A Larger Example of the Galois Correspondence

Let E be the splitting field of the polynomial $f = x^4 - 2$ over \mathbb{Q} .

- 1. Show that $E = \mathbb{Q}(\alpha, i)$ where $\alpha = \sqrt[4]{2}$.
- 2. Prove that $(E:\mathbb{Q})=8$.
- 3. Show that the Galois group $G = \Gamma(E : \mathbb{Q})$ is generated by the automorphisms σ and τ where

$$\sigma: \alpha \mapsto i\alpha, i \mapsto i,$$

$$\tau: \alpha \mapsto \alpha, i \mapsto -i.$$

(Hint: Show that σ has order 4, τ has order 2, that $\tau \notin \langle \sigma \rangle$, and deduce that each element of G is of the form $\sigma^i \tau^j$ with $i \in \{0, 1, 2, 3\}$ and $\tau \in \{0, 1\}$).

- 4. Make a table showing the effect of the 8 automorphisms $\sigma^i \tau^j$ with $i \in \{0, 1, 2, 3\}$ and $\tau \in \{0, 1\}$ in G on the elements α and i.
- 5. Prove that

$$(\sigma^i \tau^j)(\sigma^k \tau^l) = \sigma^{i+(-1)^j k} \tau^{j+l}$$

where the exponents at σ and τ are understood to be taken modulo 4 and 2, respectively.

- 6. Determine the orders of all elements of G.
- 7. Make a list of all cyclic subgroups of G.
- 8. Show that the centre of G is the cyclic subgroup $Z(G) = \langle \sigma^2 \rangle$.
- 9. Show that the only proper non-cyclic subgroups of G are

$$\langle \sigma^2 \rangle \times \langle \tau \rangle = \{1, \sigma^2, \tau, \sigma^2 \tau\}$$

and

$$\langle \sigma^2 \rangle \times \langle \tau \sigma \rangle = \{1, \sigma^2, \sigma \tau, \sigma^3 \tau\}.$$

- 10. Show that
 - (a) $\Phi(\langle \sigma \rangle) = \mathbb{Q}(i)$,
 - (b) $\Phi(\langle \sigma^2 \rangle \times \langle \tau \rangle) = \mathbb{Q}(\sqrt{2}),$
 - (c) $\Phi(\langle \sigma^2 \rangle \times \langle \tau \sigma \rangle) = \mathbb{Q}(i\sqrt{2}).$
- 11. Show that $Z(G) = \langle \sigma^2 \rangle$ is the only normal subgroup of order 2 in G.

12. Show that

- (a) $\Phi(\langle \tau \rangle) = \mathbb{Q}(\alpha)$,
- (b) $\Phi(\langle \sigma^2 \rangle) = \mathbb{Q}(i, \sqrt{2}),$
- (c) $\Phi(\langle \sigma \tau \rangle) = \mathbb{Q}((1+i)\alpha)$.