
Sep. 25/2017

Tomorrow's quiz: Sec. 7.2 & 7.3 (volumes)

Arc length:

$$(x, f(x)) \longrightarrow (1, f(x)) \qquad (1, f(x))$$

0

Ex. (#17 Sec. 7.4)

$$y = ln(1-x^2)$$

$$0 \le X \le \frac{1}{2}$$

(Find) the arc length:

$$f(x) = \ln (1 - x^2)$$

 $f'(x) = \frac{1}{1 - x^2} \cdot (-2x)$

1+(f(x))2)dx

> length of

set up an integral
that computes...

Arc
$$length$$
 $\int \sqrt{1 + \left(\frac{-2x}{1-x^2}\right)^2} dx$

Ex (Circomference of an ellipse)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Write an integral that gives Circum of the ellipse.

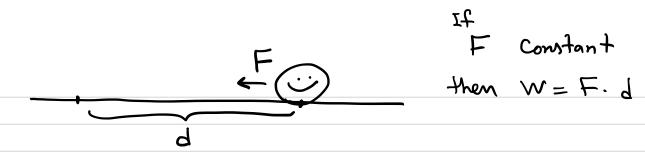
$$2 \int \sqrt{1 + y(x)^2} \, dx$$

$$x = -a$$

$$Y = \int_{a^2}^{b^2 - x^2 b^2} \sqrt{2x^2} \, dx$$

Alternatively, you can use implicit aiff.

$$y' = \frac{1}{2\sqrt{b^2 - \frac{b^2x^2}{a^2}}} - 2x(b^2/a^2).$$


Circum of the ellipse
$$-2 \int \sqrt{1 + \frac{4x^2(b^2/a^2)^2}{a^2}} \, dx$$

ellipse
$$-a \int \sqrt{1 + \frac{4x^2(b^2/a^2)^2}{a^2}} \, dx$$

. It took conturies to finally prove that above integral can not be expressed in terms of "elementary function" e.g. sin, cos exp, In


(you can little bit simplify this expression).

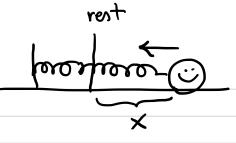
.Ramanujan found very	nice approx. for this
integral	
(Movie: The man who	knew infinity).
. We skip. 7.5 -> 5	surface area.
<u> </u>	
7.6 Applications in	physics.
General Principle:	
x, y two quousiti	
Third quantity given by (when X & Y Constant).	xy (product).
(when X & y Constant).	
Simple example:	
×	rectonyle)
, Now suppose X is vo	riable & y depends on x
Then:	(i.e $\gamma = f(x)$)
	f(x) dx
The third quantity =	1(X) CX
$a \leq x \leq b$ $x = $.a
×2 × 3 2	
	orce x distance
m	ultiplication formula

. When Fis variable say F(x), x distance to 0.

(or position)

Work done by force F(x) from x = a to x = b is:

$$W = \int_{a}^{b} F(x) dx$$


Examples we see in 7.6: . Work - work by force of gravity

. Work --- work by force of a spring

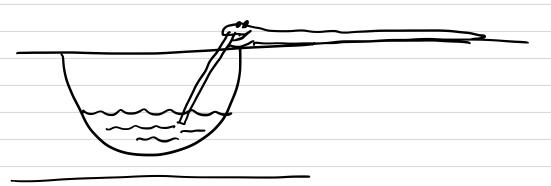
- . Pressure (hydrostatic pressure)
- . Center of mass & momentum.

Ex. Hook's law

F = (K) x Hook's Const.

Work done to

stretch the spring =


from X=0 to X=b

(const. K known)

 $\int_{-k}^{b} -k \times dx$

Next time:

work needed to empty the pool?

