- 12. We should note that $\overline{\mathbb{Q}(x)}$ is an algebraic closure of $\overline{\mathbb{Q}}(x)$. We know that π is transcendental over \mathbb{Q} . Therefore, $\sqrt{\pi}$ must be transcendental over \mathbb{Q} , for if it were algebraic, then $\pi = (\sqrt{\pi})^2$ would be algebraic over \mathbb{Q} , because algebraic numbers form a closed set under field operations. Therefore the map $\tau : \mathbb{Q}(\sqrt{\pi}) \to \mathbb{Q}(x)$ where $\tau(a) = a$ for $a \in \mathbb{Q}$ and $\tau(\sqrt{\pi}) = x$ is an isomorphism. Theorem 49.3 shows that τ can be extended to an isomorphism σ mapping $\overline{\mathbb{Q}}(\sqrt{\pi})$ onto a subfield of $\overline{\mathbb{Q}}(x)$. Then σ^{-1} is an isomorphism mapping $\sigma[\overline{\mathbb{Q}}(\sqrt{\pi})]$ onto a subfield of $\overline{\mathbb{Q}}(\sqrt{\pi})$ which can be extended to an isomorphism of $\overline{\mathbb{Q}}(x)$ onto a subfield of $\overline{\mathbb{Q}}(\sqrt{\pi})$. But because σ^{-1} is already onto $\overline{\mathbb{Q}}(\sqrt{\pi})$, we see that σ must actually be onto $\overline{\mathbb{Q}}(x)$, so σ provides the required isomorphism of $\overline{\mathbb{Q}}(\sqrt{\pi})$ with $\overline{\mathbb{Q}}(x)$.
- 13. Let E be a finite extension of F. Then by Theorem 31.11, $E = F(\alpha_1, \alpha_2, \dots, \alpha_n)$ where each α_i is algebraic over F. Now suppose that $L = F(\alpha_1, \alpha_2, \dots, \alpha_{k+1})$ and $K = F(\alpha_1, \alpha_2, \dots, \alpha_k)$. Every isomorphism of E onto a subfield of \overline{F} and leaving E fixed can be viewed as an extension of an isomorphism of E onto a subfield of \overline{F} . The extension of such an isomorphism E of E to an isomorphism E of E onto a subfield of E is completely determined by E be the irreducible polynomial for E and let E over E and let E be the polynomial in E obtained by applying E to each of the coefficients of E because E and let E be the must have E and let E be the number of choices for E because E and E because E because E and E because E and E because E and E and E because E and E are E and E and E because E and E are E and E and E are E and E are E and E and E are E are E and E are E and E are E are E and E are E and E are E are E and E are E are E and E are E and E are E are E and E are E and

$$\{F(\alpha_1, \dots, \alpha_{k+1}) : F(\alpha_1, \dots, \alpha_k)\} \le [F(\alpha_1, \dots, \alpha_{k+1}) : F(\alpha_1, \dots, \alpha_k)]. \tag{1}$$

We have such an inequality (1) for each $k = 1, 2, \dots, n-1$. Using the multiplicative properties of the index and of the degree (Corollaries 49.10 and 31.6), we obtain upon multiplication of these n-1 inequalities the desired result, $\{E: F\} \leq [E: F]$.

