α̂ =
∑

σs∈α

σs.

From our assumption we have

∑

α∈Bi

α̂ =
∑

α∈Bi

∑
σs∈α

σs =
∑

all

∑
α

σs⊆α

σs = λs(i)
∑

all

σs (7.6)
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[We understand
∑

all to mean the sum of all σs with σs ∈ ∑
s(P ).] Choose now (and fix)

αi ∈ Bi, i = 1, 2, . . . , r. Expression (7.6) can be written as

α̂i = λs(i)
∑

all

σs −
∑

α∈Bi
α6=αi

α̂.

Hence

V = V (B) = 〈α̂ : α ∈ B〉

=

〈∑

all

σs and α̂ : with α ∈ B − {α1, . . . , αr}
〉

.

V is therefore spanned by λ0 − r + 1 vectors; thus λ0 − r + 1 ≥
(

v
s

)
= dimension of V , as

desired. This ends the proof.

A design whose blocks can be partitioned as above is often called resolvable. An

example is design (7.5) from Section 7.7. Verify the inequality we just proved for this

example.

7.15

We next investigate when equality is achieved in Fisher’s inequality.

A nonnegative integer µ is called an intersection number for the t-design (P,B) if there

exist two distinct blocks α and β (∈ B) such that |α ∩ β| = µ.

∗ Let (P, B) be a t − (v, k, λt) design, with t = 2s (and v ≥ k + s). Suppose (P,B)

has precisely s distinct intersection numbers: µs < µs−1 < · · · < µ1 (< k = µ0). Then

λ0 =
(

v
s

)
.

Proof. Let W be a vector space (over the real numbers) with basis indexed by α, α ∈ B;
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dim W = λ0. For σs ∈ ∑
s(P ) define

σ∗s =
∑
α

α⊇σs

α.

Consider the subspace

W (S) = 〈σ∗s : σs ∈
∑
s

(P )〉.

We prove that W (S) = W . [Observe that all σ∗s ’s are distinct and there are
(

v
s

)
of them.

If W (S) = W , then the span of W (S) contains at least as many vectors as a basis of

W ; hence λ0 ≥
(

v
s

)
– we already know that λ0 ≥

(
v
s

)
by Fisher’s inequality. Therefore

λ0 ≥
(

v
s

)
.]

Fix α ∈ B. We prove that α ∈ W (S). Set

hi =
∑

β∈B
|β∩α|=µi

β, 0 ≤ i ≤ s.

For consistency of notation we denote the block size k by µ0. (Observe that h0 = α.) Let

also

gr =
∑

σs∈
∑

s
(P )

|σs∩α|=r

σ∗s , 0 ≤ r ≤ s.

The gr’s are of course in W (S). We claim that

gr =
s∑

i=0

(
µi

r

)(
k − µi

s− r

)
hi.

To see this fix β ∈ B, |β ∩ α| = µi. We then want to count the number of σs such that

σs ⊆ β and |σs ∩ α| = r. There are
(

µi

r

)(
k−µi

s−r

)
such choices as displayed below:
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Form the matrix
((

µi

r

)(
k − µi

s− r

))

0≤r≤s.
0≤i≤s

If we show that this matrix is nonsingular, then we can solve for h0 = α as a linear

combination of gr’s and hence prove that α ∈ W (S); thus W ⊆ W (S) and we are done.

To prove nonsingularity denote by vr the rth row of our matrix, that is, vr =
((

µ0

r

)

(
k−µ0

s−r

)
, . . . ,

(
µs

r

)(
k−µs

s−r

))
. Assume

∑s
r=0 crvr = 0 and consider the polynomial

f(x) =
s∑

r=0

cr

(
x

r

)(
k − x

k − r

)

[by
(

x
r

)
we mean [x]r/r! = x(x − 1) · · · (x − r + 1)/r!]. The polynomial f(x) has degree

at most s. But x = µ0, µ1, . . . , µs are all roots of f(x) (s + 1 of them!). Hence f(x) ≡ 0

for all x. Suitable choices of x give cr = 0, for 0 ≤ r ≤ s. The rows vr of our matrix are

therefore linearly independent; this establishes the nonsingularity and ends our proof.

7.16

We conclude Section 3 with a result that summarizes most of the previous ones. The

reader should compare it with Proposition 7.2.

Fisher’s Inequality. Let (P,B) be a t − (v, k, λt) design with t = 2s (and v ≥ k + s).

Then
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(i) λ0 ≥
(

v
s

)
.

(ii) The number of distinct intersection numbers for (P,B) is greater than or equal to

s.

(iii) λ0 =
(

v
s

)
if and only if the number of distinct intersection numbers for (P,B)

equals s.

Proof. Statement (i) is Fisher’s inequality in its initial form. To prove (ii) suppose there

are u distinct intersection numbers with u < s. (P, B) is a 2s-design, hence also a 2u-

design. The immediately previous result now gives λ0 =
(

v
u

)
; but Fisher’s inequality

assures λ0 ≥
(

v
s

)
>

(
v
u

)
, a contradiction [because s ≤ v−k and s < k implies 0 ≤ s < v/2;

in this range u < s implies
(

v
u

)
<

(
v
s

)
].

To establish (iii) it remains to be shown that if λ0 =
(

v
s

)
then there are at most

s (distinct) intersection numbers for (P, B). As in the first proof of Fisher’s inequality

(Section 7.13) we let V be the vector space over the real numbers freely spanned by

σs, with σs ∈ ∑
s(P ); dimension of V =

(
v
s

)
. Let also V (B) = 〈α̂ : α ∈ B〉 with

α̂ =
∑

σs⊆α σs. We know that V (B) = V (see Section 7.13). Since we assume λ0 =
(

v
s

)

the vectors {α̂ : α ∈ B} must be in fact a basis for V .

Fix α ∈ B. Then put µβ = |β ∩ α| for B 3 β 6= α. We show that µβ is the root of a

polynomial f(x) (independent of α) of degree ≤ s. To prove this let

mi =
∑

|σs∩α|=i

σs, 0 ≤ i ≤ s

and let

nr =
∑

β∈B

(
µβ

r

)
β̂, 0 ≤ r ≤ s.
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We first show that nr =
∑s

i=0 ci
rmi, 0 ≤ r ≤ s where ci

r =
∑i

j=0

(
i
j

)(
k−i
r−j

)
λs+r−j (indepen-

dent of α). Take σs, |σs ∩α| = i. The coefficient of σs in the sum nr is
∑

β,σs⊆β

(
µβ

r

)
, that

is, it equals the number of ordered pairs (β, σr) such that σs ⊆ β and σr ⊆ α ∩ β. (We

may, however, think that this number depends on α.) Let us compute it another way: for

any σr ⊆ α with |σr ∩ σs| = j, the number of blocks β such that (β, σr) satisfy σs ⊆ β

and σr ⊆ α ∩ β is λs+r−j. Thus the coefficient of σs in nr is
∑i

j=0

(
i
j

)(
k−i
r−j

)
λs+r−j, which

we denote by ci
r. It is now clear that ci

r is independent of α. Hence nr =
∑s

i=0 ci
rmi, as

claimed.

The s + 1 vectors nr − cs
rms, 0 ≤ r ≤ s, are contained in the span 〈m0, . . . ,ms−1〉;

this span is of dimension at most s. Therefore the s + 1 vectors mentioned above must

be linearly dependent. Let a0, a1, . . . , as be constants, not all zero, such that

s∑

r=0

ar(nr − cs
rms) = 0.

Or

s∑

r=0

ar


∑

β∈B

(
µβ

r

)
β̂ − cs

rα̂


 = 0

(observe that ms =
∑
|σs∩α|=s σs =

∑
σs⊆α σs = α). Since {β̂ : β ∈ B) is a basis for V ,

for β 6= α the coefficient
∑s

r=0 ar

(
µβ

r

)
of β̂ above must be 0. That is, for any β 6= α the

intersection number µβ is a root of the polynomial

f(x) =
s∑

r=0

ar

(
x

r

)

of degree at most s [recall again that
(

x
r

)
= [x]r/r!]. The coefficients cs

r are [and hence

f(x) is] independent of the block α; all intersection numbers are therefore roots of f(x)

(of which there are at most s). This ends the proof.
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EXERCISES

1. Let P be the set of 16 small squares displayed below. To each small square attach

the subset of the remaining 6 squares in the same row or column with it (see the

figure below):

Show that the 16 subsets of size 6 thus obtained are the blocks of a symmetric

2-design.

2. Construct a Hadamard matrix of order 8 and one of order 12.

3. Suppose H is a Hadamard matrix having constant row and column sums. By taking

as the ith block the index of the columns in the ith row of H in which the + 1’s occur

we obtain a symmetric 2-design. Prove this and find the parameters of the design.

(Concerning the construction of such designs observe that the 4 × 4 Hadamard

matrix 2I − J has constant row and column sums; this property is preserved under

taking tensor products.)
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4. Can a 2 − (16, 10, 3) design exist? [Hint: Compute the determinant of NN ′ where

N is the incidence matrix of points versus blocks.]

5. In a 2 − (v, k, λ2) design the number of blocks not disjoint from a given block α is

at least

k(λ1 − 1)2((k − 1)(λ2 − 1) + λ1 − 1)−1.

Equality holds if and only if any block not disjoint from α intersects α in a constant

number of points. Prove this.

