- 1. (a) The roots of f are $\epsilon^i \alpha$ with i = 0, 1, 2, 3, 4 where $\alpha = \sqrt[5]{2}$ and $\epsilon = \exp(\frac{2\pi i}{5})$. Hence $E = \mathbb{Q}(\alpha, \epsilon \alpha, \epsilon^2 \alpha, \epsilon^3 \alpha, \epsilon^4 \alpha) = \mathbb{Q}(\alpha, \epsilon)$ is a splitting field of f inside \mathbb{C} .
 - (b) The field E can be obtained from $\mathbb Q$ by two consecutive simple extensions, namely, by first adjoining α and then adjoining ϵ . The minimum polynomial of α over $\mathbb Q$ is x^5-2 which is irreducible by Eisenstein's criterion. Hence $(\mathbb Q(\alpha):\mathbb Q)=5$. By the tower law, 5 divides the degree $(E:\mathbb Q)$. The minimum polynomial of ϵ over $\mathbb Q$ is $x^4+x^3+x^2+x+1$. It is irreducible by Ex.VIII.8. Consequently, the minimum polynomial of ϵ over $\mathbb Q(\alpha)$ has degree at most 4, and then the tower law gives that $(E:\mathbb Q)\leq 20$. On the other hand, E can be obtained by fist adjoining ϵ and then α . Now, $(\mathbb Q(\epsilon):\mathbb Q)=4$, and hence 4 divides the degree $(E:\mathbb Q)$. Since the only number ≤ 20 that is divisible by both 4 and 5 is 20 itself, it follows that $(E:\mathbb Q)=20$. Being a splitting field in characteristic zero, E is a normal extension of $\mathbb Q$, and hence $|G|=(E:\mathbb Q)=20$.
 - (c) Since E is generated by α and ϵ , each \mathbb{Q} -automorphism of E is completely determined by its effect on α and ϵ . Since any such automorphism maps α to a zero of x^5-2 , there are 5 possible images for α , namely $\epsilon^i \alpha$ with i=0,1,2,3,4. Also, since any \mathbb{Q} -automorphism maps ϵ to a zero of $x^4+x^3+x^2+x+1$, the possible images for ϵ are ϵ^j with j=1,2,3,4. Hence there are precisely 20 possible images for the pair α , ϵ and since the order of G is 20 all 20 of these possibilities give us actual automorphisms in G. For θ and σ we have

$$\theta^i \sigma^j(\alpha) = \epsilon^i \alpha, \qquad \theta^i \sigma^j(\epsilon) = \epsilon^{2^j}.$$

As j runs over 0, 1, 2, 3, the power $2^j \mod 5$ takes the values 1, 2, 4, 3, respectively, and hence each automorphism is of the required form.

- (d) We have that θ and all of its powers fix ϵ while $\theta^i(\alpha) = \epsilon^i \alpha$. Hence the order of θ is 5. On the other hand, σ fixes α and $\sigma^j(\epsilon) = \epsilon^{2^j}$. Hence the order of σ is 4.
- (e) We have

$$\sigma\theta\sigma^{-1}(\alpha) = \sigma\theta(\alpha) = \sigma(\epsilon\alpha) = \epsilon^2\alpha = \theta^2(\alpha)$$

and

$$\sigma\theta\sigma^{-1}(\epsilon) = \sigma\theta\sigma^{3}(\epsilon) = \sigma\theta(\epsilon^{3}) = \sigma(\epsilon^{3}) = \epsilon^{6} = \epsilon = \theta^{2}(\epsilon).$$

Hence $\sigma\theta\sigma^{-1}=\theta^2$. It follows that the cyclic subgroup $\langle\theta\rangle$ is normalized by the cyclic subgroup $\langle\sigma\rangle$, and hence it is normalized by $G=\langle\theta\rangle\langle\sigma\rangle$.