50. Splitting Fields

- **1.** The splitting field is $\mathbb{Q}(\sqrt{3})$ and the degree over \mathbb{Q} is 2.
- **2.** Now $x^4 1 = (x 1)(x + 1)(x^2 + 1)$. The splitting field is $\mathbb{Q}(i)$ and the degree over \mathbb{Q} is 2.
- **3.** The splitting field is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and the degree over \mathbb{Q} is 4.
- **4.** The splitting field has degree 6 over \mathbb{Q} . Replace $\sqrt[3]{2}$ by $\sqrt[3]{3}$ in Example 50.9.
- **5.** Now $x^3 1 = (x 1)(x^2 + x + 1)$. The splitting field has degree 2 over \mathbb{Q} .
- **6.** The splitting field has degree $2 \cdot 6 = 12$ over \mathbb{Q} . See Example 50.9 for the splitting field of $x^3 2$.
- 7. We have $|G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}| = 1$, because $\sqrt[3]{2} \in \mathbb{R}$ and the other conjugates of $\sqrt[3]{2}$ do not lie in \mathbb{R} (see Example 50.9). They yield isomorphisms into \mathbb{C} rather than automorphisms of $\mathbb{Q}(\sqrt[3]{2})$.
- **8.** We have $|G(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})/\mathbb{Q}| = 6$, because $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$ is the splitting field of $x^3 2$ and is of degree 6, as shown in Example 50.9.
- **9.** $|G(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})/\mathbb{Q}(\sqrt[3]{2})| = 2$, because $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$ is the splitting field of $x^2 + 3$ over $\mathbb{Q}(\sqrt[3]{2})$.
- 10. Theorem 33.3 shows that the only field of order 8 in $\overline{\mathbb{Z}_2}$ is the splitting field of $x^8 x$ over \mathbb{Z}_2 . Because a field of order 8 can be obtained by adjoining to \mathbb{Z}_2 a root of any cubic polynomial that is irreducible in $\mathbb{Z}_2[x]$, it must be that all roots of every irreducible cubic lie in this unique subfield of order 8 in $\overline{\mathbb{Z}_2}$.

- 11. The definition is incorrect. Insert "irreducible" before "polynomial".
 - Let $F \leq E \leq \overline{F}$ where \overline{F} is an algebraic closure of a field F. The field E is a **splitting field** over F if and only if E contains all the zeros in \overline{F} of every irreducible polynomial in F[x] that has a zero in E.
- 12. The definition is incorrect. Replace "lower degree" by "degree one".
 - A polynomial f(x) in F[x] splits in an extension field E of F if and only if it factors in E[x] into a product of polynomials of degree one.
- 13. We have $1 \leq [E:F] \leq n!$. The example $E=F=\mathbb{Q}$ and $f(x)=x^2-1$ shows that the lower bound 1 cannot be improved unless we are told that f(x) is irreducible over F. Example 50.9 shows that the upper bound n! cannot be improved.
- **14.** T F T T T F F T T
- **15.** Let $F = \mathbb{Q}$ and $E = \mathbb{Q}(\sqrt{2})$. Then $f(x) = x^4 5x^2 + 6 = (x^2 2)(x^2 3)$ has a zero in E, but does not split in E.
- **16. a.** This multiplicative relation is not necessarily true. Example 50.9 and Exercise 7 show that $6 = |G(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})/\mathbb{Q})| \neq |G(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})/\mathbb{Q}(\sqrt[3]{2}))| \cdot |G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})| = 2 \cdot 1 = 2.$
 - **b.** Yes, because each field is a splitting field of the one immediately under it. If E is a splitting field over F then $|G(E/F)| = \{E : F\}$, and the index is multiplicative by Corollary 49.10.
- 17. Let E be the splitting field of a set S of polynomials in F[x]. If E = F, then E is the splitting field of x over F. If $E \neq F$, then find a polynomial $f_1(x)$ in S that does not split in F, and form its splitting field, which is a subfield E_1 of E where $[E_1:F] > 1$. If $E = E_1$, then E is the splitting field of $f_1(x)$ over F. If $E \neq E_1$, find a polynomial $f_2(x)$ in S that does not split in E_1 , and form its splitting field $E_2 \leq E$ where $[E_2:E_1] > 1$. If $E = E_2$, then E is the splitting field of $f_1(x)f_2(x)$ over F. If $E \neq E_2$, then continue the construction in the obvious way. Because by hypothesis E is a finite extension of E, this process must eventually terminate with some $E_r = E$, which is then the splitting field of the product $g(x) = f_1(x)f_2(x) \cdots f_r(x)$ over F.
- **18.** Find $\alpha \in E$ that is not in F. Now α is algebraic over F, and must be of degree 2 because [E:F]=2 and $[F(\alpha):F]=\deg(\alpha,F)$. Thus $\operatorname{irr}(\alpha,F)=x^2+bx+c$ for some $b,c\in F$. Because $\alpha\in E$, this polynomial factors in E[x] into a product $(x-\alpha)(x-\beta)$, so the other root β of $\operatorname{irr}(\alpha,F)$ lies in E also. Thus E is the splitting field of $\operatorname{irr}(\alpha,F)$.
- 19. Let E be a splitting field over F. Let α be in E but not in F. By Corollary 50.6, the polynomial $irr(\alpha, F)$ splits in E since it has a zero α in E. Thus E contains all conjugates of α over F.
 - Conversely, suppose that E contains all conjugates of $\alpha \in E$ over F, where $F \leq E \leq \overline{F}$. Because an automorphism σ of \overline{F} leaving F fixed carries every element of \overline{F} into one of its conjugates over F, we see that $\sigma(\alpha) \in E$. Thus σ induces a one-to-one map of E into E. Because the same is true of σ^{-1} , we see that σ maps E onto E, and thus induces an automorphism of E leaving F fixed. Theorem 50.3 shows that under these conditions, E is a splitting field of F.
- **20.** Because $\mathbb{Q}(\sqrt[3]{2})$ lies in \mathbb{R} and the other two conjugates of $\sqrt[3]{2}$ do not lie in \mathbb{R} , we see that no map of $\sqrt[3]{2}$ into any conjugate other than $\sqrt[3]{2}$ itself can give rise to an automorphism of $\mathbb{Q}(\sqrt[3]{2})$; the other two maps give rise to isomorphisms of $\mathbb{Q}(\sqrt[3]{2})$ onto a subfield of $\overline{\mathbb{Q}}$. Because any automorphism of $\mathbb{Q}(\sqrt[3]{2})$ must leave the prime field \mathbb{Q} fixed, we see that the identity is the only automorphism of $\mathbb{Q}(\sqrt[3]{2})$. [For an alternate argument, see Exercise 39 of Section 48.]