6. List the 21 blocks of the projective plane PG(2, 4).

7. Three distinct points on the surface of an ordinary sphere determine a unique circle.

Can you think of discrete analogs of this? [Hint: The sphere can be conveniently

visualized as the field of complex numbers with a point at infinity. Given any two

triples of distinct points there exists a map of the form (az + b)(cz + d)−1, with

ad − bc 6= 0, which sends one triple into the other. This allows a geometrical

interpretation of the 3-design in (7.3).]

8. Show that a 2− (7, 3, 1) design must necessarily be PG(2, 2).

9. Show that a 3− (8, 4, 1) design must necessarily be AG(3, 2).

4 EXTENDING SYMMETRIC DESIGNS

7.17

Much of the material in the following three sections concerns symmetric 2-designs. Ex-

tending such structures means, roughly speaking, finding a larger t-design (with t ≥ 3)
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that contains the initial symmetric design. The motivating examples for such a study may

well have been the symmetric Hadamard 2-designs that are contained in the Hadamard

3-designs, as the derived designs at a point – see again examples (7.1) and (7.2). The

formal definitions and terminology are given below.

Let (P,B) be a t − (v, k, λt) design. For an element a not in P let P = P ∪ {α}. A

(t + 1)-design (P , B) is said to be an extension of (P,B) if (P, B) is the derived design at

a of (P , B). A design that admits an extension is called extendable.

7.18

We now prove the following result due to Cameron:

If (P, B) is a symmetric extendable 2− (v, k, λ) design (with k ≤ v − 1), then one of the

following holds:

(i) (P,B) is a Hadamard 2-design with v = 4λ + 3 and k = 2λ + 1.

(ii) v = (λ + 2)(λ2 + 4λ + 2), k = λ2 + 3λ + 1.

(iii) v = 111, k = 11, λ = 1.

(iv) v = 495, k = 39, λ = 3.

Proof. Let D = (P, B) be an extension of (P,B). Then D is a 3 − (v + 1, k + 1, λ3(D))

design, with λ1(D) = v, λ2(D) = k, and λ3(D) = λ. For all a ∈ P , set Da = (P −

{a}, {α − {a} : a ∈ α ∈ B}); Da = (P,B) for some a ∈ P . Clearly Da is a symmetric

2− (v, k, λ) design. So the only intersection number of Da is λ (see Proposition 7.2). This

implies that the only intersection numbers of D are λ + 1 and 0.

Fix α ∈ B and define Dα = (P − α, {β ∈ B : β ∩ α = ∅}). We claim that Dα is a
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2− (v − k, k + 1, (k − λ)(λ + 1)−1) design.

Let a, b ∈ P ; a, b 6∈ α. Count the cardinality of the set {(β, c) : a, b ∈ β − α and c ∈

β ∩ α; β ∈ B} in two different ways. We obtain (recalling that c ∈ β ∩ α implies

|β ∩ α| = λ + 1)

|{β ∈ B : a, b ∈ β and β ∩ α 6= ∅}|(λ + 1) = λ(k + 1).

It follows that |{β ∈ B : a, b ∈ β and β ∩ α = ∅}| = λ2(D) − λ(k + 1)(λ + 1)−1 =

k − λ(k + 1)(λ + 1)−1 = (k − λ)(λ + 1)−1 > 0 (if k = λ, then k = v, contrary to our

assumption). This proves that Dα is a 2− (v − k, k + 1, (k − λ)(λ + 1)−1) design.

In particular, in Dα the block size should not exceed the number of points, which

means v − k ≥ k + 1.

1. Suppose v − k = k + 1. Since (P, B) is a symmetric design we have λ0 = v and

hence also k = λ1 = ((v − 1)/(k − 1))λ; replacing v = 2k + 1 gives λ = 1
2
(k − 1). Or,

solving for k, k = 2λ + 1 and then v = 4λ + 3, which is (i).

2. If v − k = k + 2, then (λ1 =) k = (v − 1)(k − 1)−1λ = (2k + 1)(k − 1)−1λ, or

λ = k(k − 1)(2k + 1)−1, which is not an integer. Hence this case can never happen.

3. Assume v − k > k + 2. Then

λ0(Dα) =
(v − k)(v − k − 1)

(k + 1)k
λ2(Dα) =

(v − k)(v − k − 1)(k − λ)

(k + 1)k(λ + 1)

=

{
since λ =

k(k − 1)

v − 1

}
=

(v − k)2(v − k − 1)

(k + 1)(k2 − k + v − 1)
≥ v − k

(this being Fisher’s inequality applied to Dα). Or, equivalently,

v2 − (3k + 2)v − (k + 1)(k2 − 2k − 1) ≥ 0. (7.7)
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Consider the quadratic x2 − (3k + 2)x− (k + 1)(k2 − 2k − 1) with roots x = 1
2
[(3k +

2) ± k
√

4k + 5]. Since x = 1
2
[(3k + 2) − k

√
4k + 5] ≤ 1 for all integral k, the solution to

(7.7) is

v ≥ 1

2
[(3k + 2) + k

√
4k + 5]. (7.8)

Put
√

4k + 5 = 3 + 2µ, for µ > 0. Then k = µ2 + 3µ + 1 and (7.8) becomes v ≥

µ3 + 6µ2 + 10µ + 4 = (µ + 2)(µ2 + 4µ + 2). Hence

λ =
k(k − 1)

v − 1
≤ (µ2 + 3µ + 1)(µ2 + 3µ)

µ3 + 6µ2 + 10µ + 3
=

(µ2 + 3µ + 1)(µ + 3)µ

(µ2 + 3µ + 1)(µ + 3)
= µ,

so that k = µ2 + 3µ + 1 ≥ λ2 + 3λ + 1,or

k + 1 ≥ (λ + 1)(λ + 2). (7.9)

But λ0(D) = (v + 1)v/(k + 1), which shows that k + 1 divides (v + 1)v. [Since

λ = k(k − 1)/(v − 1), we have (v + 1)v = λ−2(k2 − k + λ)(k2 − k + 2λ).] Therefore k + 1

divides (k2 − k + λ)(k2 − k + 2λ); looking at the remainder we finally conclude that

k + 1 divides 2(λ + 1)(λ + 2). (7.10)

Conditions (7.9) and (7.10) restrict k very much. In fact we can only have

k + 1 = 2(λ + 1)(λ + 2) or k + 1 = (λ + 1)(λ + 2).

Assume k + 1 = 2(λ + 1)(λ + 2). Since λ = k(k − 1)/(v − 1), λ divides k(k − 1) =

(2λ2 +6λ+3)(2λ2 +6λ+2); looking at the remainder we conclude that λ divides 6. Hence

λ = 1, 2, 3, or 6. For λ = 2 or 6, k + 1 does not divide v(v + 1). Thus λ = 1 or 3, giving

cases (iii) and (iv), respectively.
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The case k + 1 = (λ + 1)(λ + 2) gives λ = µ, leading to (ii); in this case v =

(λ + 2)(λ2 + 4λ + 2) and we obtain a 2− ((λ + 1)2(λ + 3), (λ + 1)(λ + 2), (λ + 1)) design

for Dα. This ends the proof.

7.19

Consequence. If (P, B) is a twice or three times extendable symmetric 2-design, then

(P,B) is the unique 2 − (21, 5, 1) design. There is no four times extendable symmetric

2-design.

Proof. Let (P, B) be a symmetric twice extendable 2 − (v, k, λ) design. Counting the

number of blocks in the second extension [and using the fact that λi =
(

v−i
k−i

)(
k−i
t−i

)
; i = 0, 1]

we find that (k + 1)(k + 2) divides v(v + 1)(v + 2). For the various possibilities for (P,B)

listed in the previous result this leads to:

(i) (2λ + 3) divides 4(λ + 1)(4λ + 3)(4λ + 5) which, upon looking at the remainder,

tells us that (2λ + 3) divides 3; this cannot happen.

(ii) λ2 + 3λ + 3 divides

(λ + 1)(λ + 2)(λ2 + 4λ + 2)(λ2 + 5λ + 5)(λ3 + 6λ2 + 10λ + 6),

leading us to conclude that λ2+3λ+3 divides λ+6 (again upon looking at the remainder).

This can only happen for λ = 1. Then (P,B) is a 2 − (21, 5, 1) design, the 21 point

projective plane PG(2, 4). There is up to isomorphism a unique such object and it is

actually three times extendable [leading to the Mathieu 5− (24, 8, 1) design]. Since 4 · 5 ·

6 · 7 · 8 · 9 does not divide 20 · 21 · 22 · 23 · 24 · 25 it is not four times extendable.

(iii) 13 does not divide 111 · 112 · 113.
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(iv) Finally, 41 does not divide 495 · 496 · 497.

5 ON THE EXISTENCE OF SYMMETRIC

DESIGNS

Necessary conditions for a 2 − (v, k, λ2) design to exist are that λi =
(

v−i
2−i

)(
k−i
2−i

)−1
λ2,

i = 0, 1, be integers and that λ0 ≥ v (which is Fisher’s inequality). These conditions are

in general far from being sufficient. Even with the additional assumption of symmetry

they do not suffice. In this section we give another necessary condition for the existence

of a (symmetric) 2-design. The result is known as Bruck, Ryser, and Chowla’s (BRC)

theorem. Since in this section we discuss 2-designs we write λ for λ2.

7.20

The proof of the BRC theorem is based on rational congruences, Witt’s cancellation law,

and a result of Lagrange in number theory. We first define what is meant by rational

congruence.