- (f) $\langle \theta \rangle$ has order 5, and hence $\Phi(\langle \theta \rangle)$ is a degree 4 extension of \mathbb{Q} . Since θ fixes ϵ , and $(\mathbb{Q}(\epsilon):\mathbb{Q})=4$, it follows that $\Phi(\langle \theta \rangle)=\mathbb{Q}(\epsilon)$. $\langle \sigma \rangle$ has order 4, and hence $\Phi(\langle \sigma \rangle)$ is a degree 5 extension of \mathbb{Q} . Since σ fixes α , and $(\mathbb{Q}(\alpha):\mathbb{Q})=5$, it follows that $\Phi(\langle \sigma \rangle)=\mathbb{Q}(\alpha)$. The subgroup H od G that is generated by θ and σ^2 has order 10 (in fact, since $\sigma^2\theta\sigma^{-2}=\theta^4=\theta^{-1}$, H is isomorphic to the dihedral group of order 10). Hence $\Phi(H)$ is a degree 2 extension of \mathbb{Q} . Since both θ and σ^2 fix $\epsilon+\epsilon^4=\epsilon+\sigma^2(\epsilon)$, it follows that $\Phi(H)=\mathbb{Q}(\epsilon+\epsilon^4)$ (Note that $\epsilon+\epsilon^4\notin\mathbb{Q}$ because it it is not fixed by σ : $\sigma(\epsilon+\epsilon^4)=\epsilon^2+\epsilon^3$ which is a negative real number whereas $\epsilon+\epsilon^4$ is a positive real number).
- 2. (a) The roots of f are $\epsilon^i \alpha$ with i = 0, 1, 2, 3, 4, 5 where $\alpha = \sqrt[6]{2}$ and $\epsilon = \exp(\frac{2\pi i}{6})$. Hence $E = \mathbb{Q}(\alpha, \epsilon \alpha, \epsilon^2 \alpha, \dots, \epsilon^5 \alpha) = \mathbb{Q}(\alpha, \epsilon)$ is a splitting field of f inside \mathbb{C} .
 - (b) The field E can be obtained from $\mathbb Q$ by two consecutive simple extensions, namely, by first adjoining α and then adjoining ϵ . The minimum polynomial of α over $\mathbb Q$ is x^6-2 which is irreducible by Eisenstein's criterion. Hence $(\mathbb Q(\alpha):\mathbb Q)=6$. The minimum polynomial of $\epsilon=\exp(\frac{2\pi i}{6})=\frac{1}{2}(1+i\sqrt{3})$ over $\mathbb Q$ is x^2-x+1 . This stays irreducible over $\mathbb Q(\alpha)$ since its two roots are non-real complex numbers and $\mathbb Q(\alpha)$ consists entirely of real numbers. Consequently, $(E:\mathbb Q(\alpha))=2$, and then the tower law gives that $(E:\mathbb Q)=12$. Being a splitting field in characteristic zero, E is a normal extension of $\mathbb Q$, and hence $|G|=(E:\mathbb Q)=12$.
 - (c) Since E is generated by α and ϵ , each \mathbb{Q} -automorphism of E is completely determined by its effect on α and ϵ . Since any such automorphism maps α to a zero of x^6-2 , there are 6 possible images for α , namely $\epsilon^i \alpha$ with i=0,1,2,3,4,5. Also, since any \mathbb{Q} -automorphism maps ϵ to a zero of x^2-x+1 , the possible images for ϵ are ϵ and $\epsilon^5=\bar{\epsilon}$. Hence there are precisely 12 possible images for the pair α,ϵ and since the order of G is 12 all 12 of these possibilities give us actual automorphisms in G. For θ and σ we have

$$\theta^i(\alpha) = \epsilon^i \alpha, \qquad \theta^i(\epsilon) = \epsilon.$$

and

$$\theta^i \sigma(\alpha) = \epsilon^i \alpha, \qquad \theta^i \sigma(\epsilon) = \overline{\epsilon}.$$

Hence each automorphism in G is a product of powers of α and ϵ , and so these automorphisms generate G.