21. The conjugates of $\sqrt[3]{2}$ over $\mathbb{Q}(i\sqrt{3})$ are

$$\sqrt[3]{2}$$
, $\sqrt[3]{2} \frac{-1 + i\sqrt{3}}{2}$, and $\sqrt[3]{2} \frac{-1 - i\sqrt{3}}{2}$.

Maps of $\sqrt[3]{2}$ into each of them give rise to the only three automorphisms in $G(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})/\mathbb{Q}(i\sqrt{3}))$. Let σ be the automorphism such that $\sigma(\sqrt[3]{2}) = \sqrt[3]{2} \frac{-1+i\sqrt{3}}{2}$. Then σ must be a generator of this group of order 3, because σ is not the identity map, and every group of order 3 is cyclic. Thus the automorphism group is isomorphic to \mathbb{Z}_3 .

- **22.** a. Each automorphism of E leaving F fixed is a one-to-one map that carries each zero of f(x) into one of its conjugates, which must be a zero of an irreducible factor of f(x) and hence is also a zero of f(x). Thus each automorphism gives rise to a one-to-one map of the set of zeros of f(x) onto itself, that is, it acts as a permutation on the zeros of f(x).
 - **b.** Because E is the splitting field of f(x) over F, we know that $E = F(\alpha_1, \alpha_2, \dots, \alpha_n)$ where $\alpha_1, \alpha_2, \dots, \alpha_n$ are the zeros of f(x). As Exercise 33 of Section 48 shows, an automorphism σ of E leaving F fixed is completely determined by the values $\sigma(\alpha_1), \sigma(\alpha_2), \dots, \sigma(\alpha_n)$ that is, by the permutation of the zeros of f(x) given by σ .
 - c. We associate with each $\sigma \in G(E/F)$ its permutation of the zeros of f(x) in E. Part(b) shows that different elements of G(E/F) produce different permutations of the zeros of f(x). Because multiplication $\sigma \tau$ in G(E/F) is function composition and because multiplication of the permutations of zeros is again composition of these same functions, with domain restricted to the zeros of f(x), we see that G(E/F) is isomorphic to a subgroup of the group of all permutations of the zeros of f(x).
- **23.** a. We have $|G(E/\mathbb{Q})| = 2 \cdot 3 = 6$, because $\{\mathbb{Q}(i\sqrt{3}) : \mathbb{Q}\} = 2$ since $\operatorname{irr}(i\sqrt{3}, \mathbb{Q}) = x^2 + 3$ and $\{\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}(i\sqrt{3})\} = 3$ because $\operatorname{irr}(\sqrt[3]{2}, \mathbb{Q}(i\sqrt{3})) = x^3 2$. The index is multiplicative by Corollary 49.10.
 - **b.** Because E is the splitting field of x^3-2 over \mathbb{Q} , Exercise 22 shows that $G(E/\mathbb{Q})$ is isomorphic to a subgroup of the group of all permutations of the three zeros of x^3-2 in E. Because the group of all permutations of three objects has order 6 and $|G(E/\mathbb{Q})|=6$ by $\operatorname{Part}(\mathbf{a})$, we see that $G(E/\mathbb{Q})$ is isomorphic to the full symmetric group on three letters, that is, to S_3 .
