MATH 2370, Homework 8

Kiumars Kaveh

Due date: Monday November 16, 2015

Problem 1: Let A be an $n \times n$ complex matrix. A vector $v \in \mathbb{C}^n$ is called a *cyclic vector for* A if $\{v, Av, A^2v, \dots, A^{n-1}v\}$ span \mathbb{C}^n . Suppose A has a cyclic vector. (Note: not every matrix has a cyclic vector!)

- (a) Show that the minimal polynomial of A and the characteristic polynomial of A coincide.
- (b) Prove that each eigenvalue λ of A corresponds to one Jordan block.

Problem 2: As above let A be an $n \times n$ matrix with a cyclic vector v.

- (a) Show that any vector $w \in \mathbb{C}^n$ is of the form w = f(A)v where $f(t) \in \mathbb{C}[t]$ is a polynomial.
- (b) (Cyclic vector theorem) Show that if B is another matrix which commutes with A then B = f(A) for some polynomial $f(t) \in \mathbb{C}[t]$. Hint: By Part (a) we can find a polynomial f such that Bv = f(A)v. Show that f(A) = B.

Problem 3: Let λ be an eigenvalue of an $n \times n$ matrix A. Suppose that $\dim(N_1(\lambda)) = 2$, $\dim(N_2(\lambda)) = 4$ and $\dim(N_3(\lambda)) = \dim(N_4(\lambda)) = 5$. Find the Jordan blocks of A corresponding to λ . (Recall that $N_k(\lambda)$ is the null space of $(A - \lambda I)^k$).

Problem 4: Let P be the linear space of polynomials with real coefficients equipped with the scalar product

$$(f,g) = \int_0^1 f(x)g(x)dx.$$

- (a) Using Gram-Schmidt process to generate an orthonormal basis of the span of vectors $\{1,x^2\}.$
- (b) Find the projection of polynomial x on the span of vectors $\{1, x^2\}$.