(d) We have that θ and all of its powers fix ϵ while $\theta^i(\alpha) = \epsilon^i \alpha$. Hence the order of θ is 6. On the other hand, σ fixes α and $\sigma^2(\epsilon) = \epsilon$. Hence the order of σ is 2.

(e) We have

$$\sigma\theta\sigma^{-1}(\alpha) = \sigma\theta(\alpha) = \sigma(\epsilon\alpha) = \overline{\epsilon}\alpha = \epsilon^5\alpha = \theta^5(\alpha)$$

and

$$\sigma\theta\sigma^{-1}(\epsilon) = \sigma\theta\sigma(\epsilon) = \sigma\theta(\overline{\epsilon}) = \sigma(\overline{\epsilon}) = \epsilon = \theta^5(\epsilon).$$

Hence $\sigma\theta\sigma^{-1} = \theta^5$. It follows that the cyclic subgroup $\langle\theta\rangle$ is normalized by the cyclic subgroup $\langle\sigma\rangle$, and hence it is normalized by $G = \langle\theta\rangle\langle\sigma\rangle$. Moreover, G is generated by θ of order 6 and σ of order 2 and $\sigma\theta\sigma^{-1} = \theta^{-1}$. So G is isomorphic to the dihedral group of order 12.

- (f) $\langle \theta \rangle$ has order 6, and hence $\Phi(\langle \theta \rangle)$ is a degree 2 extension of \mathbb{Q} . Since θ fixes ϵ , and $(\mathbb{Q}(\epsilon):\mathbb{Q})=2$, it follows that $\Phi(\langle \theta \rangle)=\mathbb{Q}(\epsilon)$. $\langle \sigma \rangle$ has order 2, and hence $\Phi(\langle \sigma \rangle)$ is a degree 6 extension of \mathbb{Q} . Since σ fixes α , and $(\mathbb{Q}(\alpha):\mathbb{Q})=6$, it follows that $\Phi(\langle \sigma \rangle)=\mathbb{Q}(\alpha)$. $\langle \theta^3 \rangle$ has order 2, and hence $\Phi(\langle \theta^3 \rangle)$ is a degree 6 extension of \mathbb{Q} . Since θ^3 fixes ϵ and $\alpha^2=\sqrt[3]{2}$, and since $(\mathbb{Q}(\epsilon,\sqrt[3]{2}):\mathbb{Q})=6$, it follows that $\Phi(\langle \theta \rangle)=\mathbb{Q}(\epsilon,\sqrt[3]{2})$.
- 3. (a) The roots of f are $\epsilon^i \alpha$ with $i = 0, 1, \ldots, 7$ where $\alpha = \sqrt[8]{2}$ and $\epsilon = \exp(\frac{2\pi i}{8})$. Hence $E = \mathbb{Q}(\alpha, \epsilon \alpha, \epsilon^2 \alpha, \ldots, \epsilon^7 \alpha) = \mathbb{Q}(\alpha, \epsilon)$ is a splitting field of f inside \mathbb{C} .
 - (b) It is not true that $x^4 + 1$ stays irreducible over $\mathbb{Q}(\alpha)$. In fact,

$$x^4 + 1 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2} + 1).$$

and since $\sqrt{2} = \alpha^4 \in \mathbb{Q}(\alpha)$, this is a factorization over $\mathbb{Q}(\alpha)$.

