Department of Mathematics University of Pittsburgh MATH 2500

Midterm, Spring 2018

Instructor: Kiumars Kaveh

Last Name: Student Number:

First Name:

TIME ALLOWED: 50 MINUTES. TOTAL: 60

NO AIDS ALLOWED. WRITE SOLUTIONS ON THE SPACE PROVIDED.

Question	Mark
1	/15
2	/5
3	/10
4	/10
5	/10
6	/10
7 (bonus)	/5
TOTAL	/60

1(a).[10 points] Give the definitions of the following: (i) An action of a group G on a set X. (ii) A solvable group. (iii) A composition series for a group G.

(b). [5 points] State the Jordan-Hölder theorem, and the 1st isomorphism theorem. **2.**[5 points] Prove the orbit-stabilizer theorem: let G be a group acting on a set X. Let $H = \operatorname{stab}_G(x)$ be the stabilizer subgroup of $x \in X$. Then there is a one-to-one correspondence between the orbit $G \cdot x$ and the coset space G/H.

3.[10 points] Show that A_4 is not a simple group. Does A_4 have a subgroup of index 2? Justify your answer.

4.[10 points] Let X be a finite set and suppose G is an abelian subgroup of the symmetric group S_X that acts transitively on X. Show that for all $e \neq g \in G$ and all $x \in X$ we have $g \cdot x \neq x$. Deduce that |G| = |X|. (Hint: recall that if $y = g \cdot x$ then $g \operatorname{stab}(x) g^{-1} = \operatorname{stab}(y)$.)

5.[10 points] Find all the conjugacy classes in S_4 .

6.[10 points] Let G be a finite group with |G| = n. Let k be an integer relatively prime to n. Show that the map $x \mapsto x^k$, $\forall x \in G$, is surjective. (Hint: first prove the statement for when G is a cyclic group, you can use theorems proved in class.)

7.[5 points] (bonus) Let G be a group. Let N be the subgroup of G generated by all the elements of the form $xyx^{-1}y^{-1}$, $\forall x,y\in G$.

- (a) Show that if $\phi: G \to G$ is any automorphism of G then $\phi(N) = N$. Conclude that N is a normal subgroup of G.
- (b) Show that G/N is abelian (N is usually called the *commutator subgroup* of G).