Two square and symmetric matrices A and B with rational entries (and of the same

dimension) are called rationally congruent (written A
c
=B) if there exists a nonsingular

matrix P with rational entries such that P ′AP = B. (The relation
c
= is an equivalence

relation, and this is easy to check.)

The result of Lagrange to which we made reference is the following:

Lagrange’s Result. For any positive integer m we have mI4
c
=I4.

[Here, and throughout this section, In denotes the n× n identity matrix. Lagrange’s

original result states that any positive integer m is the sum of four squares, that is,
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m = a2 + b2 + c2 + d2 with a, b, c, d nonnegative integers. But then




a b c d

b −a d −c

d c −b −a

c −d −a b




I4




a b d c

b −a c −d

c d −b −a

d −c −a b




= mI4

showing that mI4
c
=I4, as stated above.]

The other result that we need is the following.

Witt’s Cancellation Law. If




A 0

0 B




c
=




C 0

0 D


 and A

c
=C, then B

c
=D.

The proofs of these two results are included in Appendix 3.

7.21

We now state and prove the BRC theorem:

The Theorem of Bruck, Ryser, and Chowla. Suppose v, k, λ are natural numbers

such that a symmetric 2− (v, k, λ) design exists (and 0 ≤ k + 2 ≤ v). Then

(i) If v is even k − λ must be a square.

(ii) If v is odd the Diophantine equation

x2 = (k − λ)y2 + (−1)(v−1)/2λz2

has a solution in integers x, y, and z, not all zero.

Proof. Let (P,B) be a symmetric 2 − (v, k, λ) design. Denote by N the v × v incidence

matrix (points versus blocks) of (P,B). Then NN ′ = (λ1 − λ)Iv + λJ , where J is the
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v × v matrix with all its entries 1. By observing that NN ′ − (λ1 − λ)Iv = λJ is a matrix

of rank 1 it follows immediately that the eigenvalues of NN ′ are λ1 − λ (of multiplicity

v− 1) and λ1 + (v− 1)λ (of multiplicity 1); see the proof of Fisher’s inequality in Section

7.12 for a more detailed derivation. We can now write

det NN ′ = (λ1 + (v − 1)λ)(λ1 − λ)v−1 = kλ1(λ1 − λ)v−1 (7.11)

where det NN ′ denotes the determinant of NN ′. [To explain the last sign of equality

recall that λ1 = (v − 1)(k − 1)−1λ.]

(a) The assumption of symmetry implies λ1 = k. Expression (7.11) is thus rewritten

as

(det N)2 = det NN ′ = k2(k − λ)v−1. (7.12)

Since v − 1 is odd and since the left-hand side of (7.12) is a square it must be that

each prime in the prime factorization of k − λ occurs at an even power. Hence k − λ is

necessarily a square. This ends the proof of part (i) of the theorem.

(b) Form the (v + 1)× (v + 1) matrix

N =




N 1

1′ kλ−1




(with 1 the vector with all entries 1) and let

D = diag(1, . . . , 1,−λ), E = diag(k − λ, . . . , k − λ,−(k − λ)λ−1).

Matrices D and E are diagonal, of dimension v + 1.

Then NN ′ = (λ1 − λ)Iv − λJ , λ1 = (v − 1)(k − 1)−1λ, and λ1 = k allow us to write

NDN
′

=




N 1

1′ kλ−1







Iv 0

0 −λ







N ′ 1

1′ kλ−1
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=




N −λ1

1′ −k







N ′ 1

1′ kλ−1


 =




NN ′ − λJ 0

0 −(k − λ)λ−1




=




(k − λ)Iv 0

0 −(k − λ)λ−1


 = E.

Hence

D
c
= E. (7.13)

By Lagrange’s result we know that mI4
c
=I4. Extending this trivially to direct sums of

matrices we can write

mIn
c
= In, (7.14)

for any n = 0 (modulo 4) and any positive integer m.

(b1) Let v = 1 (modulo 4). Condition (7.13) can be rewritten as

Iv−1 ⊕ I1 ⊕−λI1
c
= (k − λ)Iv−1 ⊕ (k − λ)I1 ⊕−(k − λ)λ−1I1

c
= {by (7.14)} c

=Iv−1 ⊕ (k − λ)I1 ⊕−(k − λ)λ−1I1.

Witt’s cancellation law now gives



1 0

0 −λ




c
=




k − λ 0

0 −(k − λ)λ−1




This means that there exists a nonsingular matrix A =




a b

c d


 with rational entries

such that

A′




1 0

0 −λ


 A =




k − λ 0

0 −(k − λ)λ−1


 .
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In particular we must have a2 − λc2 = k − λ. Multiplying by a common denominator

leads us to conclude that x2 − λz2 = (k − λ)y2 must admit a solution in integers x, y, z,

not all zero.

(b2) In case v = 3 (modulo 4) we work with diagonal matrices of order v+2 by adding

an additional component (k − λ)I1 to both D and E. Then by (7.13) and (7.14)

Iv ⊕ (k − λ)I1 ⊕−λI1
c
= (k − λ)Iv ⊕ (k − λ)I1 ⊕−(k − λ)λ−1I1

c
= {by (7.14)} c

=Iv+1 ⊕−(k − λ)λ−1I1

c
= Iv ⊕ I1 ⊕−(k − λ)λ−1I1.

Again by Witt’s cancellation law it follows that



k − λ 0

0 −λ




c
=




1 0

0 −(k − λ)λ−1


 .

We can therefore write



a b

c d







k − λ 0

0 −λ







a b

c d


 =




1 0

0 −(k − λ)λ−1


 ,

with




a b

c d


 nonsingular matrix with rational entries. Equating the entries in position

(1,1) on both sides we obtain

1 = (k − λ)a2 − λc2.

Multiplying, as before, by the common denominator of a2 and c2 we conclude that the

Diophantine equation

x2 = (k − λ)y2 − λz2

must admit a solution in integers x, y, z, not all zero. This concludes our proof.
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7.22

Relying on the BRC theorem we can conclude that certain (potential) symmetric 2-designs

actually do not exist.

A 2 − (22, 7, 2) design, for example, cannot exist. This follows from the fact that

if such a design exists it must necessarily be symmetric and, since v = 22 is even, the

BRC theorem requires that k − λ = 7 − 2 = 5 be a square. But 5 is not a square and

consequently such a design does not exist.

The true strength of the BRC theorem is contained in the case with odd v. Let us

show that a potential 2− (43, 7, 1) design does not exist. A design with these parameters

(if it exists) must be symmetric, because λ0 =
(

43
2

)(
7
2

)−1 · 1 = 43 = v. By the BRC

theorem a necessary condition for its existence is that the equation

x2 = 6y2 − z2 (7.15)

admits a solution in integers x, y, z, not all zero. We now show that this equation does

not have an integral nonzero solution.

Write (7.15) as 6y2 = x2 +z2. The prime 3 divides 6y2 and hence x2 +z2. Let r be the

highest power of 3 that divides both x and z. Dividing equation (7.15) by 32r we obtain

(
x

3r

)2

+
(

z

3r

)2

=
6y2

32r
= 6

(
y

3r

)2

.

Observe that 3r must necessarily divide y and denote x/3r = x, z/3r = z, and y/3r = y.

Now (7.15) can be rewritten as

6y2 = x2 + z2. (7.16)
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Equation (7.15) admits a nonzero solution in integers if and only if equation (7.16) does;

this is clear since the two equations are nonzero multiples of each other. By the way in

which r was selected in (7.16) 3 divides 6y2 but it does not divide x nor y. Interpret now

equation (7.16) over the field GF (3), that is, look at it modulo 3. The numbers x and y

are now nonzero elements of GF (3) that satisfy

0 = x2 + y2. (7.17)

Or, dividing out by y2, (x/y)2 = x2/y2 = −1, that is, we conclude that −1 is a square in

GF (3).

What we showed is that if a 2− (43, 7, 1) design exists, then −1 must be a square in

GF (3). But −1 is not a square in GF (3) since (−1)2 = 12 = 1 and 02 = 0. We are now

forced to conclude that a 2− (43, 7, 1) design cannot exist.

7.23 Nonexistence of Certain Projective Planes

A projective plane is a symmetric 2− (v, k, 1) design. By letting n = k − 1 we can write

the parameters v and k in terms of n only: v = n2 + n + 1 and k = n + 1 (note that

v is always odd, regardless of the parity of n). The number n is called the order of the

projective plane 2− (n2 + n + 1, n + 1, 1).

If n = 0 or 3 (modulo 4), the BRC equation always has the solution x = 1, y = 0,

z = 1. We therefore cannot conclude anything concerning the existence of such planes.

However, if n = 1 or 2 (modulo 4), the BRC equation becomes ny2 = x2+z2. In Section

7.22 we showed that this equation has no nonzero solution if n = 6. We showed, in other

words, that a projective plane of order 6 does not exist. Using arguments absolutely

analogous to those used in Section 7.22, and working modulo 3, 7, or 11, we conclude
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that projective planes of order 6, 14, 21, 22, 30, and 33 cannot exist. (It is in fact

a well-known result in the theory of numbers that the equation ny2 = x2 + y2 admits

nonzero solutions in integers if and only if n is the sum of two squares. At this point it

is becoming abundantly clear that knowledge about the existence of symmetric 2-designs

rests fundamentally within the domain of that rich theory. We therefore direct the reader’s

attention to the pertinent results in the theory of numbers.)

