MATH 2370, Practice Problems

Kiumars Kaveh

Problem: Prove that an $n \times n$ complex matrix A is diagonalizable if and only if there is a basis consisting of eigenvectors of A.

Problem: Let $A:V\to W$ be a one-to-one linear map between two finite dimensional vector spaces V and W. Show that the dual map $A':W'\to V'$ is surjective.

Problem: Determine if the curve

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 + xy = 10\}$$

is an ellipse or hyperbola or union of two lines.

Problem: Show that if a nilpotent matrix is diagonalizable then it is the zero matrix.

Problem: Let P be a permutation matrix. Show that P is diagonalizable. Show that if λ is an eigenvalue of P then for some integer m > 0 we have $\lambda^m = 1$ (i.e. λ is an m-th root of unity). Hint: Note that $P^m = I$ for some integer m > 0.

Problem: Show that if λ is an eigenvector of an orthogonal matrix A then $|\lambda| = 1$.

Problem: Take a vector $v \in \mathbb{R}^n$ and let H be the hyperplane orthogonal to v. Let $R : \mathbb{R}^n \to \mathbb{R}^n$ be the reflection with respect to a hyperplane H. Prove that R is a diagonalizable linear map.

Problem: Prove that if λ_1, λ_2 are distinct eigenvalues of a complex matrix A then the intersection of the generalized eigenspaces E_{λ_1} and E_{λ_2} is zero (this is part of the Spectral Theorem).

Problem: Let $H=(h_{ij})$ be a 2×2 Hermitian matrix. Use the Minimax Principle to show that if $\lambda_1 \leq \lambda_2$ are the eigenvalues of H then $\lambda_1 \leq h_{11} \leq \lambda_2$.

Problem: Suppose M is a real symmetric $n \times n$ matrix. Prove that if all the eigenvalues of M are positive then for any $0 \neq x \in \mathbb{R}^n$ we have (x, Mx) > 0. Here (\cdot, \cdot) is the standard scalar product on \mathbb{R}^n . (As you may know such an M is called *positive definite*.)

Problem: Let A, B be $n \times n$ complex matrices. Recall that the Hilbert-Schmidt norm $||A||_{HS}$ of A is $tr(A^*A)$. Prove that:

$$||AB||_{HS} \le ||A||_{HS}||B||_{HS}.$$

(Hint: By the Cauchy-Schwarz inequality we know $||Ax|| \le ||A||_{HS}||x||$ for all x. Apply this and take x to be columns of B.)

Problem: Let A be an $n \times n$ complex matrix. Prove that det(A) is product of all the eigenvalues of A (where each eigenvalue is repeated as many times as it appears in the characteristic polynomial). Similarly, show that tr(A) is the sum of eigenvalues of A.

Problem: Let A be a normal matrix. Show that ||A|| = r(A), where ||A|| is the operator norm of A and r(A) is the spectral radius.

Problem: Prove that $r(A) = r(A^T)$.

Problem: Compute the operator norm of the matrix:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Problem: Give an example of a diagonalizable matrix A such that $||A|| \neq r(A)$.

Problem: What is the operator norm, Hilbert-Schmidt norm and spectral radius of a unitary matrix?

Problem: Let A be an $n \times n$ complex matrix. Show that all the eigenvalues of AA^* are non-negative real numbers. Here A is the adjoint of A

with respect to the standard complex scalar product (Hermitian product), i.e. $A^* = \bar{A}^T$.

Problem: Give an example of a real symmetric 2×2 matrix M and an invertible 2×2 matrix L such that $D = L^T M L$ is diagonal but the diagonal entries of D are not eigenvalues of M.

Problem: Let M be a Hermitian matrix with non-negative eigenvalues. Show that $M = A^*A$ for some $n \times n$ complex matrix A. (Hint: first assume M is diagonal.)

Problem: Suppose A is a Hermitian matrix such that all its eigenvalues are non-negative. Show that A has a square root, that is, there is an $n \times n$ matrix B with $B^2 = A$. Moreover, show that B can be taken to be Hermitian and with non-negative eigenvalues.

Problem: Use Gram-Schmidt orthonormalization to show that any invertible real matrix A can be written as A = KB where K is an orthogonal matrix and B is upper triangular (similarly any complex invertible matrix is the product of a unitary and an upper triangular).

Problem: Prove that for any $n \times n$ complex matrix A we have

$$tr(A^*A) \le n||A||^2.$$

(Hint: recall that $tr(A^*A) = \sum_{ij} |a_{ij}|^2$. Use the definition of ||A|| and consider $||Ae_i||$ for all standard basis elements e_i .)

Problem: Let Π be the plane in \mathbb{R}^3 defined by x+2y+z=0. Let T be the reflection in \mathbb{R}^3 with respect to the plane Π . Find the matrix representation of T (with respect to the standard basis).

Problem: Let P be an $n \times n$ complex matrix such that $P^2 = P$. and rank(P) = r. Show that P is similar to:

$$\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$

Problem: Let $A, B: \mathbb{C}^n \to \mathbb{C}^n$ be two orthogonal projections satisfying:

$$||Ax||^2 + ||Bx||^2 = ||x||^2,$$

for any $x \in \mathbb{C}^n$. Prove that A + B = I. (Hint: let A and B be orthogonal projections on the subspaces U and W respectively. It suffices to show that $U \oplus W = \mathbb{C}^n$ and U is orthogonal to W.)

Problem: Let A be an $n \times n$ matrix. Show that the null space of A is the same as the null space of A^TA .

Problem: Let A, B be $n \times n$ matrices. Show that:

$$det(I - AB) = det(I - BA).$$

Problem: Let A be a 4×4 symmetric matrix. Suppose $A^2 + 3A = 0$ and that rank(A) = 2. Find the characteristic polynomial of A. Find tr(A) and det(A).

Problem: Prove that a unitary matrix is diagonalizable.

Problem: Suppose A and B are normal matrices. Show that:

$$r(AB) \le r(A)r(B)$$
.