- (c) We have $\epsilon^2 = i \in E$. Hence $E = \mathbb{Q}(\alpha, \epsilon, i)$. But $\epsilon = \frac{\sqrt{2}}{2}(1+i) = \frac{\alpha^4}{2}(1+i)$. Consequently, $E = \mathbb{Q}(\alpha, i)$, as required.
- (d) The field E can be obtained from $\mathbb Q$ by two consecutive simple extensions, namely, by first adjoining α and then adjoining i. The minimum polynomial of α over $\mathbb Q$ is x^8-2 which is irreducible by Eisenstein's criterion. Hence $(\mathbb Q(\alpha):\mathbb Q)=8$. The minimum polynomial of i over $\mathbb Q$ is x^2+1 . This stays irreducible over $\mathbb Q(\alpha)$ since its two roots $\pm i$ are non-real complex numbers and $\mathbb Q(\alpha)$ consists entirely of real numbers. Consequently, $(E:\mathbb Q(\alpha))=2$, and then the tower law gives that $(E:\mathbb Q)=16$. Being a splitting field in characteristic zero, E is a normal extension of $\mathbb Q$, and hence $|G|=(E:\mathbb Q)=16$.
- (e) Since E is generated by α and i, each \mathbb{Q} -automorphism of E is completely determined by its effect on α and i. Since any such automorphism maps α to a zero of x^8-2 , there are 8 possible images for α , namely $\epsilon^i \alpha$ with $j=0,1,\ldots,7$. Also, since any \mathbb{Q} -automorphism

maps i to a zero of x^2+1 , the possible images for i are $\pm i$. Hence there are precisely 16 possible images for the pair α, i and since the order of G is 16, all 16 of these possibilities give us actual automorphisms in G. In particular, G contains the automorphisms θ and σ as required.

(f) We have

$$\theta(\epsilon) = \theta\left(\frac{\sqrt{2}}{2}(1+i)\right) = \theta\left(\frac{\alpha^4}{2}(1+i)\right) = \frac{\theta(\alpha)^4}{2}(1+i)$$
$$= \frac{(\epsilon\alpha)^4}{2}(1+i) = \frac{(\epsilon)^4(\alpha)^4}{2}(1+i) = \frac{(-1)\sqrt{2}}{2}(1+i) = -\epsilon.$$

(g) We have

$$\begin{split} \theta(\alpha) &= \epsilon \alpha, \qquad \theta^2(\alpha) = -\epsilon^2 \alpha, \qquad \theta^3(\alpha) = \epsilon^7 \alpha, \qquad \theta^4(\alpha) = -\alpha, \\ \theta^5(\alpha) &= -\epsilon \alpha, \qquad \theta^6(\alpha) = \epsilon^2 \alpha, \qquad \theta^7(\alpha) = -\epsilon^7 \alpha, \qquad \theta^8(\alpha) = \alpha \end{split}$$

while i is fixed by θ and all its powers. It follows that θ has order 8.

- (h) Of course, σ is just complex conjugation and therefore of order 2.
- (i) We have

$$\sigma\theta\sigma^{-1}(\alpha) = \sigma\theta\sigma(\alpha) = \sigma\theta(\alpha) = \sigma(\epsilon\alpha) = \overline{\epsilon}\alpha = \epsilon^7\alpha = \theta^3(\alpha)$$

and

$$\sigma\theta\sigma^{-1}(i) = \sigma\theta\sigma(i) = \sigma\theta(-i) = \sigma(-i) = i = \theta^{3}(i).$$

Hence $\sigma\theta\sigma^{-1}=\theta^3$. From here we easily calculate

$$\sigma\theta^2\sigma^{-1} = \theta^6, \quad \sigma\theta^3\sigma^{-1} = \theta, \quad \sigma\theta^4\sigma^{-1} = \theta^4,$$
$$\sigma\theta^5\sigma^{-1} = \theta^7, \quad \sigma\theta^6\sigma^{-1} = \theta^3, \quad \sigma\theta^7\sigma^{-1} = \theta^5.$$

It follows that the cyclic subgroup $\langle \theta \rangle$ is normalized by the cyclic subgroup $\langle \sigma \rangle$, and hence it is normalized by $G = \langle \theta \rangle \langle \sigma \rangle$.