All known projective planes have n a power of a prime. The PG(2, n) are examples

familiar to us (see Section 7.6). The smallest values of n for which it is not known whether

a projective plane exists are: 10, 12, 15, 18, 20, 24.

7.24

A positive integer m is said to be square free if in the prime factorization of m all the

(distinct) primes occur at power 1, that is, m =
∏

i pi, with pi distinct primes. Two

positive integers a and b are called relatively prime [written (a, b) = 1] if there does not

exist a prime number that divides them both. Our aim is to give a version of the BRC

theorem that is easily applicable to practical situations.

Let us first consider a general Diophantine equation of the form ax2 + by2 + cz2 = 0.

Writing a = aA2, b = bB2, c = cC2 with a, b, and c square free, we can immediately

conclude that the equation ax2 + by2 + cz2 = 0 has nonzero integral solutions if and only

if ax2 + by2 + cz2 = 0 does.

Consider now the equation ax2 + by2 + cz2 = 0 with a, b, c square free and also

make the assumption that a, b, c are pairwise relatively prime. Let (x, y, z) be a nonzero

integral solution. If p is a prime dividing a, we may assume (after possibly dividing our
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solution through by a power of p) that p does not divide y nor z. Modulo p the equation

ax2 + by2 + cz2 = 0 becomes

by2 = −cz2

or, multiplying through by b,

b
2
y2 = −bcz2.

The last equation informs us that −bc (= (by/z)2) must necessarily be a square modulo

p.

We can summarize this as follows: Necessary conditions for the existence of a nonzero

integral solution to ax2 + by2 + cz2 = 0 with a, b, c square free and pairwise relatively

prime are that, for all primes p,

1. If p divides a, then −bc is a square modulo p.

2. If p divides b, then −ac is a square modulo p.

3. If p divides c, then −ab is a square modulo p.

4. The coefficients a, b, and c do not all have the same sign. (Condition 4 is obvious.)

With these remarks made let us study the BRC Diophantine equation −x2 + ny2 +

(−1)(v−1)/2λz2, where n stands for k−λ. First write the equation in the form −x2 +ny2 +

(−1)(v−1)/2λz2, with n and λ square free. For a prime p we conclude the following:

(i) If n and λ are relatively prime and if p divides n, then (−1)(v−1)/2λ must be a

square modulo p.

(ii) If n and λ are relatively prime and if p divides λ, then n must be a square modulo

p.
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(iii) If p divides n and λ, then observe that the equation

x2 + ny2 + (−1)(v−1)/2λz2 = 0

has a nonzero integral solution if and only if the equation

−px2 +
n

p
y2 + (−1)(v−1)/2λ

p
z2 = 0

has such a solution. The coefficients n/p and λ/p may still not be relatively prime. But

after eventually dividing a nonzero solution through by a power of p we can assume that

p does not divide y nor z. Working again modulo p we conclude that

−n

p
y2 = (−1)(v−1)/2λ

p
z2.

Multiplying through by −n/p we deduce that (−n/p)(−1)(v−1)/2(λ/p) must be a square

modulo p.

We summarize as follows.

An Applicable Version of the BRC Theorem. Suppose v, k, λ are natural numbers

such that a symmetric 2− (v, k, λ) design exists (0 ≤ k +2 ≤ v), and v is an odd number.

Denote k − λ by n and let n and λ be the square free parts of n and λ. Then for every

prime p the following statements are true:

(i) If p divides n but not λ, then (−1)(v−1)/2λ must be a square modulo p.

(ii) If p divides λ but not n, then n must be a square modulo p.

(iii) If p divides both n and λ, then (−1)(v+1)/2(n/p)(λ/p) must be a square modulo p.
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6 AUTOMORPHISMS OF DESIGNS

7.25

Let (P, B) be a t− (v, k, λt) design and g a permutation on P . Then g induces a permuta-

tion on the k-subsets of P by the ”natural” action {x1, . . . , xk} → {g(x1), . . . , g(xk)}. If

g also induces a permutation on B we call g an automorphism of the design (P,B). More

generally, a group of permutations on the points of a t-design that preserves its blocks is

called an automorphism group of that design.

As an example, the group generated by the permutations (1 2 3 4 5 6 7), (2 7 6)(4 3 5),

and (2 3 4 7)(5 6) is an automorphism group of PG(2, 2) as displayed in (7.2). Verify this.

The full automorphism group of a t-design is the group of all permutations on points

that preserve the blocks. [It is generally difficult to find the full automorphism group of

a design. Try to accomplish this for the design (7.2)!]

An automorphism group of a design has a permutation representation on the blocks

of the design (in addition to its initial representation on points). It is thence natural

to compare the induced action on blocks to that on points. Our first observation is the

following:

∗ A permutation fixes all the blocks of a 2-design if and only if it fixes all the points. (In

other words the representation on blocks is faithful.)

The statement we just made is easy to justify. It is clear that the identity permuta-

tion on points fixes all the blocks; it fixes them pointwise in fact. Suppose now that a

permutation on points induces the identity permutation on blocks, that is, it fixes each
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individual block. If x is a point, then the intersection of all blocks containing x consists

of x alone [else we would have λ2 ≥ λ1, or λ2 ≥ (v − 1)(k − 1)−1λ2, or k ≥ v, which is

a contradiction]. Since each block containing x is fixed, the intersection of these blocks

(i.e., x itself) is also fixed. The permutation therefore fixes all points, as was asserted.

Another helpful observation is the following:

∗ The full automorphism group of a 2 − (v, k, λ2) design (0 ≤ k + 2 ≤ v) contains the

whole alternating group on the v points if and only if the 2-design is a complete design.

Proof. Denote by Sv the symmetric group on the v points; |Sv| = v!. It is clear that

any complete design on the v points has Sv as the (full) automorphism group, and Sv

contains Av, the alternating group (of even permutations) on the v points; |Av| = v!/2.

Conversely, if Av is an automorphism group and α is a block in our 2-design, then by

assumption the set {g(α) : g ∈ Av} consists of blocks of our 2-design. But the group

Av is (v − 2)-transitive (thus also k-transitive) on points and hence {g(α) : g ∈ Av} is a

complete 2-design. This concludes the proof.

7.26

We devote this section to the proof of the following result:

∗ An automorphism group of a t-design (t ≥ 2) has at least as many orbits on the blocks

of the t-design as it has on the [t/2]-subsets of points.

The notation [x] indicates the integral part of the fraction x.

Let (P, B) be a t− (v, k, λt) design and G an automorphism group of (P, B). Denote
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[t/2] by s. The group G acts on the
(

v
s

)
s-subsets of P . The resulting orbits are called

s-orbits. For a s-subset x of P we denote by x its s-orbit. Similarly, the orbits that G

induces on B are called block-orbits, and we write α for the block-orbit of block α. Let m

be the number of s-orbits and n the number of block-orbits.

Form the m × n matrix A = (aij) of s-orbits versus block-orbits with aij being the

number of blocks in block-orbit j that contains a certain s-subset from s-orbit i. Observe

that aij is well defined, in that it is independent of the choice of orbit representatives.

Let also B = (bij) be the n×m matrix of block-orbits versus s-orbits with bij being the

number of s-subsets in s-orbit j contained in a block from block-orbit i; the entries bij

are well defined as well.

Look now at the matrix AB = (cij). This matrix is m × m. We aim to prove that

AB is nonsingular. The nonsingularity of AB implies, in particular, that A has at least

as many columns as it has rows, that is, n ≥ m, which is what our result states.

Let us investigate the matrix AB = (cij) a bit more closely. The entry cij equals

∑n
k=1 = aikbkj. We next find a simpler expression for cij.

Fix a s-subset x in s-orbit i and count the cardinality of the set

Sj
x = {(y, α) : x ∈ α, y ∈ α, y ∈ s− orbit j, α ∈ B}

in two different ways. Let y be fixed, initially; then there are λ|x∪y| blocks containing

both s-subsets x and y, and since y runs through s-orbit j we obtain |Sj
x| =

∑
y λ|x∪y| (the

summation is over all s-subsets y in s-orbit j). Now count differently: fix α first. Then α

belongs to some block-orbit, orbit k, say; we have bkj choices for y and aij choices for α
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in block-orbit k. Summing over k leads to |Sj
x| =

∑n
k=1 aikbkj. We therefore conclude that

cij =
n∑

k=1

aikbkj =
∑
y

λ|x∪y|.

The reader should understand that cij =
∑

y λ|x∪y| (with y running over the s-subsets in

s-orbit j and x being a fixed s-subset in s-orbit i) is a well-defined expression that does

not depend on the particular choice of x in s-orbit i. It is this simpler expression of cij

that we use to establish the nonsingularity of AB.

Define NS = (nij), the
(

v
s

)
× λ0 incidence matrix of s-subsets versus blocks, with

nij = 1 if the ith s-subset is contained in block j, and nij = 0 otherwise. Line up,

moreover, the rows of NS such that the s-subsets in s-orbit 1 come first, then those in

s-orbit 2,..., and lastly those in s-orbit m.

The matrix NSN ′
S is

(
v
s

)
×

(
v
s

)
with (x, y)th entry equal to λ|x∪y|. It is a positive

definite matrix and thus nonsingular (the positive definiteness is established immediately

following the proof). Write NSN ′
S = (Cij) as a partitioned matrix with Cij the submatrix

of NSN ′
S of the ith s-orbit versus the jth s-orbit.

