Dec. 4/2017 Last nech of classes (m)

. Final exam: next Tuesday (next week)

. No quiz tomorow!

. Chech webpage for final info & sample final.

. (The sample final problems now in the webpage is outdated & contains topics we did not disense.)

Non-homog. 2nd ord. lin. diff. equ. (with const. Coeff.):

$$ay'' + by' + cy = G(x)$$

 $\underline{\exists_{x.}} \quad y'' + y' - 2y = (x^2) \rightarrow 6(x)$

① Solve the homog. equ. y'' + y' - 2y = 0Find all sol. y(x)

Tind one sol $y_p(x)$ of y''+y'-2y=x.

2 (Method of undetermined coeff.) IF G(x) is a poly. of deg. n. then y(x) can be taken to be a poly. of deg. n. Determine coeff. of this poly. so it satisfies the diff. $G(x) = x^2$ $y(x) = Ax^2 + Bx + C \longrightarrow Find A,B,C$ $y'_p(x) = 2A \times + B$ $y_p'(x) = 2A$ $y'' + y' - 2y = x^{2} \longrightarrow \left(2A + 2A \times + B - 2(A \times^{2} + B \times + C)\right)^{2}$ We need to find A,B,C such that for all x. $(-2A) \times^{2} + (2A-2B) \times + (2A+B-2C) = \times^{2}$ $-2A = 1 \longrightarrow A = -\frac{1}{2}$ $2A - 2B = 0 \longrightarrow -1 - 2B = 0 \longrightarrow B = -\frac{1}{2}$ $2A + B - 2C = 0 \longrightarrow -1 - \frac{1}{2} = 2C \longrightarrow C = -\frac{3}{4}$ $y_p(x) = (-\frac{1}{2})x^2 + (-\frac{1}{2})x + (-\frac{3}{4})$ is a "particular" sol. The general sol. $y(x) = (\frac{-1}{2})x^2 + (\frac{-1}{2})x + (\frac{-3}{4}) + (\frac{-2}{4})x + (\frac{-3}{4}) + (\frac{-3}{4})x + (\frac{-$

other examples are variations of this: Ex. y"+ 47 = e G(x) = e \longrightarrow Y_p is of the form $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $A e . \quad \text{find} \quad A).$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{the form}$ $G(x) = e \longrightarrow Y_p \quad \text{is} \quad \text{of} \quad \text{is} \quad \text{of} \quad \text{of} \quad \text{is} \quad \text{of} \quad \text{of}$ $y_{p}' = 5A e$ $y'_{p} = 5A e$ 25A + 4A = 1 $A = \frac{1}{29} \longrightarrow \sqrt{9(x)} = \frac{e^{5x}}{29}$ r = ± \(\sqrt{-4} = ± 2 \idot \) $\alpha = 0$, $\beta = 2$ $Y_{c}(x) = C_{1} Con(2x) + C_{2} Sin(2x)$. General sol. $\gamma(x) = \frac{e^{5x}}{29} + \frac{C_1 \operatorname{Can}(2x) + C_2 \operatorname{Sin}(2x)}{=}$ • $G(x) = Con(3x) \longrightarrow Y_p(x) = A Con(3x) + B Sin(3x)$ $G(x) = x^{2} \xrightarrow{x} \longrightarrow Y_{p}(x) = (Ax^{2}+Bx+C)e^{x}$ $G(x) = x e^{2x}$ $J_p(x) = (Ax+B) e^{2x}$ • $G(x) = x + \sin(x) \longrightarrow y_p(x) = (Ax + Bx + C) +$

Danix) + Esin(x).

$$\frac{\text{Ex.}}{\text{y}'' + 2\text{y}' + 4\text{y}} = \text{X} Can(3\text{x}) \leftarrow$$

$$\frac{\text{y}_{p}(\text{x})}{\text{y}_{p}(\text{x})} = \left(\text{Ax} + \text{B}\right) Con(3\text{x}) + \left(\text{Cx} + \text{D}\right) Sin(3\text{x}).$$

$$\text{Find } \text{y}_{p} \text{ & } \text{y}_{p}'' \text{ & plug-in the equ.}$$

$$\text{to find } \text{A,B,C,D}.$$