

Department of Mathematics University of Pittsburgh MATH 2370

Midterm 1, Fall 2015

Instructor: Kiumars Kaveh

Last Name: Student Number:

First Name:

TIME ALLOWED: 50 MINUTES. TOTAL: 50

NO AIDS ALLOWED. WRITE SOLUTIONS ON THE SPACE PROVIDED.

Question	Mark
1	/10
2	/10
3	/10
4	/10
5	/10
TOTAL	/50

1(a).[5 points] Give the definitions of the following: dual X' of vector space X, and dual T' of a linear map $T: X \to U$ (where X, U are vector spaces).

$$\times' = \{ l : X \rightarrow K \mid L | linear \}$$

× vec. space over K with addition & scalar multi. of functions.

(b).[5 points] Give the definition of the following: the direct sum of two vector spaces X and U.

X & U vec. space with Componentwise addition & Scalar multi.

2.[10 points] Let $T: X \to U$ be a linear map where X, U are vector spaces and X is finite dimensional. Prove that $\dim(N_T) + \dim(R_T) = \dim(X)$.

1st proof let {b,,..., b, m} be a basis for NT, where m=dim(NT).

Extend this to a basis $\{b_1,...,b_m, x_1,...,x_{n-m}\}$ for X, where $n = \dim(X)$.

We claim that {T(x1),...,T(xn-m)} is a basis for RT.

Firstly, $\{T(x_i), \dots, T(x_{n-m})\}$ is lin. ind. became if $\sum_{i=1}^{n-m} c_i T(x_i) = 0 \Rightarrow T(\sum_{j=1}^{n-m} c_j x_j) = 0$ $\Rightarrow \sum_{i=1}^{n-m} c_i x_i \in \mathbb{N}_T \Rightarrow \sum_{j=1}^{n-m} c_j x_i - \sum_{j=1}^{m} d_j b_j$ for some scalars d_j . Since $\{b_1, \dots, b_m, x_1, \dots, x_{n-m}\}$

is linind it follows that $c_1 = \cdots = c_{n-m} = 0$ i.e. $\{T(x_1), \cdots, T(x_{n-m})\}$ is linind.

Secondly, $\{T(x_i), \dots, T(x_{n-m})\}$ spans R_T , because if $y = T(x) \in R_T$ then $x = \sum_{j=1}^m d_j b_j + \sum_{i=1}^{n-m} c_i x_i \Rightarrow y = T(x) = \sum_j d_j T(b_j) + \sum_i c_i T(x_i) = \sum_j c_i T(x_j)$.

It follows that dim (RT) = n-m as required.

2nd proof we show that $X_{N_T} \cong R_T$. The iso ism is given by $T: X+N_T \longmapsto T(X)$. To show T is well-defined note that if $X+N_T = X_2+N_T$ then $X_1-X_2=n\in N_T \Rightarrow T(X_1)-T(X_2)=T(n)=0 \Rightarrow T(X_1+N_T)=T(X_2+N_T)$. It is clear that T is onto. To show that T is one-to-one note that $N_T=\{x+N_T\mid x\in N_T\}=\{0+N_T\}=\{0\}$. So T is one-to-one.

Finally we know (from a previous thm.) that $\dim(X_{NT}) = \dim(X) - \dim(N_T)$. This finishes the proof.

3.[10 points] Let X be a finite dimensional vector space. Prove that a linear map $T: X \to X$ is one-to-one if and only if it is onto.

First note that T is onto \iff $R_T = X \iff \dim R_T = \dim X$

Also T is one-to-one \Leftrightarrow $N_{+}=\{0\} \iff \dim N_{+}=0$.

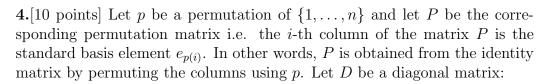
It is clear that if T is one-to-one then NT = {0}.

Conversely if $N_{T}=\{0\}$ & $T(X_{1})=T(X_{2}) \Rightarrow T(X_{1}-X_{2})=0 \Rightarrow X_{1}-X_{2}=0 \Rightarrow X_{1}=X_{2}$. Thus T one-to-one.

Now Since dim NT + dim RT = dim X we have:

din NT=0 (dim RT = din X. This finishes the proof.

(Remember:
$$\begin{bmatrix} \psi_1 \cdots \psi_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \text{col. vec. } x_1 C_1 + \cdots + x_n C_n .$$
)



$$D = diag(d_1, \dots, d_n).$$

Show that the matrix $P^{-1}DP$ is again diagonal and in fact it is equal to $diag(d_{p(1)}, \ldots, d_{p(n)})$.

Vi=1...n, the i-th cd. of P is epain. It follows that Vj=1...n, the j-th row of P is epain. Applying this to the permutation p'we see Vj=1...n, the j-row of P' is epain.

Direct calculation Shows that:

$$\begin{bmatrix} d_1 & 0 \\ 0 & d_n \end{bmatrix} \begin{bmatrix} e_{p(1)} & e_{p(n)} \end{bmatrix} = \begin{bmatrix} d_1 & e_{p(n)} & e_{p(n)} \\ e_{p(n)} & e_{p(n)} \end{bmatrix}$$

And hence:

$$PDP = \begin{bmatrix} \frac{P(1)}{P(1)} \\ \frac{P(1)}{P(1)} \\ \frac{P(1)}{P(1)} \end{bmatrix} = \begin{bmatrix} P(1) & O \\ O & O \\ O & O \end{bmatrix}$$

5.[10 points] Let P_1 , P_2 be two projections from a finite dimensional linear space X into itself. Suppose $R_{P_1} = N_{P_2}$, is it always true that $P_1P_2 = 0$? Prove it or provide a counter example.

Rp=Np implies that P2P1=0.

It is not in general true that PP2=0.

Example let X = R2.

Let $P_1 = Proj.$ on x-axis parallel to y-axis ($R_{P_1} = \langle e_1 \rangle$, $N_{P_1} = \langle e_2 \rangle$) Matrix of $P = \begin{bmatrix} 0 & 0 \end{bmatrix}$. (Easily Checked $P^2 = P_1$).

Let $P_2 = Proj$ on the line X=y parallel to X-axis. $(N_{P_2}=\langle e_1, R_{P_2}=\langle e_1+e_2\rangle)$. Clearly, P_2 proj . Also $R_P=N_P=X-axis=\langle e_1\rangle$.

But Rp & NP, because Rp = <e1+e2> & Np= <e2>. So PiP2 \neq 0.

Matrix of $P_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$.