Observe that the row sums of Cij equal
∑

y λ|x∪y|, where x is in s-orbit i and y runs

over the s-subsets of s-orbit j. This common value for the row sums of Cij is well defined

(in the sense that it does not depend upon the choice of x in s-orbit i). We thus conclude

that AB = (cij), where cij =
∑

y λ|x∪y| = common value of the row sums of Cij.

We end the proof by showing that the eigenvalues of AB are necessarily among those

of NSN ′
S. And since the eigenvalues of NSN ′

S are positive we conclude that AB is non-

singular.
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Indeed, let

ABw = (cij)




w1

...

wm




= µ




w1

...

wm




= µw.

Then

NSN ′
S




w11

...

wm1




= (Cij)




w11

...

wm1




= µ




w11

...

wm1




,

which shows that if µ is an eigenvalue of AB, then µ is also an eigenvalue of NSN ′
S. The

1 in wj1 is the vector with all its entries equal to 1 and of length equal to the number of

columns of Cij.

Proof of the Positive Definiteness of NSN ′
S. This proof is due to Wilson [4]. Denote by

Wij the
(

v
i

)
×

(
v
j

)
incidence matrix between the i-subsets and j-subsets of P . Then

NSN ′
S =

S∑

i=0

λi
2S−iW

′
iSWiS,

with λl
m signifying the number of blocks containing m points and omitting l [see Propo-

sition 7.1, part (b)]. Matrices λi
2S−iW

′
iSWiS are nonnegative definite with one of them,

λS
SW ′

SSWSS = λS
SI, being positive definite. Thus NSN ′

S is itself positive definite as their

sum. This ends the proof.

(To see that NSN ′
S is indeed expressible as the sum above the reader should check

that the corresponding entries on both sides are equal. This involves verification of an

identity of the familiar Vandermonde type.)
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7.27

By the duality between points and blocks that exists in a symmetric design result (7.18)

allows us to draw the following conclusion:

∗ An automorphism group of asymmetric design has as many point-orbits as it has block-

orbits.

In this special situation a little more can in fact be said, as was observed by Baer:

∗ An automorphism of a symmetric design fixes precisely as many points as it does blocks.

Indeed, an automorphism g corresponds to two permutation matrices P and Q which

satisfy

PNQ = N,

where N is the (square) incidence matrix between points and blocks. Recalling that

P−1 = P ′ and solving for Q we obtain

Q = N−1P ′N.

Being conjugates of each other P ′ and Q have the same trace. But the traces of P and Q

count the number of fixed points and fixed blocks, respectively. This ends the proof.

7.28

The relationship between the design and its automorphism group is an interesting (and

sporadically a fascinating) one. If the automorphism group is large, then it usually reflects
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much of the structural properties of the design. Quite a number of structural characteri-

zations through the automorphism groups are known.

The symmetric designs PG(n, q) admit large automorphism groups. The blocks of

PG(n, q) are, by definition, the n-dimensional (vector space) subspaces of a (n + 1)-

dimensional vector space V over GF (q). The group of nonsingular linear transformations

of V acts on the n-dimensional subspaces; call this group GL(V ). But it does not act

faithfully on the projective points. We can quickly fix this small annoyance by working

modulo the subgroup of scalar multiples of the identity transformation. This quotient

group [which we denote by PGL(V )] is indeed an automorphism group of PG(n, q). Up

to automorphisms of the field this is the full automorphism group. We refer the reader

to [7] for further reading on this classical subject.

The full automorphism group of the Mathieu 5− (12, 6, 1) design displayed in Section

7.9 is the Mathieu group M12 which acts 5-transitively on points and is one of the sporadic

simple groups. The other 5-transitive Mathieu group, M24, is the automorphism group of

the Mathieu 5− (24, 8, 1) design. For more information we refer to [13].

EXERCISES

1. Go over the proof of the BRC theorem with the special case of a (potential) projec-

tive plane of order six and conclude that it cannot exist.

2. Examine what the BRC theorem tells us about a Hadamard 2-design. Do the same

for a symmetric 2− (v, k, 2) design.

3. Show that a 2− (21, 5, 1) design is necessarily PG(2, 4).
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4. Show that a (symmetric) 2− (11, 5, 2) design must necessarily be the Paley design

(7.4). In addition, prove that the full automorphism group of the Paley design (7.4)

has 660 elements. What is this group?

5. (Alltop.) For any positive integer k a (nontrivial) 2-design with block size k exists.

[Hint: Find a subgraph S with k edges (a cycle, maybe) in the complete graph

Kn such that {g(S) : g ∈ Aut(Kn)} are the blocks of the nontrivial 2-design; by

Aut(Kn) we understand the group of all the n! permutations on the n vertices of

Kn.]

6. Show that the full automorphism group of PG(2, 2) is a simple group of order 168.

(A simple group is a group with no proper normal subgroups, i.e., it is like a prime

number.) Find this group both as a group of 3 × 3 matrices and as a group of

permutations on 7 points.

7. (The fundamental theorem of projective geometry.) Find the full automorphism

group of PG(n, q) and show that it acts transitively on noncolinear triples of points.

8. (Alltop.) Let (P, B) be a t− (v, k, λt) design; suppose a 6∈ P . Define

Pa = P ∪ {a}

B′ = {α ∪ {a} : α ∈ B}

B′′ = {P − α : α ∈ B}

B′′′ = {P − σk : σk ∈
∑

k

(P )−B}.

For certain sets of parameters (t + 1)-designs can be constructed from various com-

binations of B, B′, B′′ or B′′′. Prove the following:
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(a) Let (P, B) be a t−(2k, k, λt) design with t even and B′′∩B = ∅. Then (P,B∪B′′)

is a (t + 1)− (2k, k, λ′′t+1) design; λ′′t+1 = 2λt(k − t)(2k − t)−1.

(b) Let (P, B) be a t− (2k, k, λt) design with t even and B′′ = B. Then (P, B) is a

(t + 1)− (2k, k, λt+1) design; λt+1 = λt(k − t)(2k − t)−1.

(c) Let (P, B) be a t − (2k + 1, k, λt) design with t even. Then (Pa, B
′ ∪ B′′) is a

(t + 1)− (2k + 2, k + 1, λt) design.

(d) Let (P,B) be a t − (2k + 1, k, λt) design with t odd and λ0 = 1
2

(
2k+1

k

)
. Then

(Pa, B
′ ∪B′′′) is a (t + 1)− (2k + 2, k + 1, λt) design.

7 ASSOCIATION SCHEMES

7.29

An association scheme (or scheme for short) is a set with several binary relations defined

on it, which satisfy certain properties of compatibility. The association schemes were

introduced by Bose in connection with the design of experiments. Over the years they

turned out to be useful in the study of other combinatorial structures such as permutation

groups, coding theory, and designs. Good codes and designs often arise as maximal subsets

of certain association schemes.

We present the basic theory of association schemes, which centers around the Bose-

Mesner algebra. Examples are then given focusing mostly on the Hamming and Johnson

(or triangular) schemes. Finally, we interpret t-designs as special subsets of the Johnson

scheme.
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7.30 The Definition of an Association Scheme

An association scheme with n classes (or relations, or colors) consists of a finite set P of

v points together with n + 1 binary relations R0, R1, . . . , Rn that satisfy:

(i) R0 is the identity relation, that is, R0 = {(x, x) : x ∈ P}.

(ii) For every x, y in P , (x, y) ∈ Ri; for exactly one i.

(iii) Each Ri is symmetric, that is, (x, y) ∈ Ri implies (y, x) ∈ Ri.

(iv) If (x, y) ∈ Rk, then the number of z in P such that (x, z) ∈ Ri and (y, z) ∈ Rj, is

a constant cijk depending on i, j, k but not on the particular choice of x and y in Rk.

It is often helpful to think of an association scheme as a complete graph on v points

with colored edges. (Relation Ri corresponds to color i; R0 has a somewhat degenerate

meaning – it informs us that each point has color 0. Instead of coloring points one may

prefer to draw a loop on top of a point; think of it as an edge and color that 0.) An edge

{x, y} is colored with color i if (x, y) ∈ Ri, and such x, y we call ith associates. Condition

(i) states that points have color 0; (ii) tells us that each edge has a unique color; (iii)

informs us that the edges are not oriented. And finally, condition (iv) is equivalent to

saying that the number of triangles with a fixed base {x, y} of color k having the edge

incident with x colored i and the edge incident with y colored j is a constant cijk depending

on i, j, k but not on the specific choice of the base of color k. In particular each vertex

is incident with cii0 edges of color i. We denote cii0 by vi. Observe that the subgraph

with edges of color i (i.e., the subgraph corresponding to Ri) is regular of degree vi. (We

remind the reader that a graph is called regular of degree d if all its vertices have degree
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d.)

7.31 An Example – The Johnson Scheme

We give an example of a triangular scheme with two associate classes on ten points. Let

the points of the scheme be the 2-subsets of {1, 2, 3, 4, 5}. Call two points {i, j} and {k, l}

first associates if they have precisely one symbol in common, and second associates if they

are disjoint.

If we place the ten points in a (symmetric) triangular array J(5, 2) with diagonal

entries filled by ∗ as displayed below, two points are first associated if they are in the

same row or column of J(5, 2); they are second associates if they are not in the same row

or column.

