

- 1. Let X be an n-dimensional vector space. Prove that $\operatorname{Hom}(X,X)$ has dimension n^2 .
- **2.** Let $T: P_n \to P_n$ be the linear map Tp(t) = p(t+1) and let D be the differentiation operator. Show that

$$T = 1 + \frac{D}{1!} + \frac{D^2}{2!} + \dots + \frac{D^{n-1}}{(n-1)!}$$

- **3.** Let X be an n-dimensional vector space and $A: X \to X$ a linear operator. Show that there is a non-zero polynomial p(t) of degree $\leq n^2$ such that p(A) = 0.
- **4.** Let V be an n-dimensional vector space and suppose that $T \in \text{End}(V)$ satisfies $T^n = 0$ and $T^{n-1} \neq 0$. Prove that there exists a vector $x \in V$ such that $\{x, Tx, T^2x, \ldots, T^{n-1}x\}$ is a basis of V. What is the matrix of T in this basis?
- **5.** Show that there exist integers a, b, c, d such that the following two matrices are similar over \mathbb{Q} :

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 0 & 0 & a \\ 1 & 0 & 0 & b \\ 0 & 1 & 0 & c \\ 0 & 0 & 1 & d \end{bmatrix}.$$

Find these integers.

- **6.** Prove: If A is a linear operator such that $A^2 A + I = 0$, then A is invertible.
- 7. Prove that there are no square matrices A, B such that AB BA = I.
- **8.** If A, B, C are linear operators on a two-dimensional vector space, show that $(AB BA)^2$ commutes with C.
- **9.** A projection on a vector space V is an operator such that $A^2 = A$. If A is a projection, show that either A = 0, A = I, or there is a basis of V such that the representation of A with respect to B has block form $[S]_B = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$.

1

DIE EDIDAY OGTODED 10

1. Find all of the eigenvalues and eigenvectors of the backward shift operator on \mathbb{C}^{∞} given by

$$T(x_1, x_2, \dots) = (x_2, x_3, \dots).$$

- **2.** Show that an $n \times n$ matrix A is never similar to A + I.
- **3.** A matrix A is called skew-symmetric if $A^T = -A$. Let A be an $n \times n$ skew-symmetric matrix with n odd.
 - (a) Show that $\det A = 0$.
 - (b) Show that all of the nonzero eigenvalues of A are imaginary.
- **4.** Find two non-similar 4×4 matrices with characteristic polynomial $(x-2)^4$ and minimal polynomial $(x-2)^2$.
- **5.** If the $n \times n$ matrix I AB is invertible, show that I BA is invertible.
- **6.** Suppose that $S, T \in \text{Hom}(V, V)$ with V finite dimensional.
 - (a) Suppose that $\dim \operatorname{im} T = k$. Show that T has at most k+1 distinct eigenvalues.
 - (b) Show that ST and TS have the same eigenvalues.
 - (c) Show that if every vector in V is an eigenvector of S, then S = aI.
- 7. Suppose that $T \in \text{Hom}(V, V)$ is such that every subspace of dimension dim V-1 is invariant under V. Prove that T is a scalar multiple of the identity.
- 8. Find the minimal polynomial of

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$$

9. Let V be a finite dimensional complex vector space and $T \in \text{Hom}(V, V)$ be a map such that the kernel and image satisfy

$$\ker(T - \lambda I) \cap \operatorname{im}(T - \lambda I) = \{0\}$$
 for all $\lambda \in \mathbb{C}$.

Show that there is a basis of V consisting of eigenvectors of T.

10. Let A be a 3×2 matrix and B be a 2×3 matrix such that

$$AB = \begin{bmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{bmatrix}.$$

1

Find with proof BA.

IIIIII 2010. IIONILWOWII IIONIGIAMLI

- 1. Let P_5 be the space of complex polynomials of degree less than 5. Let D be the differentiation operator on P_5 . Find the eigenvalues, eigenvectors, characteristic polynomial, and minimal polynomial of D.
- 2. What is the minimal polynomial of:
 - (a) a projection?
 - (b) an involution?
 - (c) the map T on P_n such that T(p(t)) = p(t+1)?
- **3.** True or false: If A is a real 2×2 matrix with eigenvalues $a \pm ib$, then A is similar to $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$. (If true, prove; if false, provide a counterexample.)
- **4.** Under what conditions on the complex numbers a_1, a_2, \ldots, a_n is the following matrix diagonalizable over \mathbb{C} ?

$$\begin{bmatrix} 0 & \cdots & 0 & a_1 \\ 0 & \cdots & a_2 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_n & \cdots & 0 & 0 \end{bmatrix}$$

- **5.** Suppose that $T \in L(V, V)$ has a cyclic vector (i.e., there is a vector $x \in V$ such that $x, Tx, T^2x, \ldots, T^{n-1}x$ is a basis of V). Show that if $U \in L(V, V)$ and UT = TU then U is a polynomial in T.
- **6.** Suppose that $T \in L(V, V)$ and dim $R_T = 1$. Show that T is either diagonalizable or nilpotent (but not both).
- 7. Let A and B be linear operators on a finite-dimensional complex vector space V. Let p be any polynomial such that p(AB) = 0.
 - (a) Show that if q(s) = sp(s), then q(BA) = 0.
 - (b) Use the result of (a) to show that the minimal polynomials m_{AB} and m_{BA} obey either $m_{AB}(s) = m_{BA}(s)$, $m_{AB}(s) = sm_{BA}(s)$, or $m_{BA}(s) = sm_{AB}(s)$.

MITTI 2010. HOMEWORK MOSTOWNERVE

In the following exercises, you will find the Jordan decompositions of various matrices. That is, you will find a matrix S and a Jordan matrix J such that $A = SJS^{-1}$.

These *can* be done by hand! Do not use a computer to do the problems, but you may use one to check yourself.

1. Let

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Find the Jordan decomposition of A.

2. Find the Jordan decomposition of

$$A = \begin{bmatrix} 0 & 0 & 4 & 4 \\ -1 & 2 & 3 & 2 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 2 & 4 \end{bmatrix}.$$

3. The characteristic polynomial of

$$A = \begin{bmatrix} -2 & 0 & 0 & 0 & -1 \\ -1 & -2 & 2 & 4 & 3 \\ 0 & 0 & 0 & 4 & 2 \\ 0 & 0 & -1 & -4 & -1 \\ 0 & 0 & 0 & 0 & -2 \end{bmatrix}$$

1

is $p(x) = -(x+2)^5$. Find the Jordan decomposition of A.