MATH 3650, Symplectic Geometry

Kiumars Kaveh

October 25, 2013

Due: November 8, 2013

All manifolds, functions, forms and vector fields are assumed to be C^{∞} , unless otherwise stated.

Problem 1: (Gradient-Hamiltonian vector field) Let M be a Kähler manifold with Kähler form ω and associated Riemannian metric g. Let $f: M \to \mathbb{C}$ be a holomorphic function on M. For each $z \in \mathbb{C}$ let M_z denote the fiber $f^{-1}(z)$. Suppose z is a regular value of f then we know that M_z is a complex submanifold of M and $\omega_z := \omega_{|M_z|}$ is a Kähler form on X_z .

(a) Let $X_{\mathrm{Im}(f)}$ denote the Hamiltonian vector field of the imaginary part of f with respect to the symplectic form ω . Also let $\nabla(\mathrm{Re}f)$ denote the gradient vector field of the real part of f with respect to the Riemannian metric g. Show that

$$\nabla(\mathrm{Re}f) = -X_{\mathrm{Im}f}.$$

(Hint: Cauchy-Riemann relations.)

(b) Define the gradient-Hamiltonian vector field V_f by:

$$V_f := -\frac{\nabla(\operatorname{Re} f)}{|\nabla(\operatorname{Re} f)|^2} = \frac{X_{\operatorname{Im} f}}{|X_{\operatorname{Im} f}|^2}.$$

Prove that directional derivative (Lie derivative) of Re f in the direction of V_f is constantly equal to -1, and the directional derivative of Im f in the direction of V_f is constantly equal to 0.

(c) Let ϕ_t denote the flow of V. Show that, whenever defined, ϕ_t maps M_z to M_{z-t} . Moreover, show that ϕ_t respects the family of Kähler forms ω_z on M_z i.e., whenever defined $(\phi_t)^*(\omega_{z-t}) = \omega_z$.

(d) Let $M=\mathbb{C}^2$ (equipped with its standard Hermitian/Kähler structure) and let f(x,y)=xy. Compute V_f .

From DaSilva's book:

Homework 8 (Compatible Linear Structures) Problems 2, 3

Homework 12 (Fubini-Study Structure) Problems 5, 7 (use definition of F-S form given in class)

Homework 13 (Simple Pendulum) (c).

Homework 16 (Hermitian Matrices) Problems 1, 2, 5