J(5, 2) =

∗ {1, 2} {1, 3} {1, 4} {1, 5}

{l, 2} ∗ {2, 3} {2, 4} {2, 5}

{1, 3} {2, 3} ∗ {3, 4} {3, 5}

{1, 4} {2, 4} {3, 4} ∗ {4, 5}

{1, 5} {2, 5} {3, 5} {4, 5} ∗

We color the pairs of first associates red and those of second associates blue. The subgraph

of blue edges that results is known as the Petersen graph (we write ij instead of {i, j} for

simplicity):
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The complementary graph to this graph (in K10, the complete graph on the ten points)

is the subgraph of red edges.

The reader can check that J(5, 2) is indeed an association scheme with two associate

classes. Its parameters are




c000 c010 c020

c110 c120

c220




=




1 0 0

6 0

3







c001 c011 c021

c111 c121

c221




=




0 1 0

3 2

1




(7.19)




c002 c012 c022

c112 c122

c222




=




0 0 1

4 2

0




The matrices of parameters displayed above are all symmetric.

There is a general scheme of which the above example is a special case. This general

scheme we denote by J(m,n) and define as follows: The points of the scheme are the

(
m
n

)
subsets of size n of a set with m elements; two subsets of size n are said to be ith
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associates if they intersect in precisely n− i elements, 0 ≤ i ≤ n. The scheme J(m,n) has

n associate classes. (By definition we do not count the 0th associates as an association

class.) We call J(m,n) the Johnson (or triangular) scheme.

The parameters of the scheme J(m,n) are

cn−i,n−j,n−k =
∑

l

(
k

l

)(
n− k

i− l

)(
n− k

j − l

)(
m− 2n + k

n− i− j + l

)
,

with 0 ≤ i, j, k ≤ n. (This expression is derived by counting the number of n-subsets

that intersect x in i elements and y in j elements, where x and y are a pair of n-subsets

that intersect in k elements. The n-subsets in question are sorted by l, the number of

elements that they have in common with x ∩ y.)

7.32 Other Examples of Association Schemes

The association schemes are combinatorial objects of great mathematical richness and

elegance. Fundamental questions of classification were addressed and partly answered by

Bose and his students. Complete classification re- mains, however, a formidable under-

taking. It has been actively researched only in the last decade or so.

We mention several examples of association schemes, the selection being motivated

chiefly by the immediate connections between these schemes and other parts of combina-

torics such as graph theory, finite groups, coding theory, and finite geometries.

A The Hamming Scheme H(n)

The points of the scheme are the 2n vertices of a n-dimensional cube. The relations

of association are defined as follows: Think of each vertex of the cube being a vector

of n components with 0 and 1 as entries. Two vertices are called ith associates if the
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corresponding vectors differ in precisely i coordinates. The scheme H(n) has n associate

classes. It is the fundamental object of coding theory.

B The Projective Schemes

Let V be a vector space of dimension n + 1 over GF (q). Denote by PV the associated

projective geometry (see the introductory passages to Section 7.6 for the exact definition).

The points of the scheme are the m-subsets of (projective) points of PV . Two m-

subsets are called ith associates if the projective points in their union span a projective

subspace of PV of (projective) dimension i.

C Metric Schemes

Let G be a connected simple graph with P the set of vertices. The distance d(x, y)

between two vertices x and y is defined as the length of the shortest path joining them.

The maximal distance between any two vertices is called the diameter of G.

The graph G is called distance regular if for any x and y in P with d(x, y) = k,

the number of vertices z in P such that d(z, x) = i and d(z, y) = j is a constant cijk

independent of the choice of x and y (so long as they are at distance k of each other).

We obtain an association scheme from a distance regular graph by calling two vertices

x and y ith associates if d(x, y) = i. The schemes thus obtained from distance regular

graphs are called metric schemes. (To recover the graph from the metric scheme define x

and y to be adjacent if they are first associates.)

Distance regular graphs of diameter 2 are called strongly regular. It is easy to see that

any scheme with two associate classes is metric and is obtained from a strongly regular
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graph.

D The Schemes Arising from Permutation Groups

Let G be a permutation group acting transitively on a set of points P . We can make G

act on P × P by defining g(x, y) = (g(x), g(y)), for g in G and x, y in P . Let the orbits

of this latter action on P × P be R0 = {(x, x) : x ∈ P}, R1, . . . , Rn. The Ri’s are binary

relations that need not be symmetric. If they are symmetric they define an association

scheme with n classes.

The Johnson and Hamming schemes correspond to special choices of the group: the

symmetric group, and the symmetry group of the n-cube (of order 2nn!), respectively.

7.33 Relations Among the Parameters

Let cijk be the parameters of an association scheme with n classes. The reader may have

already observed certain relations among the cijk’s in (7.19). In general we can say the

following:

* The parameters Cijk of an association scheme with n classes satisfy

cijk = cjik, c0jk =





1 if j = k

0 otherwise

vkcijk = vickji

n∑

j=0

cijk = vi

n∑

m=0

cijmcmkl =
n∑

h=0

cihlcjkh.

(We denote cii0 by vi.)
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Proof. That cijk = cjik follows directly from the fact that the relation Rk is symmetric.

For x and y a pair of kth associates c0jk equals the number of 0th associates of x and jth

associates of y. Since the only 0th associate of x is x itself, c0jk = 0, unless j = k, in

which case c0jk = 1.

To see that vkcijk = vickji count in two ways the cardinality of the set

that is, Sx consists of ordered pairs (y, z) of jth associates such that (x, y) are kth asso-

ciates and (x, z) are ith associates, with x a point fixed a priori.

Proving that vi =
∑n

j=0 cijk amounts to sorting out the triangles

by the values of j, with x and y a fixed pair of kth associates.

The last identity follows from counting in two ways (as indicated in the figures below)

the number of paths with color sequence (i, j, k) joining x and y.

In the first of the two figures fix z. For this fixed z there are cijm possible choices for u;

and there actually exist cmkl possibilities for z. Summing over m
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leads to
∑n

m=0 cijmcmkl. Similar counting in the second figure gives
∑n

h=0 cihlcjkh. We

conclude that

n∑

m=0

cijmcmkl =
n∑

h=0

cihlcjkh,

and this ends our proof.

7.34 The Bose-Mesner Algebra

To an association scheme with n classes on a set of v points we attach an algebra of v× v

matrices. Think of the association scheme as a complete graph Kv on the v vertices with

edges colored with n colors. Let Ai be the v × v (points versus points) adjacency matrix

of the subgraph of Kv with edges of color i, 0 ≤ i ≤ n. To be exact, the (x, y)th entry of

Ai is 1 if the edge {x, y} is colored i, and 0 otherwise.

The defining properties of the association scheme can be readily rewritten in terms of

the matrices Ai as follows:

(i) A0 = I (the identity matrix).

(ii)
∑n

i=0 Ai = J (the matrix with all entries 1).

(iii) Ai is symmetric.

(iv) AiAj =
∑n

k=0 cijkAk = AjAi; 0 ≤ i, j ≤ n.
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[Indeed, the (x, y)th entry of AiAj equals the number of paths

x ◦ i−−◦ j−−◦ y

in Kv. This number is cijk for some k, which is what
∑n

k=0 cijkAk has for its (x, y)th entry.

This explains (iv) above.]

Observe also that AiJ = JAi = viJ . In words this means that Ai has row and column

sums equal to vi (recall that vi = cii0).

Let us consider the vector space B of all matrices of the form
n∑

i=0
aiAi, with ai real num-

bers. From (iii) these matrices are symmetric. Condition (ii) tells us that A0, A1, . . . , An

are linearly independent. We thus conclude that the Ai’s form a basis for B, and that the

dimension of B is n + 1. Most importantly, (iv) informs us that B is closed under matrix

multiplication, and that the multiplication in B is in fact commutative; the multiplication

of B is, of course, associative as well (matrix multiplication is always associative). A

vector space with a rule of multiplication that is associative, commutative (distributive

with respect to addition and ”polite” to scalar multiplication) is called an algebra. We

thus call B the Bose-Mesner algebra of the association scheme.

The matrices in B are symmetric and commute with each other. A well-known result

in matrix theory tells us then that they can be simultaneously diagonalized, that is, there

exists a nonsingular matrix S such that

S−1AS = DA

with DA diagonal, for all A in B.
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The algebra B is now seen to be semisimple and thus admits a unique basis J0, J1, . . . , Jn

of primitive idempotents (see [18]). These are matrices in B satisfying

J2
i = Ji, 0 ≤ i ≤ n

JiJk = 0, i 6= k (7.20)

n∑

i=0

Ji = I.

[The matrix J (of all 1’s) is in B and (1/v)J is idempotent. We shall therefore always

choose J0 = (1/v)J .]

We now have two bases for B: the Ai’s and the Ji’s. Let us relate these two bases by

writing

Ak =
n∑

i=0

p(k, i)Ji, 0 ≤ k ≤ n

and

Jk =
n∑

i=0

v−1q(k, i)Ai, 0 ≤ k ≤ n. (7.21)

The p(k, i) and v−1q(k, i) are real numbers. Observe, in fact, that p(k, i) is an eigenvalue

of Ak, in that it satisfies

AkJi =




n∑

j=0

p(k, j)Jj


 Ji = p(k, i)Ji. (7.22)

[The first equality sign holds by (7.21) while the second by (7.20).] Equation (7.22) also

shows that (the columns of) Ji are eigenvectors of Ak, 0 ≤ k ≤ n.