- **24.** We have $x^p = (x-1)(x^{p-1} + \cdots + x + 1)$, and Corollary 23.17 shows that the second of these factors, the cyclotomic polynomial $\Phi_p(x)$, is irreducible over the field \mathbb{Q} . Let ζ be a zero of $\Phi_p(x)$ in its splitting field over \mathbb{Q} . Exercise 36a of Section 48 shows that then $\zeta, \zeta^2, \zeta^3, \cdots, \zeta^{p-1}$ are distinct and are all zeros of $\Phi_p(x)$. Thus all zeros of $\Phi_p(x)$ lie in the simple extension $\mathbb{Q}(\zeta)$, so $\mathbb{Q}(\zeta)$ is the splitting field of $x^p 1$ and of course has degree p 1 over \mathbb{Q} because $\Phi_p(x) = \operatorname{irr}(\zeta, \mathbb{Q})$ has degree p 1.
- **25.** By Corollary 49.5, there exists an isomorphism $\phi: \overline{F} \to \overline{F'}$ leaving each element of F fixed. Because the coefficients of $f(x) \in F[x]$ are all left fixed by ϕ , we see that ϕ carries each zero of f(x) in \overline{F} into a zero of f(x) in $\overline{F'}$. Because the zeros of f(x) in \overline{F} generate its splitting field E in \overline{F} , we see that $\phi[E]$ is contained in the splitting field E' of f(x) in $\overline{F'}$. But the same argument can be made for ϕ^{-1} ; we must have $\phi^{-1}[E'] \subseteq E$. Thus ϕ maps E onto E', so these two splitting fields of f(x) are isomorphic.

51. Separable Extensions

1. Because $\sqrt[3]{2}\sqrt{2} = 2^{1/3}2^{1/2} = 2^{5/6}$, we have $\sqrt[6]{2} = 2/(\sqrt[3]{2}\sqrt{2})$ so $\mathbb{Q}(\sqrt[6]{2}) \subseteq \mathbb{Q}(\sqrt[3]{2},\sqrt{2})$. Because $\sqrt[3]{2} = (\sqrt[6]{2})^2$ and $\sqrt{2} = (\sqrt[6]{2})^3$, we have $\mathbb{Q}(\sqrt[3]{2},\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[6]{2})$, so $\mathbb{Q}(\sqrt[6]{2}) = \mathbb{Q}(\sqrt[3]{2},\sqrt{2})$. We can take $\alpha = \sqrt[6]{2}$.

- **2.** Because $(\sqrt[4]{2})^3(\sqrt[6]{2}) = 2^{3/4}2^{1/6} = 2^{9/12}2^{2/12} = 2^{11/12}$, we see that $\sqrt[12]{2} = 2/[(\sqrt[4]{2})^3(\sqrt[6]{2})]$ so $\mathbb{Q}(\sqrt[12]{2}) \subseteq \mathbb{Q}(\sqrt[4]{2}, \sqrt[6]{2})$. Because $\sqrt[4]{2} = (\sqrt[12]{2})^3$ and $\sqrt[6]{2} = (\sqrt[12]{2})^2$, we have $\mathbb{Q}(\sqrt[4]{2}, \sqrt[6]{2}) \subseteq \mathbb{Q}(\sqrt[12]{2})$, so $\mathbb{Q}(\sqrt[12]{2}) = \mathbb{Q}(\sqrt[4]{2}, \sqrt[6]{2})$. We can take $\alpha = \sqrt[12]{2}$.
- **3.** We try $\alpha = \sqrt{2} + \sqrt{3}$. Squaring and cubing, we find that $\alpha^2 = 5 + 2\sqrt{2}\sqrt{3}$ and $\alpha^3 = 11\sqrt{2} + 9\sqrt{3}$. Because

