MATH 2370, Homework 3

Kiumars Kaveh

September 26, 2015

Due date: Friday October 2, 2015

As usual we follow the notation in P. Lax, Linear Algebra and Its Applications.

Do only 4 out of the 5 problems.

Problem 1: Let X be a finite dimensional vector space. Let $T, S \in \mathcal{L}(X, X)$ be linear maps. Show that

- (1) $\dim(R_{ST}) \leq \dim(R_S)$.
- (2) $\dim(N_{ST}) \leq \dim(N_S) + \dim(N_T)$.

Problem 2: Let X be a finite dimensional vector space and $W \subset X$ a subspace. Show that there is a projection map $P: X \to X$ such that the range of P is W (i.e. P(X) = W). (Recall that a linear mapping $P: X \to X$ is a projection if $P^2 = P$.)

Problem 3: Let Y, Z be subspaces of a finite dimensional vector space X. Show that:

- $(1) \ (Y+Z)^{\perp} = Y^{\perp} \cap Z^{\perp}.$
- (2) $(Y \cap Z)^{\perp} = Y^{\perp} + Z^{\perp}$.

Problem 4: Let X be the vector space of all real polynomials (in one variable t) of degree less than n. Let c_1, \ldots, c_n be distinct real numbers and let $T: X \to \mathbb{R}^n$ be the linear map defined by:

$$T(p) = (p(c_1), \ldots, p(c_n)).$$

Consider the basis $\mathcal{B} = (1, t, t^2, \dots, t^{n-1})$ for X and the standard basis $\mathcal{E} = (e_1, \dots, e_n)$ for the vector space \mathbb{R}^n . Write the $n \times n$ matrix of the linear mapping T with respect to the bases \mathcal{B} and \mathcal{E} .

Problem 5:

- (1) Let X be a finite dimensional vector space. Let $T \in \mathcal{L}(X,X)$ be an invertible linear map. Show that T' is also invertible and $(T')^{-1} = (T^{-1})'$.
- (2) Let $G = \mathrm{GL}(n,\mathbb{R})$ be the group of invertible $n \times n$ matrices. Show that the map $i: A \mapsto (A^{-1})^t$ is an automorphism of the group G and $i^2 = i$.