Denote by P the (n + 1)× (n + 1) matrix (p(k, i)) and by Q the matrix (q(k, i)). By

(7.21) P and v−1Q are inverses of each other. Further, let µi denote the rank of Ji, that

is, the multiplicity of the eigenvalue p(k, i), as written in (7.22).
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The following result holds:

∗ The eigenmatrices P and Q satisfy the orthogonality conditions

P ′




µ0 0

. . .

0 µn




P = v




v0 0

. . .

0 vn




and

Q′




v0 0

. . .

0 vn




Q = v




µ0 0

. . .

0 µn




(7.23)

Moreover, p(i,m)p(j, m) =
∑n

k=0 cijkp(k, m). [Recall that P = (p(k, i)) and Q = (q(k, i)) =

vP−1.]

Proof. The eigenvalues of AiAj are p(i,m)p(j, m) with multiplicity µm, 0 ≤ m ≤ n. Thus

the trace of AiAj is
∑n

m=0 µmp(i,m)p(j,m). But we know that

AiAj =
n∑

k=0

cijkAk

and hence the trace of AiAj is

trace AiAj = trace
n∑

k=0

cijkAk =
n∑

k=0

cijktrace Ak

= cij0traceA0 = cij0v =





viv if i = j

0 if i 6= j

.

This proves P ′diag(µ0, . . . , µn)P = v diag(v0, . . . , vn). Replacing P−1 by v−1Q gives the

second equation.
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To explain the last relation write

p(i,m)p(j,m)Jm = Aip(j, m)Jm = AiAjJm =

(
n∑

k=0

cijkAk

)
Jm

=
n∑

k=0

cijkAkJm =

(
n∑

k=0

cijkp(k, m)

)
Jm.

This ends our proof.

An Algebra of Dimension n + 1 Isomorphic to B

In an association scheme the number of relations (or colors), n, is in general much less

than v. As it turns out, we can facilitate the spectral analysis of B by working with an

algebra B of (n+1)× (n+1) matrices, rather than with the v× v matrices of the original

algebra B.

Indeed, let Bi = (cijk), that is, the (j, k)th entry of Bi is cijk. Then

BiBj =
n∑

k=0

cijkBk. (7.24)

[That this is true can be seen as follows. The (l,m)th entry of
∑n

k=0 cijkBk is
∑n

k=0 cijkcklm;

on the other hand, the (l,m)th entry of BiBj is
∑n

k=0 cilkcjkm. The last of the rela-

tions among the parameters, listed in Section 7.33, allows us to write
∑n

k=0 cilkcjkm =

∑n
k=0 cjkmcilk =

∑n
k=0 cjikcklm =

∑n
k=0 cijkcklm This proves (7.24).]

Display (7.24) shows that the matrices Bi multiply in the same manner as the matrices

Ai. Furthermore, the Bi’s are linearly independent since cij0 equals 0, unless i = j, in

which case cii0 = vi.

Define B to be the algebra of matrices
∑n

i=0 aiBi, with ai real numbers. Note that,

unlike the Ai’s, the matrices Bi need not necessarily be symmetric.
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Under the mapping Ai → Bi, the algebras B and B are isomorphic. (This is true

since, as we said, the Bi’s multiply in the same way as the Ai’s). In particular Ak and Bk

have the same set of eigenvalues (not with the same multiplicities, of course). Indeed, let

p(k, i) be an eigenvalue of Ak. Then AkJi = p(k, i)Ji, and since the isomorphic image of

this equation is BkJ i = p(k, i)J i we conclude that p(k, i) is also an eigenvalue of Bk (we

denoted by J i the isomorphic image of Ji). In particular, this allows us to conclude that

any matrix in the Bose-Mesner algebra B has at most n + 1 distinct eigenvalues.

Another happy consequence of the fact that Ak and Bk have the same set of eigenvalues

is the actual computation of these; the dimension of the matrices Bk is quite small (relative

to that of the Ak’s) and thus the p(k, i)’s are easier to find as eigenvalues of the Bk’s.

In the case of the Johnson scheme J(m,n), for example, one finds: p(k, i) = E(k, i),

q(k, i) = vi−1µkE(i, k), where vi =
(

n
i

)(
m−n

i

)
, µk = (m− 2k + 1)(m− k + 1)−1

(
m
k

)
and

E(k, x) =
k∑

j=0

(−1)j

(
x

j

)(
n− x

k − j

)(
m− n− x

k − j

)
, 0 ≤ k ≤ n.

The E(k, x) are called Eberlein polynomials.

7.35 t-Designs as Subsets of Association Schemes

In this section we present a result of P. Delsarte concerning the existence of t-designs as

subsets of association schemes. The language of association schemes brings into common

perspective many results from coding theory, designs, and finite geometry. The reader is

referred to [15] for a better understanding of this important point of view.

We work in an association scheme with point set P = {1, 2, . . . , v} and relations

R0, R1, . . . , Rn. Let S be a subset of P . Define

si = |Ri ∩ (S × S)|.
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The constant si counts the number of ordered pairs in S × S that belong to relation Ri.

Since the subsets Ri ∩ (S × S) partition S × S it is clear that
∑n

i=0 si = |S|2. We call the

vector (s0, s1, . . . , sn) the weight distribution of S.

We wish to interpret the weights si in terms of operations with the adjacency matrices

Ai of the scheme. Recall that Ai is the adjacency matrix of relation Ri. To accomplish

this, denote by x the v× 1 indicator vector of the subset S; that is, x′ = (x1, . . . , xv) with

xk = 1 if the point k belongs to S, and 0 otherwise. It then follows immediately that

si = x′Aix.

Define

di(S) =
n∑

j=0

q(i, j)sj,

where q(i, j) is the (i, j)th entry of the matrix Q whose inverse is v−1P , with P = (p(i, j))

being the (n + 1)× (n + 1) matrix of the eigenvalues of the scheme.

A crucial observation made by Delsarte is that

di(S) = vx′Jix, (7.25)

where x is the indicator vector of S and Ji is the ith idempotent in the Bose-Mesner

algebra B of the scheme. [Statement (7.25) is proved as follows: di(S) =
∑n

j=0 q(i, j)sj =

∑n
j=0 q(i, j)x′Ajx = x′(

∑n
j=0 ·q(i, j)Aj)x = vx′Jix. The last sign of equality is explained

by (7.21).]

The idempotent Ji is a symmetric matrix that satisfies J2
i − Ji = 0. Its eigenvalues

are therefore 0 or 1. We thus conclude that Ji is a nonnegative definite matrix, that is, it

satisfies y′Jiy ≥ 0 for all vectors y. With this in mind (7.25) informs us that

di(S) ≥ 0, 0 ≤ i ≤ n.
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Subsets S of an association scheme for which di(S) = 0, for a large number of indices

i, are in a sense ”extreme” and possess interesting combinatorial properties. Delsarte

proved the following:

∗ A nonempty subset S of the Johnson scheme J(m, k) consists of the blocks of a t −

(m, k, λt) design if and only if the vector (d1(S), d2(S), . . . , dk(S)) has at least t components

equal to 0.

Proof. Points of the scheme are k-subsets of a set M ; |M | = m. For an i-subset z of M ,

denote by λi(z) the cardinality of the set {α : z ⊂ α; α ∈ S}. A two-way counting of

|{(z, α) : z ⊂ α; α ∈ S}| gives

∑
z

λi(z) =

(
k

i

)
|S|

Yet another two-way counting, this time of the cardinality of the set {(z, (α, β)) : z ⊂

α, z ⊂ β; α, β ∈ S}, leads us to the following equation:

∑
z

λ2
i (z) =

k∑

j=0

sj

(
j

i

)
.

Denote by λi the average
(

m
i

)−1 ∑
z λi(z). The two equations we just derived allow us

to write

∑
z

(λi(z)− λi)
2 =




k∑

j=0

sj

(
j

i

)
− |S|

(
k

i

)
λi. (7.26)

In this notation we can say that the subset S consists of the blocks of a t− (m, k, λt)

design if and only if λi(z) = λi for all z ∈ ∑
i(M) and all 1 ≤ i ≤ t (see Proposition 7.1,

part (a)). Equation (7.26) allows us now to conclude that S is a t − (m, k, λt) design if
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and only if the weights sj satisfy the system:

k∑

j=0

(
j

i

)
sj = |S|

(
k

i

)
λi, for 1 ≤ i ≤ t. (7.27)

For a fixed i (1 ≤ i ≤ t) observe, however, that

|S|−2
k∑

j=0

(
j

i

)
sj = |S|−2|S|

(
k

i

)
λi

= |S|−1

(
k

i

)(
m

i

)−1(
k

i

)
|S| =

(
m

i

)−1(
k

i

)2

. (7.28)

The far right-hand side, that is,
(

m
i

)−1(k
i

)2
, is seen to depend on m, k, and i only and not

on the specific choice of the t-design. Select in particular the complete design consisting

of all
(

m
k

)
subsets of size k of M . The weight distribution of this complete design is

(v0, v1, . . . , vn) and thus (7.28) becomes

(
m

k

)−2 k∑

j=0

(
j

i

)
vj =

(
m

i

)−1(
k

i

)2

. (7.29)

In view of (7.28) and (7.29), system (7.27) can be written as follows:

|S|−2
k∑

j=0

(
j

i

)
sj =

(
m

k

)−2 k∑

j=0

(
j

i

)
vj, 1 ≤ i ≤ t. (7.30)

Let s′ = |S|−2(s0, s1, . . . , sn), v′ =
(

m
k

)−2
(v0, v1, . . . , vn) and let T be the t× (k+1) matrix

with (i, j)th entry equal to
(

j
i

)
if i ≤ j and 0 otherwise. System (7.30) can be rewritten

as

Ts = Tv. (7.31)

Think of the binomial coefficient
(

j
i

)
as the polynomial

(
x
i

)
(= [x]i/i!) evaluated at j

(by x we understand an indeterminate ready and willing to take numerical values at all

times). The polynomials
(

x
i

)
, for 1 ≤ i ≤ t, form a basis for the subspace of polynomials
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of degree at least 1 and at most t over the real numbers. The numbers q(i, j) turn out

also to be values of polynomials F (i, x) evaluated at j. (This is a most important fact;

the polynomials F (i, x) are related to the Eberlein polynomials.) The polynomial F (i, x)

is of degree i and hence the F (i, x), 1 ≤ i ≤ t, also span the subspace of polynomials of

degree at least 1 and at most t. Perform a change of basis by writing

(
x

i

)
=

t∑

j=1

wijF (j, x), 1 ≤ i ≤ t, (7.32)

for a t× t nonsingular matrix W = (wij).

