Math 2500 Midterm Exam

Shaoyu Huang 4213091

February 28, 2018

Question (1).

- (a) Give the definitions of the following: (i) An action of a group G on a set X. (ii) A solvable group. (iii) A composition series for a group G.
- (b) State the Jordan-Holder theorem, and the 1st isomorphism theorem.

Solution. (a) (i) A group action of a group G on a set X is a map from $G \times X$ to X satisfying the following properties:

- (1) $g_1 \cdot (g_2 \cdot a) = (g_1 g_2) \cdot a$ for all $g_1, g_2 \in G, a \in A$, and
- (2) $e \cdot a = a$, for all $a \in A$.
 - (ii) A group G is solvable if there is a chain of subgroups

$$\{e\} = G_0 \unlhd G_1 \unlhd G_2 \unlhd \cdots \unlhd G_s = G$$

such that G_{i+1}/G_i is abelian for $i = 0, 1, \dots, s-1$.

(iii) In a group G a sequence of subgroups

$$\{e\} = N_0 < N_1 < N_2 < \dots < N_{k-1} < N_k = G$$

is called a composition series if $N_i \leq N_{i+1}$ and N_{i+1}/N_i is a simple group, $0 \leq i \leq k-1$.

- (b) (i) (Jordan-Holder) Let G be a finite group with $G \neq \{e\}$. Then
- (1) G has a composition series and
- (2) The composition factors in a composition series are unique, namely, if $\{e\} = N_0 \le N_1 \le N_2 \le \cdots \le N_{r-1} \le N_r = G$ and $\{e\} = M_0 \le M_1 \le M_2 \le \cdots \le M_{s-1} \le M_s = G$ are two composition series of G, then r = s and there is some permutation, π , of $\{1, 2, \dots, r\}$ such that

$$M_{\pi(i)}/M_{\pi(i)-1} \cong N_i/N_{i-1}, \ 1 \le i \le r.$$

(ii) (1st isomorphism theorem) If $\varphi: G \to H$ is a homomorphism of groups, then $\ker \varphi \subseteq G$ and $G/\ker \varphi \cong \varphi(G)$.

Question (2). Prove the orbit-stabilizer theorem: let G be a group acting on a set X. Let $H = G_x$ be the stabilizer subgroup of $x \in X$. Then there is a one-to-one correspondence between the orbit $G \cdot x$ and the coset space G/H.

Solution. Let $\phi: G \cdot x \to G/G_x$ be a map from the orbit of x to the left coset of G_x defined as:

$$\forall g \in G : \phi(g \cdot x) = gG_x.$$

Suppose $g \cdot x = h \cdot x$ for some $g, h \in G$. Then

$$(h^{-1}g) \cdot x = h^{-1} \cdot (g \cdot x) = h^{-1} \cdot (h \cdot x) = (h^{-1}h) \cdot x = x \Longrightarrow h^{-1}g \in G_x. \tag{1}$$

So, $gG_x = hG_x$, which means ϕ is well-defined.

Let $\phi(g_1 \cdot x) = \phi(g_2 \cdot x)$ for some $g_1, g_2 \in G$.

Then

$$g_1G_x = g_2G_x \Longrightarrow g_2^{-1}g_1 \in G_x \Longrightarrow x = (g_2^{-1}g_1) \cdot x. \tag{2}$$

Thus

$$g_2 \cdot x = g_2 \cdot (g_2^{-1}g_1) \cdot x = g_1 \cdot x.$$
 (3)

So ϕ is injective. By the definition, ϕ is surjective. Hence, it is a bijection.

Question (3). Show that A_4 is not a simple group. Does A_4 have a subgroup of index 2?

Solution. (i)

Since $\{(1), (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of A_4 , we have A_4 is not a simple group.

(ii) No. If there exists $H \leq A_4$ such that |H| = 6. Since the index is 2, H is normal. Then for $x \in A_4 \setminus H$, xH has order 2, as an element of A_4/H . Hence $x^3H = x(xH)^2 = xH \neq H$. Particularly, $x^3 \neq e$. However, there are 8 elements in A_4 has order 3, which can't all in H since |H| = 6 < 8. This leads a contradiction.

Question (4). Let X be a finite set and suppose G is an abelian subgroup of the symmetric group S_X that acts transitively on X. Show that for all $e \neq g \in G$ and all $x \in X$ we have $g \cdot x \neq x$. Deduce that |G| = |X|.