$$\sqrt{2} = \frac{\alpha^3 - 9\alpha}{2}$$
 and $\sqrt{3} = \frac{11\alpha - \alpha^3}{2}$,

we see that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

- **4.** Of course $\mathbb{Q}(i\sqrt[3]{2}) \subseteq \mathbb{Q}(i,\sqrt[3]{2})$. Because $i = -(i\sqrt[3]{2})^3/2$ and $\sqrt[3]{2} = -2/(i\sqrt[3]{2})^2$, we see that $\mathbb{Q}(i,\sqrt[3]{2}) \subseteq \mathbb{Q}(i\sqrt[3]{2})$. Thus $\mathbb{Q}(i,\sqrt[3]{2}) = \mathbb{Q}(i\sqrt[3]{2})$, so we can take $\alpha = i\sqrt[3]{2}$.
- **5.** The definition is incorrect. Replace F[x] by $\overline{F}[x]$ at the end.

Let \overline{F} be an algebraic closure of a field F. The **multiplicity of a zero** $\alpha \in \overline{F}$ of a polynomial $f(x) \in F[x]$ is $\nu \in \mathbb{Z}^+$ if and only if $(x - \alpha)^{\nu}$ is the highest power of $x - \alpha$ that is a factor of f(x) in $\overline{F}[x]$.

- **6.** The definition is correct.
- 7. (See the answer in the text.)
- 8. F T T F F T T T T T
- 9. We are given that α is separable over F, so by definition, $F(\alpha)$ is a separable extension over F. Because β is separable over F, it follows that β is separable over $F(\alpha)$ because $q(x) = \operatorname{irr}(\beta, F(\alpha))$ divides $\operatorname{irr}(\beta, F)$ so β is a zero of q(x) of multiplicity 1. Therefore $F(\alpha, \beta)$ is a separable extension of F by Theorem 51.9. Corollary 51.10 then asserts that each element of $F(\alpha, \beta)$ is separable over F. In particular, $\alpha \pm \beta$, $\alpha\beta$, and α/β if $\beta \neq 0$ are all separable over F.
- 10. We know that $[\mathbb{Z}_p(y):\mathbb{Z}_p(y^p)]$ is at most p. If we can show that $\{1,y,y^2,\cdots,y^{p-1}\}$ is an independent set over $\mathbb{Z}_p(y^p)$, then by Theorem 30.19, this set could be enlarged to a basis for $\mathbb{Z}_p(y)$ over $\mathbb{Z}_p(y^p)$. But because a basis can have at most p elements, it would already be a basis, and $[\mathbb{Z}_p(y):\mathbb{Z}_p(y^p)]=p$, showing that $\operatorname{irr}(y,\mathbb{Z}_p(y^p))$ would have degree p and must therefore be x^p-y^p . Thus our problem is reduced to showing that $S=\{1,y,y^2,\cdots,y^{p-1}\}$ is an independent set over $\mathbb{Z}_p(y^p)$.

Suppose that

$$\frac{r_0(y^p)}{s_0(y^p)} \cdot 1 + \frac{r_1(y^p)}{s_1(y^p)} \cdot y + \frac{r_2(y^p)}{s_2(y^p)} \cdot y^2 + \dots + \frac{r_{p-1}(y^p)}{s_{p-1}(y^p)} \cdot y^{p-1} = 0$$

where $r_i(y^p), s_i(y^p) \in \mathbb{Z}_p[y^p]$ for $i = 0, 1, 2, \dots, p-1$. We want to show that all these coefficients in $\mathbb{Z}_p(y^p)$ must be zero. Clearing denominators, we see that it is no loss of generality to assume that all $s_i(y^p) = 1$ for $i = 0, 1, 2, \dots, p-1$. Now the powers of y appearing in $r_i(y^p)(y^i)$ are all congruent to i modulo p, and consequently no terms in this expression can be combined with any terms of $r_j(y^p)(y^j)$ for $j \neq i$. Because y is an indeterminant, we then see that this linear combination of elements in S can be zero only if all the coefficients $r_i(y^p)$ are zero, so S is an independent set over $\mathbb{Z}_p(y^p)$, and we are done.