Let Q be the t × (k + 1) matrix with (i, j)th entry equal to q(i, j). [Note that Q

consists of the first t rows of the (k + 1)× (k + 1) matrix Q = (q(i, j)).] We can use the

matrix W to write T = WQ [this follows directly from (7.32)].

Observe now that Ts = Tv if and only if WQs = WQv if and only if Qs = Qv (since

W is nonsingular). But Qv = 0 by the orthogonality relations (7.23) proved in Section

7.34. To be more exact, the ith equation of the system Qv = 0 is

k∑

j=0

q(i, j)vj = 0, 1 ≤ i ≤ t.

Read this last equation as
∑k

j=0 vjq(i, j)q(0, j) = 0 by recalling that q(0, j) = 1, for

0 ≤ j ≤ k. Since i 6= 0 the equation is explained by the aforementioned orthogonality

conditions.

To summarize, we showed that S is a t-design if and only if Ts = Tv if and only if

Qs = Qv (= 0) if and only if Qs = 0 if and only if

k∑

j=0

q(i, j)sj = 0, 1 ≤ i ≤ t
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if and only if

di(S) = 0, 1 ≤ i ≤ t.

This ends the proof.

7.36 Partial Designs

Let a set P of v points with relations R0, R1, . . . , Rn be an association scheme with n

classes. We define the notion of a partial design, a concept less restrictive combinatonally

than a 2-design. It was originally introduced by Bose in connection with statistical design

of experiments.

The pair (P,B) is called a partial design with n classes if B is a collection of k-subsets

of P (called blocks) such that points x and y appear in pi blocks whenever (x, y) ∈ Ri,

0 ≤ i ≤ n. [Observe, in particular, that each point occurs in p0 blocks since (x, x) ∈ R0.]

In case p1 = p2 = · · · = pn (= λ2) we obtain a 2 − (v, k, λ2) design. This, however,

does not happen frequently.

We can construct partial designs with two classes as follows: Let P be a set of v

points. Let also G be a group that acts transitively on P and has three symmetric orbits

R0 = {(x, x) : x ∈ P}, R1 and R2 on P ×P . This action generates an association scheme

with two associate classes on P ; two points x and y are first associates if (x, y) ∈ R1 and

second associates if (x, y) ∈ R2. Let S be any k-subset of P (k ≥ 2). We define the blocks

of our partial design as

B = {g(S) : g ∈ G}.

The pair (P, B) is indeed a partial design with two classes. Suppose a point x is in blocks

{Si : 1 ≤ i ≤ p0}. Then any other point y will be in blocks {g(Si) : 1 ≤ i ≤ p0}, where g
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is an element of G that sends x to y (we use here the transitivity of G on P ). Moreover,

if (x, y) ∈ Ri and (z, w) ∈ Ri, then there exists an element gi of G that sends (x, y) into

(z, w), i = 1, 2. Consequently, if {x, y} occurs in blocks {Sj : 1 ≤ j ≤ pi}, then {z, w}

occurs in blocks {gi(Sj) : 1 ≤ j ≤ pi}, i = 1, 2. This proves that (P, B) is a partial design

with two classes. [This construction can easily be remembered by a special case: Take

P to be the edges of a complete graph on m vertices and let the group G be the whole

symmetric group Sm on the m vertices. The group Sm acts transitively on edges and has

three orbits on P × P . One orbit is just the diagonal R0 = {(x, x) : x ∈ P}; R1 consists

of all pairs of edges like

and R2 consists of all pairs of parallel edges

Let us now introduce another concept (still due to Bose [1]). A partial geometry (r, k, t)

is a collection of subsets (called lines) with the following properties: each line contains

k points; each point is on r lines; two distinct points are on at most one line; given a

line and a point not on it, there exist precisely t lines passing through that point and

intersecting the original line.

We mention without proof a result of Bose [1]:

∗ A partial geometry is a partial design with two classes. A partial design with two classes,

strictly fewer blocks than points, and in which two distinct points occur in at most one

block must necessarily be a partial geometry.
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We conclude our discussion on the subject of partial designs with a graphical display

of a partial geometry (r, k, t) = (3, 3, 1):

The points are labeled by the 2-subsets of the set {1, 2, 3, 4, 5, 6}. There are 15 points

and 15 lines in all. Graphically we have lines of the form {12, 34, 56}, {13, 25, 46}, and

”curved lines” such as {34, 16, 25}, five of each kind. To be exact, a line consists of three

disjoint pairs.

EXERCISES

1. Find the 3× 3 matrix of eigenvalues of an association scheme with two classes.

2. In any association scheme show that

p(0, j) = q(0, j) = 1, p(i, 0) = vi, and q(i, 0) = µi.
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Show, in addition, that |p(i, j)| ≤ vi.

3. In the Hamming scheme H(n) show that v = 2n, vi =
(

n
i

)
,

cijk =

(
k

2−1(i− j + k)

)(
n− k

2−1(i + j − k)

)
,

if i + j − k is even, and cijk = 0 otherwise.

4. By looking at the images of the subgraph

of Kn (the complete graph on n vertices) under all the n! permutations on vertices

we obtain a partial design. Compute its parameters.

5. (Nair.) Let N be the incidence matrix (points versus blocks) of a partial design

with two classes. If the partial design has fewer blocks than points, then NN ′ is

a singular matrix. Relying on this and looking at the algebra B of 3 × 3 matrices

(cijk) find an explicit relation among the parameters (cijk) of the scheme and the

parameters pi of the partial design. [Hint: The determinant of the 3 × 3 matrix

(cijk) is zero.]

6. A graph like this
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is called a 3-claw; the ”missing” edges are indeed understood to be missing. Vertices

1, 2, and 3 are called the outer vertices of the 3-claw. In the Petersen graph (see

Section 7.31) call three points colinear if they are the outer vertices of a 3-claw. The

configuration of ten points and ten lines that results is the Desargue configuration:

Check this. (A line is a straight line, as drawn, and it contains three points.)

7. Show that the Desargue configuration displayed above is a partial design with two

classes. Find its full automorphism group.

8. Prove that the Pappus configuration
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is a partial design with two classes. Compute its full automorphism group. (The

blocks are the nine straight lines with three points on each, as drawn.)

9. Consider the combinatorial structure whose lines are the columns below:

2 4 1 1 4 7 1 2 3 3

10 10 10 2 5 8 4 5 6 5

6 8 9 3 6 9 7 8 9 7

Is this structure isomorphic to the Desargue configuration? Is it a partial design?

10. Show that a partial geometry (r, k, t) can exist only if

rk(r − 1)(k − 1)(k + r − t− 1)−1t−1

is an integer. [Hint: This number is the multiplicity of an eigenvalue of the scheme.]

11. Prove that a partial design with fewer blocks than points in which a pair of distinct

points appears in at most one block is necessarily a partial geometry.

8 NOTES

A systematic study of the subject discussed in this chapter was initiated by Fisher, Bose,

and their students. The fundamental motivation stems from the planning of efficient

statistical experiments.
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Relatively recent contributions to t-designs of particular significance were made by

Ray-Chaudhuri and Wilson [3], as well as Wilson [4]. Sections 1 and 3 are based on the

results presented in these two papers. The author was exposed to this material by his

former teacher, Professor Noboru Ito.

All of the methods of construction of t-designs that we present are well known and

most of them are mentioned implicitly or explicitly in [5] or [6]. We highly recommend

these two books, along with [7], to anyone interested in further research on the subject.

The construction through hypergraphs appears to have led to the first nontrivial 6-design

[16].

Section 4 consists of a result of Cameron [8]. A couple of other results on extending

t-designs are found in Exercise 8 at the end of Section 6.

The well-known result of Bruck, Ryser, and Chowla is presented in Section 5. Several

books contain this theorem. We recommend [9] and [6]. Much more can be said on the

interplay between the design and its automorphism group than what we mention in Section

6. Except for the proof of the nonsingularity of matrix NS, Section 7.26 is an observation

due to the author. We refer to [10] for more information on the automorphism group in

general, and to [7] for the automorphism groups of projective geometries in particular.

Association schemes, creations of Bose, have enjoyed a flurry of activity in recent

years. Attempts at classification are vigorously pursued, influenced chiefly by Bannai and

Ito [11]. Connections to designs and codes are described in Section 7.35. Recent work by

Bailey et al. [12] places association schemes at the foundation of the analysis of variance.
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