Solution. If there exists $g \in G$ such that for some $x \in X$, we have $g \cdot x = x$. Since the action is transitive then for each $y \in X$, there exists $h_y \in G$ such that $h_y \cdot y = x$. So,

$$(h_y^{-1}g) \cdot x = h_y^{-1} \cdot (g \cdot x) = h_y^{-1} \cdot x = h_y^{-1} \cdot (h_y \cdot y) = y,$$

$$(gh_y^{-1}) \cdot x = (gh_y^{-1}) \cdot (h_y \cdot y) = g \cdot y.$$
(4)

Since G is abelian, we have $h_y^{-1}g=gh_y^{-1}$, which means for $\forall y\in X,\,g\cdot y=y.$ So g=e.

For a fixed $x \in X$, define $\phi: G \to X$ by $\phi(g) = g \cdot x$. Then for each $y \in X$, since the action is transitive, there exists $g_1 \in G$ such that $\phi(g_1) = g_1 \cdot x = y$, which means ϕ is surjective. If $g_1 \cdot x = g_2 \cdot x$, then

$$(g_1^{-1}g_2) \cdot x = g_1^{-1} \cdot (g_2 \cdot x) = g_1^{-1} \cdot (g_1 \cdot x) = x \Longrightarrow g_1^{-1}g_2 = e \Longrightarrow g_1 = g_2. \tag{5}$$

So, ϕ is an injection. Hence ϕ is a bijection. We have |G| = |X|.

Question (5). Find all the conjugacy classes in S_4 .

Solution. Two permutations in S_4 are conjugate if and only if they have the same cycle type. So there are 5 conjugacy classes in S_4 :

$$(1): (1);$$
 (6)

$$(2): (12), (13), (14), (23), (24), (34); \tag{7}$$

$$(3): (123), (132), (124), (142), (134), (143), (234), (243);$$
 (8)

$$(4): (1234), (1243), (1324), (1342), (1423), (1432);$$
 (9)

$$(2,2): (12)(34), (13)(24), (14)(23).$$
 (10)

Question (6). Let G be a finite group with |G| = n. Let k be an integer relatively prime to n. Show that the map $x \mapsto x^k, \forall x \in G$, is surjective.

Solution. Since (k, n) = 1 there exist $a, b \in \mathbb{Z}$ such that

$$ak + bn = 1. (11)$$

So,

$$x = x^{ak+bn} = x^{ak}x^{bn} = (x^a)^k \cdot (x^b)^n = (x^a)^k,$$
(12)

which means the map is surjective.

Question (7). Let G be a group. Let N be the subgroup of G generated by all the elements of the form $xyx^{-1}y^{-1}, \forall x, y \in G$.

- (a) Show that if $\phi: G \to G$ is any automorphism of G then $\phi(N) = N$. Conclude that N is a normal subgroup of G.
- (b) Show that G/N is abelian.

Solution. (a) For $x, y \in G$ if $\phi(x) = x', \phi(y) = y'$. We have

$$\phi(xyx^{-1}y^{-1}) = \phi(x)\phi(y)\phi(x^{-1})\phi(y^{-1}) = \phi(x)\phi(y)\phi^{-1}(x)\phi^{-1}(y) = x'y'(x')^{-1}(y')^{-1} \in N.$$
 (13)

That is $\phi(N) \subset N$.

On the other hand for $\forall h, k \in G$ there exists $h', k' \in G$ such that $\phi(h') = h, \phi(k') = k$. So,

$$\phi(h'k'(h')^{-1}(k')^{-1}) = \phi(h')\phi(k')\phi((h')^{-1})\phi((k')^{-1}) = hkh^{-1}k^{-1}.$$
(14)

Since $h'k'(h')^{-1}(k')^{-1} \in N$, we have $\phi(N) \supset N$.

Hence, $\phi(N) = N$.

For $g \in G$, we have

$$gxyx^{-1}y^{-1}g^{-1} = gxg^{-1}gyg^{-1}gx^{-1}g^{-1}gy^{-1}g^{-1}$$

$$= (gxg^{-1})(gyg^{-1})(gxg^{-1})^{-1}(gyg^{-1})^{-1} \in N.$$
(15)

So, N is a normal subgroup of G.

(b) For $x, y \in G$, we have

$$xNyN = xyN = xyy^{-1}x^{-1}yxN = yxN = yNxN. (16)$$

So, G/N is abelian.