- 1. Let E be the splitting field inside \mathbb{C} of the polynomial $f = x^5 2$, and let $G = \Gamma(E : \mathbb{Q})$.
 - (a) Show that $E = \mathbb{Q}(\alpha, \epsilon)$ where $\alpha = \sqrt[5]{2}$ and $\epsilon = \exp(\frac{2\pi i}{5})$.
 - (b) Show that $(E:\mathbb{Q})=20$, and deduce that |G|=20.
 - (c) Show that G is generated by the automorphisms θ and σ given by

$$\theta(\alpha) = \epsilon \alpha, \qquad \theta(\epsilon) = \epsilon,$$

$$\sigma(\alpha) = \alpha, \quad \sigma(\epsilon) = \epsilon^2.$$

(Hint: Determine all possible images of α and ϵ under an automorphisms in G, deduce that each of those possibilities gives rise to an actual automorphism, and show that each such automorphism is of the form $\theta^i \sigma^j$ with $0 \le i \le 4$ and $0 \le j \le 3$.

- (d) Verify that θ generates a cyclic subgroup of order 5, and that σ generates a cyclic subgroup of order 4 in G.
- (e) Work out the conjugate $\sigma\theta\sigma^{-1}$ and deduce that the cyclic subgroup $\langle\theta\rangle$ is normal in G.
- (f) Find the fixed fields for the normal subgroup $\langle \theta \rangle$, for the cyclic subgroup $\langle \sigma \rangle$ and for the subgroup generated by θ and σ^2 .
- 2. Let E be the splitting field inside \mathbb{C} of the polynomial $f = x^6 2$, and let $G = \Gamma(E : \mathbb{Q})$.
 - (a) Show that $E = \mathbb{Q}(\alpha, \epsilon)$ where $\alpha = \sqrt[6]{2}$ and $\epsilon = \exp(\frac{2\pi i}{6})$.
 - (b) Show that $(E : \mathbb{Q}) = 12$, and deduce that |G| = 12.
 - (c) Show that G is generated by the automorphisms θ and σ given by

$$\theta(\alpha) = \epsilon \alpha, \qquad \theta(\epsilon) = \epsilon,$$

$$\sigma(\alpha) = \alpha, \quad \sigma(\epsilon) = \overline{\epsilon} = \epsilon^5.$$

(Hint: Determine all possible images of α and ϵ under an automorphisms in G, deduce that each of those possibilities gives rise to an actual automorphism, and show that each such automorphism is of the form $\theta^i \sigma^j$ with $1 \le i \le 6$ and $0 \le j \le 1$.

- (d) Verify that θ generates a cyclic subgroup of order 6, and that σ generates a cyclic subgroup of order 2 in G.
- (e) Work out the conjugate $\sigma\theta\sigma^{-1}$. Deduce that G is isomorphic to the dihedral group of order 12.

- (f) Find the fixed fields for the normal subgroup $\langle \theta \rangle$, for the cyclic subgroup $\langle \sigma \rangle$ and for the cyclic subgroup $\langle \theta^3 \rangle$.
- 3. Let E be the splitting field inside \mathbb{C} of the polynomial $f = x^8 2$, and let $G = \Gamma(E : \mathbb{Q})$.
 - (a) Show that $E = \mathbb{Q}(\alpha, \epsilon)$ where $\alpha = \sqrt[8]{2}$ and $\epsilon = \exp(\frac{2\pi i}{8})$.
 - (b) The degree $(E:\mathbb{Q})$ is 32.

Proof: The field E can be obtained from $\mathbb Q$ by two consecutive extensions: by adjoining first $\sqrt[8]{2}$ and then ϵ . The miminum polynomial of $\sqrt[8]{2}$ over $\mathbb Q$ is x^8-2 . Hence $(\mathbb Q(\alpha):\mathbb Q)=8$. The minimum polynomial of ϵ over $\mathbb Q$ is x^4+1 , and this stays irreducible over $\mathbb Q(\alpha)$ since all its roots are non-real complex numbers. Hence $(E:\mathbb Q(\alpha))=4$, and then the tower law gives that $(E:\mathbb Q)=32$.

This, however, is not true. So what is wrong with the proof?

- (c) Show that $E = \mathbb{Q}(\alpha, i)$ where $\alpha = \sqrt[8]{2}$.
- (d) Show that $(E : \mathbb{Q}) = 16$, and deduce that |G| = 16.
- (e) Show that G contains an automorphism θ such that

$$\theta(\alpha) = \epsilon \alpha, \qquad \theta(i) = i$$

where $\epsilon = \exp(\frac{2\pi i}{8})$, and an automorphism σ such that

$$\sigma(\alpha) = \alpha, \quad \sigma(i) = -i.$$

- (f) Show that $\theta(\epsilon) = -\epsilon$.
- (g) Work out $\theta^i(\alpha)$ for i = 1, 2, ..., 8 and hence verify that θ generates a cyclic subgroup of order 8.
- (h) Verify that σ generates a cyclic group of order 2.
- (i) Work out the conjugate $\sigma\theta\sigma^{-1}$, and determine the conjugation action of σ on the cyclic subgroup $\langle\theta\rangle$.
- (j) Show that G is *not* isomorphic to the dihedral group D_{16} of order 16. (Hint: Work out the order of $\theta\sigma$.)
- (k) Find the fixed fields for the cyclic subgroups $\langle \theta \rangle$, $\langle \theta^2 \rangle$, $\langle \theta^4 \rangle$ and $\langle \sigma \rangle$, and for the subgroup H that is generated by θ^4 and σ .
- 4. (Something of a curiosity) Prove that the Galois group $\Gamma(\mathbb{R}:\mathbb{Q})$ is trivial. (Hint: Show that any \mathbb{Q} -automorphisms of \mathbb{R} maps positive real numbers to positive real numbers (for $\alpha > 0$, consider $\sqrt{\alpha}$), deduce that any \mathbb{Q} -automorphism preserves the natural order relation " \geq " on \mathbb{R} , then take any real number α and two sequences of rational numbers, one monotonic increasing, the other monotonic decreasing and both converging to α , and argue that α must be fixed.)