(j) Any element in G has a unique expression as a product $\theta^i \sigma^j$ where $0 \le i \le 7$ and j = 0, 1. From (i) we have that $\sigma \theta = \theta^3 \sigma$. Using this, we easily calculate

$$(\theta\sigma)^2 = \theta\sigma\theta\sigma = \theta\theta^3\sigma\sigma = \theta^4,$$
$$(\theta\sigma)^3 = \theta^4\theta\sigma = \theta^5\sigma,$$

and, finally,

$$(\theta\sigma)^4 = ((\theta\sigma)^2)^2 = (\theta^4)^2 = \theta^8 = 1.$$

Hence the order of $\theta\sigma$ is 4. So G has at least three elements of order 4, namely $\theta\sigma$, θ^2 and θ^6 . Hence it cannot be isomorphic to

- the dihedral group D_{16} which has only two elements of order 4 (all elements outside the cyclic normal subgroup of order 8 in D_{12} have order 2).
- (k) $\langle \theta \rangle$ has order 8, and hence $\Phi(\langle \theta \rangle)$ is a degree 2 extension of \mathbb{Q} . Since θ fixes i, and $(\mathbb{Q}(i):\mathbb{Q})=2$, it follows that $\Phi(\langle \theta \rangle)=\mathbb{Q}(i)$.
 - $\langle \theta^2 \rangle$ has order 4, and hence $\Phi(\langle \theta^2 \rangle)$ is a degree 4 extension of \mathbb{Q} . Since θ^2 fixes $\alpha^4 = \sqrt{2}$ and i, and $(\mathbb{Q}(\sqrt{2},i):\mathbb{Q}) = 4$, it follows that $\Phi(\langle \sigma \rangle) = (\mathbb{Q}(\sqrt{2},i):\mathbb{Q}) = 4$.
 - $\langle \theta^4 \rangle$ has order 2, and hence $\Phi(\langle \theta^4 \rangle)$ is a degree 8 extension of \mathbb{Q} . Since θ^4 fixes $\alpha^2 = \sqrt[4]{2}$ and i, and since $(\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}) = 8$ (see Ex.VII.1), it follows that $\Phi(\langle \theta^2 \rangle) = \mathbb{Q}(\sqrt[4]{2},i)$.
 - $\langle \sigma \rangle$ has order 2, and hence $\Phi(\langle \sigma \rangle)$ is a degree 8 extension of \mathbb{Q} . Since σ fixes α , and since $(\mathbb{Q}(\alpha) : \mathbb{Q}) = 8$, it follows that $\Phi(\langle \theta^2 \rangle) = \mathbb{Q}(\alpha)$.
 - The group $H = \langle \theta^4, \sigma \rangle$ is generated by two commuting elements of order 2, so it is a Klein four group of order 4. Hence $\Phi(H)$ is a degree 4 extension of \mathbb{Q} . Since both θ^4 and σ fix $\alpha^2 = \sqrt[4]{2}$, and $(\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}) = 4$, it follows that $\Phi(H) = \mathbb{Q}(\sqrt[4]{2})$.
- 4. Let σ be an automorphisms of \mathbb{R} that fixed all rational numbers (in fact, since \mathbb{Q} is the prime subfield, any automorphism of \mathbb{R} will be a \mathbb{Q} -automorphism). Let $\alpha \in \mathbb{R}$ with $\alpha > 0$. Then $\sqrt{\alpha} \in \mathbb{R}$, and we have $\sigma(\alpha) = \sigma(\sqrt{\alpha}\sqrt{\alpha}) = (\sigma(\sqrt{\alpha}))^2 > 0$. It follows that if $\alpha > \beta$ then $\sigma(\alpha) > \sigma(\beta)$. Consequently, if $\{a_n\}$ and $\{b_n\}$ are sequences of rational numbers converging to α such that $a_n > \alpha > b_n$ for all n, we get that $a_n = \sigma(a_n) > \sigma(\alpha) > \sigma(b_n) = b_n$ for all n, and hence $\sigma(\alpha) = \alpha$, i.e. σ is the identity map.