${\bf Department\ of\ Mathematics}$

University of Pittsburgh MATH 2370

Solutions

Midterm 2, Fall 2015

Instructor: Kiumars Kaveh

Last Name: Student Number:

First Name:

TIME ALLOWED: 50 MINUTES. TOTAL: 50

NO AIDS ALLOWED. WRITE SOLUTIONS ON THE SPACE PROVIDED.

Question	Mark
1	/10
2	/10
3	/12
4	/10
5	/8
6	/4
TOTAL	/50

1(a).[5 points] Give the definitions of a symmetric bilinear form and a scalar product on a vector space V.

Let V vec. space over a field K.

B: VxV -> K is a bilinear form if B is linear in both arguments.

B: VxV -K is symm if Yv, weV B(v, w) = B(w, v).

let V be a vec. space over R.

A symm-bilinear form $B: V_*V \longrightarrow \mathbb{R}$ is a scalar product if $\forall v \in V \quad B(v,v) \geqslant 0$,

& moreover, $B(v,v)=0 \iff v=0$

(b).[5 points] Give the definition of a generalized eigenvector. State the Spectral Theorem.

T: V - V lin. map.

 $0 \neq V \in V$ is a generalized eigenvec. with eigenvalue λ if for some integer m > 0 we have $(T - \lambda I)^m(v) = 0$.

Spectral theorem

V is the direct sum of generalized eigenspaces for T.

- **2.** Let V be a finite dimensional vector space and let $P: V \to V$ be a linear projection i.e. $P^2 = P$.
- (a)[5 points] Prove that $V = N_P \oplus R_P$ where N_P and R_P are the null space and range of P respectively.

Let $w=P(v)\in R_P$. Suppose $w\in N_P\Rightarrow P(P(v))=0$, but $P^2(v)=P(v)\Rightarrow w=0$. That is $R_P\cap N_P=\{0\}$. On the other hand $\dim N_P+\dim R_P=\dim V$. This implies that $V=N_P\oplus R_P$.

(b)[5 points] Show that P is diagonalizable.

Let n=dim V, k=dim Np & n-k=dim Rp.

let {b,,...,bk} basis for Np & {bk+1,...,bn} basis for Rp.

Clearly $\forall v \in \mathbb{N}_p$ $P(v) = 0 \Rightarrow v$ eigenver. with eigenvalue 0.

 $\forall v \in R_p \ P(v) = v \implies v \text{ eigenvec. with eigenvalue } \underline{1}.$

The basis {b_1,...,b_n} for V Consists of eigenvec. => P diagonalizable.

3(a). 8 points Find the characteristic polynomial of A. Find the minimal polynomial of A. Find the generalized eigenspaces of A.

A block diagonal

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ $char. poly. of <math>\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = t^2 - | = (t-1)(t+1)$ $min. poly. \dots = (t-1)(t+1)$ $eigenver. \Rightarrow v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \lambda_1 = 1 \Rightarrow e_1 + e_2$ $v_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \lambda_2 = 1 \Rightarrow e_1 - e_2$

char poly .:

 $P_{A}(t) = (t-1)(t+1)(t-1)^{2}t(t-1) = (t-1)^{4}(t+1) t$

min. poly:

Min. poly of ... = $(t-1)^2$.

Min. poly of ... = $(t-1)^2$.

Only eigen ver. = $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Only eigen space of $1 = \text{Span}\{e_1e_2, e_3, e_4\}$ Pagen values: 1 = 1 = 0Pagen values: 1 = 1 = 0

Char. poly. of $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = (t-1)^2$.

eigenvalues: 1,-1,0

Gen. eigenspace of -1 = span{e, -e,}

(b) [4 points] Let A be a square matrix. Suppose the characteristic polynomial of A is $(t-1)^3(t+1)$ and the minimal polynomial of A is (t-1)(t+1). Find the Jordan canonical form of A. First deg. char. Poly = 4 => A is 4x4.

min. poly. = $(t-1)(t+1) \Rightarrow$ eigenvalues are $1 \times -1 \times$ each one has index 1.

So the sizes of Jordan blocks are 1. Thus the Jordan form is:

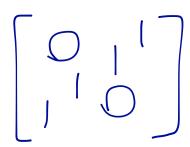
4(a).[5 points] Let A be a 3×2 matrix and B be a 2×3 matrix. Show that det(AB) = 0.

Let C1 & C2 be the Col of A i.e. A = [\$\frac{1}{4}, \frac{1}{4}].

Then the Col. of AB are lin. Comb. of C_1 & C_2 . Since AB has 3 = 0. & they are lin. Comb. of 2 = 0.

(b)[5 points] Let $\{e_1, \ldots, e_4\}$ be the standard basis for \mathbb{R}^4 . Let P be the 4×4 permutation matrix such that $Pe_i = e_{5-i}$ for every $i = 1, \ldots, e_4$ (i.e. $Pe_1 = e_4, Pe_2 = e_3$ etc.). Find the determinant of P.

Matrix of Plooks like:



Switching 1st & 4th col. \wedge 2rd & 3rd col. we get the identity matrix I & $\det(I)=1$. Any Switching of Columns multiplies the det by (-1). So $\det(P)=(-1)(-1)=1$.

5.[8 points] Suppose A and B are complex 3×3 nilpotent matrices with $A^2 = B^2 = 0$. Prove that A and B have a common eigenvector.

Since A&B are nilpotent their only eigenvalue is O.

We claim that dim N_A & dim N_B are $\geqslant 2$.

Suppose $\dim N_A = 1$. Then the Jordan form of A has only 1 block & should be $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

But then $A^2 \neq 0$ (rather $A^3 = 0$) which is a Contradiction. Similarly dim $N_B = 1$ is not possible.

Now if $N_A \cap N_B = \{0\} \implies \dim(N_A + N_B) \geqslant 2 + 2 = 4$ which is not possible because the whole space is 3 dim.

Thus $N_A \cap N_B \neq \{0\} \Rightarrow A \& B$ have a nonzero eigenvec.

6.[4 bonus points] Let V and W be finite dimensional vector spaces over \mathbb{R} . Let $B: V \times W \to \mathbb{R}$ be a non-degenerate bilinear form. That is, B is linear in both arguments and the following holds: if B(v, w) = 0 for all $w \in W$ then v = 0, and similarly if B(v, w) = 0 for all $v \in V$ then w = 0. Prove that $\dim(V) = \dim(W)$.

Consider the map $v \mapsto l_v = B(v, *)$. $V \longrightarrow W'$ That is, l_v is the lin. function defined by $l_v(w) = B(v, w)$.

Since B is non-degenerate the map $v \mapsto l_v$ has null space $= \{o\}$, & thus is one-to-one. So we have a one-to-one map from V to W.

This shows that $\dim V \leq \dim W = \dim W$.

Switching the roles of V& W we see dim W & dim V.

This finishes the proof.