11. Let E be an algebraic extension of a perfect field F and let K be a finite extension of E. To show that E is perfect, we must show that K is a separable extension of E. Let α be an element of K. Because [K:E] is finite, α is algebraic over E. Because E is algebraic over F, then α is algebraic over F by

Exercise 31 of Section 31. Because F is perfect, α is a zero of $\operatorname{irr}(\alpha, F)$ of multiplicity 1. Because $\operatorname{irr}(\alpha, E)$ divides $\operatorname{irr}(\alpha, F)$, we see that α is a zero of $\operatorname{irr}(\alpha, E)$ of multiplicity 1, so α is separable over E by the italicized remark preceding Theorem 51.9. Thus each $\alpha \in K$ is separable over E, so K is separable over E by Corollary 51.10.

- 12. Because K is algebraic over E and E is algebraic over F, we have K algebraic over F by Exercise 31 of Section 31. Let $\beta \in K$ and let $\beta_0, \beta_1, \dots, \beta_n$ be the coefficients in E of $\operatorname{irr}(\beta, E)$. Because β is a zero of $\operatorname{irr}(\beta, E)$ of algebraic multiplicity 1, we see that $F(\beta_0, \beta_1, \dots, \beta_n, \beta)$ is a separable extension of $F(\beta_0, \beta_1, \dots, \beta_n)$, which in turn is a separable extension of F by Corollary 51.10. Thus we are back to a tower of finite extensions, and deduce from Theorem 51.9 that $F(\beta_0, \beta_1, \dots, \beta_n, \beta)$ is a separable extension of F. In particular, β is separable over F. This shows that every element of K is separable over F, so by definition, K is separable over F.
- 13. Exercise 9 shows that the set S of all elements in E that are separable over F is closed under addition, multiplication, and division by nonzero elements. Of course 0 and 1 are separable over F, so Exercise 9 further shows that S contains additive inverses and reciprocals of nonzero elements. Therefore S is a subfield of E.
- **14. a.** We know that the nonzero elements of E form a cyclic group E^* of order p^n-1 under multiplication, so all elements of E are zeros of $x^{p^n}-x$. (See Section 33.) Thus for $\alpha \in E$, we have

$$\sigma_p^n(\alpha) = \sigma_p^{n-1}(\sigma_p(\alpha)) = \sigma_p^{n-1}(\alpha^p) = \sigma_p^{n-2}(\sigma_p(\alpha^p))$$
$$= \sigma_p^{n-2}(\sigma_p(\alpha))^p = \sigma_p^{n-2}((\alpha^p)^p) = \sigma_p^{n-2}(\alpha^{p^2})$$
$$= \cdots = \alpha^{p^n} = \alpha$$

so σ_p^n is the identity automorphism. If α is a generator of the group E^* , then $\alpha^{p^i} \neq \alpha$ for i < n, so we see that n is indeed the order of σ_p .

b. Section 33 shows that E is an extension of \mathbb{Z}_p of order n, and is the splitting field of any irreducible polynomial of degree n in $\mathbb{Z}[x]$. Because E is a separable extension of the finite perfect field \mathbb{Z}_p , we see that $|G(E/F)| = \{E : F\} = [E : F] = n$. Since $\sigma_p \in G(E/F)$ has order n, we see G(E/F) is cyclic of order n.

15. a. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i$ and $g(x) = \sum_{i=0}^{\infty} b_i x^i$. Then

$$D(f(x) + g(x)) = D\left(\sum_{i=0}^{\infty} (a_i + b_i)x^i\right)$$

$$= \sum_{i=1}^{\infty} (i \cdot 1)(a_i + b_i)x^{i-1}$$

$$= \sum_{i=1}^{\infty} (i \cdot 1)a_ix^{i-1} + \sum_{i=1}^{\infty} (i \cdot 1)b_ix^{i-1}$$

$$= D(f(x)) + D(g(x)).$$

thus D is a homomorphism of $\langle F[x], + \rangle$.

- **b.** If F has characteristic zero, then Ker(D) = F.
- **c.** If F has characteristic p, then $Ker(D) = F[x^p]$.